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Abstract—While most literature in compressive sensing mostly
concentrates on recovering a sparse signal from a reduced
number of measurements, parameter estimation problems have
recently been studied under this acquisition framework. In
this paper, we focus on the problem of direction-of-arrival
(DOA) estimation from compressive measurements taken at each
antenna in a receiver array. In contrast with the common
assumption that the DOAs are contained within a grid to obtain
sparsity, we consider a gridless setting for the parameter space
and introduce two algorithmic approaches for this setup. The
first approach leverages a parametric estimation algorithm to
design a suitable denoiser to be used in approximate message
passing. The second approach uses a multiple measurement
vector model for a sequence of snapshots followed by the same
parametric estimation algorithm applied on the estimated signals.
Our experimental results show that the proposed algorithms
can significantly outperform existing approaches in terms of the
average DOA estimation error and the sparsity-undersampling
tradeoff.

Index Terms—Compressive Sensing, Direction of Arrival, Spec-
tral Estimation, Approximate Message Passing, Multiple Signal
Classification (MUSIC)

I. INTRODUCTION

Compressive sensing (CS) has recently attracted significant
attention in the field of signal processing. CS enables a reduc-
tion in the number of measurements needed to recover a signal
by exploiting its sparsity [1, 2], i.e., the fact that the signal
possesses only a few nonzero or significant coefficients in a
suitable transform domain. Even though most existing work in
this area focuses on signal recovery from few measurements,
some literature in the field of parameter estimation using
sparse signal models is available as well [3–8]. While such
models assume that only a few nonzero values exist in a
signal’s representation, more recent models for compressive
parameter estimation inspired by sparsity assume that a small
number of parameters suffices to completely describe the
signal of interest. Some examples of such sparse parameter
estimation models include frequency estimation, localization,
and bearing estimation [5–16]. In such applications, one does
not aim to recover the signal itself, but rather to leverage the
parametric model in order to identify the signal from a reduced
number of measurements.

We focus on the specific application of bearing estimation,
also known as direction of arrival (DOA) estimation. DOA

estimation refers to the process of retrieving the angular
location of several far-field electromagnetic sources from the
outputs of a number of receiving antennas that form a sensor
array. DOA estimation is an important problem in array signal
processing and has a variety of applications including radar,
sonar, and wireless communications [17].

Generally, sparse methods for DOA estimation are classified
into three categories: on-grid, off-grid, and gridless [18]. In
on-grid sparse methods, the DOAs are assumed to lie on
a prescribed grid; therefore, the continuous DOA domain is
replaced by a given set of grid points. Hence, grid selection
is an important problem in the recovery methods from this
category, which affects the practical DOA estimation accuracy,
computational speed, and the theoretical analysis. For exam-
ple, there is a high likelihood of mismatch between the adopted
discrete grid point values and the true continuous DOAs. To
resolve this problem, a new class of off-grid approaches to pa-
rameter estimation has been recently introduced, e.g., [8–13].
In these approaches, a grid is still required to perform sparse
estimation; however, the DOA estimates are not restricted to
be on the grid. Therefore, the samples included in the grid
need to have sufficient density and coverage to allow for
accurate off-grid estimation. Off-grid algorithms commonly
rely on nonconvex optimization or interpolation, and hence can
only provide local convergence guarantees. As an alternative
to on- and off-grid approaches for sparse DOA estimation,
gridless approaches do not require gridding of the DOA
parameter space. This type of algorithms directly operate in the
continuous parameter domain and, hence, completely resolve
the grid mismatch problem. Since the resulting problems are
convex, the algorithms provide strong theoretical guarantees.
Nonetheless, they are only applicable to settings featuring
measurements from uniform or sparse linear arrays.

In our previous work [16], we introduced a compressive
parameter estimation approach based on approximate message
passing (AMP) [19], a modified version of the traditional,
widely-used iterative soft thresholding algorithm for CS re-
covery [20]. AMP obtains an estimate of the signal, polluted
by additive white Gaussian noise (AWGN), in each of its
iterations by leveraging an “Onsager” correction term in its
formulation. The algorithm then runs this estimate through
a soft thresholding step, which can be shown to be an

duarte
Typewritten Text
Copyright 2015 IEEE. Published in the Proceedings of the 2016 Asilomar Conference on Signals, Systems, and Computers, Nov. 6-9, 2016, Pacific Grove, CA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

duarte
Typewritten Text

duarte
Typewritten Text



optimal denoiser for sparse signals embedded in additive white
Gaussian noise [19]. To solve the compressive parameter
estimation problem, we replace this denoising step throughout
the execution of AMP with what we call an analog denoiser:
a concatenation of a statistical parameter estimation algorithm
and a signal synthesis step [16, 21, 22].

In this paper, we propose two algorithms for sparse DOA
estimation. Our first algorithm belongs in the gridless category
and relies on the design of an analog denoiser for the DOA
estimation problem to be integrated within AMP. Our second
algorithm belongs in the off-grid category and uses a multiple
measurement vector model for a sequence of snapshots to
perform signal recovery, followed by the straightforward appli-
cation of a DOA estimation algorithm on the recovery output.
Our experimental results show that the proposed algorithms
can significantly outperform existing approaches in terms of
the average DOA estimation error.

This paper is organized as follows. Section II provides
additional background. In Section III, we present our ap-
proaches to leverage parameter estimation algorithms for the
compressive DOA estimation problem. In Section IV, we
focus our study of these algorithms on aspects introduced by
the distributed nature of sensing in sensor arrays. Section V
presents experimental results indicating the performance of
the proposed approaches. Finally, we provide conclusions and
some suggestions for future work in Section VI.

II. BACKGROUND AND RELATED WORK

A. Compressive Sensing
Consider a discrete-time K-sparse signal x ∈ CN , i.e. x

has at most K nonzero elements, and a column-normalized
measurement matrix Φ ∈ CM×N with independent and iden-
tically distributed elements chosen from a complex Gaussian
distribution. Considering the measurement vector of the signal
y = Φx ∈ CM , when M � N , we attempt to recover x
from y given Φ. This can be done using algorithms based on
optimization [23] (such as basis pursuit) or greedy iterative
algorithms such as iterative soft/hard thresholding [20], which
can be succinctly stated as follows:

xt+1 = ηK(ΦH(y − Φxt) + xt), (1)

starting from x0 = 0. Here, xt ∈ CN denotes the signal
estimate at iteration t, and ηK(.) is the corresponding soft/hard
thresholding function that provides the optimal K-sparse ap-
proximation of the input signal, in terms of the Euclidean
distance.

B. Approximate Message Passing
Recently, Donoho et al. suggested a modification in the

traditional iterative soft thresholding algorithm, adding an
“Onsager” correction term to the iterative soft thresholding
algorithm (1) [19]. The resulting first-order approximate mes-
sage passing algorithm (AMP) proceeds as follows:

xt+1 = ηK(ΦHzt + xt), (2)

zt = y − Φxt +
1

δ
zt−1〈η′t−1(ΦHzt−1 + xt−1)〉, (3)

where zt denotes a residual, η′K(s) = ∂
∂sηK(s) is the

entry-wise derivative of the soft thresholding function ηK(.),
δ = M/N is the measurement rate, and for a vector u =[
u(1) . . . u(N)

]
we denote 〈u〉 = 1

N

∑N
i=1 u(i). It can be

shown that the Onsager term added in (3) significantly reduces
the number of measurements required for signal recovery with
respect to iterative soft thresholding [19].

C. Denoising-Based AMP

The power of the Onsager correction term is that at each
iteration of the AMP algorithm, the input to the thresholding
step in (2) resembles in distribution the original signal x
embedded in AWGN [19, 22]. In subsequent work, Donoho
et al. have shown that one can replace the traditionally used
iterative soft thresholding function at each iteration of the
AMP algorithm with an optimal AWGN denoiser for the
class of signals of interest, noting that soft thresholding
provides such an optimal denoiser for sparse signals [22]. This
fact enables us to infuse additional knowledge of the signal
model and application in the recovery algorithm. However,
the drawback is that high-performance denoisers are usually
data-dependent, and therefore it might be impossible or highly
complex to explicitly express the Onsager correction term for
such denoisers. Fortunately, Metzler et al. have shown that
one can leverage a Monte Carlo method in order to obtain
a numerical estimate of the Onsager correction term for any
denoiser suitable for AMP [21].

D. DOA Estimation

In DOA estimation, an array of P sensors (usually micro-
phones or antennas) can record one or multiple targets trans-
mitting a signal to the array at specific bearing angles [24]. As-
sume that the pth antenna is located at the coordinates (up, vp)
and that the antennas are configured as a uniform linear array
(e.g., up = u0 + pdx, where dx is the array inter-element
spacing, and vp = 0 for all p). The P×1 array snapshot vector
x(q) = [x1(q) x2(q) . . . xP (q)]T , containing observations
from all antennas at each time q = 1, . . . , Q, can be modeled
as x(q) = S(θ)a(q) + n(q), where θ =

[
θ1 . . . θK

]T
is the

K×1 vector of the signal DOAs, S(θ) =
[
s(θ1) . . . s(θK)

]
is

the P×K signal steering matrix, a(q) =
[
a1(q) . . . aK(q)

]T
is the K × 1 vector collecting the scalar amplitudes of the
received transmissions, and n(q) is the P×1 vector of antenna
noise. Each P × 1 steering vector can be expressed as

s(θ) =


exp(−j P−1

2
2π
λ dx sin θ)

exp(−j P−3
2

2π
λ dx sin θ)

...
exp(j P−1

2
2π
λ dx sin θ)

 =


z−(P−1)/2

z−(P−3)/2

...
z(P−1)/2

 , (4)

where z = exp(j(2π/λ)dx sin θ) and λ is the signal wave-
length. We collect the multiple observations into the matrix
equation X = S(θ)A + N, with X = [x(1) . . . x(Q)],
A = [a(1) . . . a(Q)], and N = [n(1) . . . n(Q)].

It is clear from (4) that the steering vectors s(θk) will
correspond to uniformly sampled complex exponentials with



frequencies fk = dx
λ sin θk, and so the angles {θk}Kk=1 can be

obtained by identifying the frequencies for the complex expo-
nential components of the received (noisy) signals x(q). This
frequency identification problem is well known in the signal
processing literature as the line spectral estimation problem,
for which many popular estimation algorithms exist [25].

Since the DOAs are not known in advance, it is common
to pose a steering matrix or dictionary S corresponding to a
sampling of the DOA parameter space instead of the generat-
ing matrix S(θ). Since all the antennas are receiving signals
from the same transmitters, and under the assumption that the
observed DOAs are contained in the samples gathered in S,
the coefficient vector a(q) becomes a sparse vector a and the
collected matrix A becomes a row-sparse matrix. Thus, when
CS is applied to the measurements of each antenna, we have

Y = ΦXT = ΦATST + W, (5)

where Y =
[
y(1) . . . y(P )

]
and Φ and W are the sensing

matrix and the measurement noise, respectively. It is worth
noting that gridless methods for DOA from CS measurements
will not require the design or use of a dictionary S.

III. COMPRESSIVE DOA ESTIMATION ALGORITHMS

In this section, we consider the problem of DOA estimation
from compressive measurements and leverage our prior work
and related work described in Section II to formulate two
alternative approaches for this problem that can be classified
as gridless and off-grid, respectively.

A. Analog Denoiser for DOA Estimation

Previously, we studied the frequency estimation problem
as an example of sparse parameter estimation leveraging
analog denoisers [16]. An analog denoiser x̂ = ηAD(x) is
a concatenation of a parameter estimation algorithm suitable
for noisy observations of the given signal and a synthesis
step for the corresponding parametric model. We note that
parameter estimates are obtained as a byproduct of this analog
denoising process. The proposed denoiser structure can also
be applied to other parameter estimation problems as well. We
create an analog denoiser for use within the AMP algorithm by
leveraging an existing algorithm for DOA estimation (together
with the transmitter magnitudes) from noisy observations as
follows:

{θ̂k, âk}Kk=1 = MUSIC(X,K), (6)

X̂ = S(θ̂)Â. (7)

Here, MUSIC(X,K) refers to the Root MUSIC algorithm [25]
applied on the snapshots contained in X, which estimates
the DOAs {θ̂k}Kk=1 and the corresponding amplitude (column)
vectors {âk}Kk=1 ∈ RQ, and Â =

[
â1 â2 . . . âK

]T
. At each

iteration of AMP, we leverage the above concatenation of the
parametric DOA estimation step and the signal synthesizer as
an analog denoiser X̂ = ηAD(X), noting that the estimates of
the DOAs are obtained as a byproduct of the analog denoising
process in each iteration. We also note that the Onsager

correction term for the analog denoiser can be estimated using
the numerical scheme described in Section II-C. We will refer
to the resulting algorithm as AMP+MUSIC in the sequel.

B. Multiple Measurement Vector Recovery Model for DOA
Estimation

Our second proposed method initially targets the recovery
of the signal in the time domain, leveraging the multiple
measurement vector (MMV) model [26]. In this method, the
signal model and the measurements are given in (5). Recall
that the matrix A is assumed to be row sparse, i.e., all
the columns have the same sparse support due to the static
locations of the transmitters throughout the data acquisition,
which in turn fixes the frequencies present in each observed
snapshot; nonetheless, the amplitudes of the transmitted signal
may be different across snapshots to account for fluctuations
in the magnitude of the transmitted signals.

The aforementioned model for the CS observations allows
us to pose a simple off-grid compressive DOA estimation
algorithm. In this method, a group `1-norm minimization
algorithm (G`1) can be applied to recover the coefficient
matrix Â from the measurements Y [27, 28]. In group `1-
norm minimization, we assume that the matrix A containing
the sparse representation coefficients for multiple signals will
be row sparse. We then estimate the coefficient matrix Ã via
the optimization

Â = argmin
Ã

‖Ã‖2,1, s.t. Y = ΦÃTST ,

where ‖A‖2,1 denotes the mixed (2, 1) matrix norm for A
and is equal to the sum of the `2 norms of the rows of A.
Recall that the DOAs observed in X may not correspond to the
samples gathered by the dictionary S. Thus, once the estimate
Â is obtained, a DOA parameter estimation algorithm (such
as Root MUSIC, cf. (6)) is applied on the recovered signal
X̂ = ŜÂ to estimate the DOAs and determine the location of
each transmitter; this assumes that X̂ ≈ X. We will refer to
this approach as G`1→MUSIC in the sequel.

IV. ANALOG DENOISERS IN DISTRIBUTED SENSING

The introduction of distributed acquisition settings brings
additional difficulties to the integration of analog denoisers
within AMP. As an example, in the DOA estimation setup of
Section II, it is natural to assume that each antenna will per-
form CS only of the samples it acquires, e.g., those contained
in one row of the P ×Q matrix X, cf. (5). This assumption
is applied in existing work integrating DOA estimation and
CS [4, 6, 29]. One can vectorize the matrix equation (5) by
stacking the columns of the measurement matrix Y into a
single column vector ȳ ∈ RPM and the transposed rows of
the signal matrix X (e.g., the observations from each of the
antennas) sequentially into a single column vector x̄ ∈ RPQ.
The distributed acquisition process can then be written in
terms of the equation ȳ = (I ⊗ Φ)x̄, where the Kronecker
product I ⊗ Φ represents a block-diagonal matrix containing
P copies of the CS matrix Φ in the diagonal. The structure



of this matrix encodes the dependence of each measurement
on samples obtained only by a single antenna, and has been
studied extensively in the context of distributed CS [26, 30,
31]. The resulting block-diagonal matrix stands in contrast
with that assumed in the formulation and initial analysis of
the AMP algorithm, which is the standard random matrix
with independent and identically distributed (i.i.d.) Gaussian
entries [19]. Nonetheless, we see experimentally that despite
the mismatch in the matrix model used, the use of analog
denoisers still provides significant performance advantages
in CS when compared to methods based on discrete signal
models or on standard subsampling.

V. EXPERIMENTAL RESULTS

We test the performance of several DOA estimation algo-
rithms for signals acquired via CS. We consider a setup with
P = 128 antennas (e.g., beamforming in massive MIMO)
recording observations of length Q = 128 for each antenna via
CS, where the same measurement matrix Φ having M rows
is used in each of the antennas (i.e., each antenna records
the same number of CS measurements) with i.i.d. entries
following a zero-mean Gaussian distribution with variance
σ2 = 1/M . We measure the DOA estimation error by com-
puting the cost of the Hungarian matching between the vectors
containing the bearing angle values and their estimates. In our
experiments, we compare the performance of AMP+MUSIC
and G`1→MUSIC to that of three alternative baselines: (i)
simultaneous recovery of all snapshots using `1-norm mini-
mization followed by standard DOA estimation (`1→MUSIC);
(ii) band-excluding interpolating subspace pursuit (BISP) [8],
a coherence-controlling sparsity-based algorithm; and (iii)
subsampling, i.e., acquisition from M antennas with Q = 128
snapshots, followed by standard DOA estimation. Note that no
CS takes place in this last case. For the algorithms requiring
a sparsity dictionary S, we build a parametric dictionary con-
taining antenna observations for transmitters located at various
angles θ = ∆ · i, with ∆ = 0.5◦ and i = − 90◦

∆ , . . . , d 90◦

∆ e−1.
Our first experiment generates a phase transition plot for

DOA estimation, inspired by the recovery-based counterparts
from [22, 32] and mimicking that introduced in [16] for
line spectral estimation. The phase transition plot of a given
recovery algorithm finds the maximum value of the normalized
sparsity1 for which the algorithm successfully recovers a
sparse signal at least 50% of the time for a set of signals drawn
at random from a uniform distribution over K-sparse signals
from the continuous model. The plot is usually interpreted as
showing the division between the (δ, ρ) region for which the
success probability goes to one as Q→∞ (below the curve)
from the (δ, ρ) region for which the success probability goes
to zero as Q → ∞ (above). Thus, curves with higher values
of ρ for a given value of δ are better.

1Note that since the number of resolvable transmitters (i.e., the sparsity K)
is upper bounded by the number of antennas P , we do not normalize the
sparsity by the total number of measurements MP as usually done in phase
transition plots.
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Fig. 1: Top: Phase transition plot for compressive line spectral
estimation. The line shows the maximum value of the sparsity ratio
ρ = K/P for which at least 50% of the trial DOA estimations
under the measurement rate δ = M/Q are successful (i.e., within
1◦) for each compressive DOA estimation algorithm. The performance
of AMP+MUSIC and G`1→ MUSIC is significantly better than that
of all baseline counterparts. Bottom: Average frequency estimation
error for several compressive DOA estimation algorithms for K = 30
targets. Once again, the performance of the proposed algorithms is
significantly better. than that of its baseline counterparts. Note that
since there are K = 30 transmitters in this experiment, we do not
expect good performance (low average bearing estimation error) for
values of M < 30, i.e., MP < 3840. As seen in the results, this
intuition is in consistence with the numerical experiments.

For the compressive DOA estimation algorithms’ phase
transition plots, we define success as having an average DOA
estimation error (over the K bearing angles) of up to 1◦.
For each value of the (δ, ρ) duplet, we execute 100 trials
with randomly drawn bearing angles (uniformly at random
in [−90◦, 90◦), with arbitrary resolution), amplitudes (uni-
formly at random in [0, 1]), and measurement matrices. Fig. 1
(top) shows the DOA estimation phase transition for our
proposed algorithms and the aforementioned baselines, where
AMP+MUSIC and G`1→MUSIC achieve noticeably better
performance, i.e., much higher ρ for each value of δ.

Our second experiment compares the performance of the
different algorithms among randomly drawn signals under the



same probability model as the first experiment. We repeat the
setup from our phase transition experiment while fixing the
number of emitters to K = 10, and evaluate the average DOA
estimation error as a function of the number of measurements
from the array MP over the same 100 trials for each of the
compressive parameter estimation algorithms. Fig. 1 (bottom)
shows that the performance of the proposed algorithms is
significantly improved over those of its baseline counterparts.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the problem of DOA estimation
from sparse measurements, while considering uniform linear
array setup for the receiving antennas. In order to recover
the unknown DOAs, we proposed two approaches: the first
approach leverages the use of line spectral estimation to
implement an analog denoiser within the AMP algorithm,
obtaining parameter estimates as a byproduct of denoising.
The second approach uses a group `1-norm minimization
algorithm to exploit the fact the the matrix of snapshots is
row-sparse since each antenna should receive information from
transmitters from the same locations; we then perform standard
parametric estimation on the recovered signals.

Our experimental results indicate that the proposed algo-
rithms outperform those available in the literature, both from
the aspects of phase transition and average recovery error. This
is particularly surprising for our second approach, since the
recovery step used there relies on a gridding of the DOA
parameter space. We expect further work in the direction
of compressive DOA estimation to focus on whether the
performance guarantees available for AMP can translate to
the proposed AMP-based compressive parameter estimation
algorithms. Additionally, it would be interesting to pursue an
analytical study of the effects of distributed sensing on the
performance of the proposed algorithms.
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