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Abstract—The role of random measurement in compressive

sensing is analogous to the role of random codes in coding

theory. In coding theory, decoders that can correct beyond the

minimum distance of a code allow random codes to achieve

the Shannon limit. In compressed sensing, the counterpart of

minimum distance is the spark of the measurement matrix, i.e.,

the size of the smallest set of linearly dependent columns. This

paper constructs a family of measurement matrices where the

columns are formed by exponentiating codewords from a classical

binary error-correcting code of block length M . The columns can

be partitioned into mutually unbiased bases, and the spark of the

corresponding measurement matrix is shown to be O(

p
M) by

identifying a configuration of columns that plays a role similar to

that of the Dirac comb in classical Fourier analysis. Further, an

explicit basis for the null space of these measurement matrices

is given in terms of indicator functions of binary self-dual codes.

Reliable reconstruction of k-sparse inputs is shown for k of order

M/ log(M) which is best possible and far beyond the worst case

lower bound provided by the spark.

I. INTRODUCTION

The central goal of compressed sensing (CS) is to capture
a signal using very few measurements. In most work to date,
this broader objective is exemplified by the important special
case in which the measurement data constitute a vector f =
�↵+e where � is an M⇥N matrix called the sensing matrix,
↵ 2 RN is a k-sparse signal, and e 2 RM is the additive
noise. There are two distinct CS frameworks with different
objectives.

Worst-case CS [1], [2]: In the worst-case CS framework,
the goal is to recover every k-sparse vector ↵ from the
corresponding measurement vector f . It is known that certain
probabilistic processes generate sensing matrices that support
worst-case CS [3]. However, the random sensing framework
suffers from storage and computation limitations. As a result,
there has been a significant amount of research on designing
alternative deterministic matrices for worst-case CS framework
over the last few years [4]. Most such constructions rely
on the coherence between the columns of the matrix. When
the coherence follows the Welch Bound µ = O

⇣

1p
M

⌘

, the
Gerschgorin Circle Theorem guarantees reconstruction of any
k-sparse signal with k = O(

p
M).

Average-case CS [4]–[6]: In many practical applications,
including wireless communications and radar, it is not nec-
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essary to reconstruct every sparse vector [7]. The goal of
average-case CS is to recover most (in contrast to all) k-sparse
vectors. Here, the sparse vector is often modeled to have a
uniformly random support and random sign for the k non-
zero entries. The average-case CS framework relies on the
coherence and the spectral norm of the deterministic sensing
matrix. The ideal case is when coherence follows the Welch
bound [8], and different measurements are orthogonal. Then,
as long as k = O (M/logN), with high probability a k-
sparse vector has a unique sparse representation, and can be
efficiently recovered from the compressive measurements [6].

In this paper, we construct an explicit basis for the null
space of a large family of deterministic sensing matrices
designed for the average-case CS framework (see [5] and the
references therein) using the indicator vectors of binary self-
dual codes. Characterizing the null space of these matrices
makes it possible to investigate and analyze the geometric
properties of these matrices more precisely.

More specifically, we introduce a family of deterministic
sensing matrices called the extended Delsarte-Goethals frames
(EDGFs) that hold the following three properties simultane-
ously: (i) as long as k  c

1

p
M it is possible to recover

every k-sparse vector ↵ from the measurement vector �↵; (ii)
there exists a k-sparse vector ↵ with k = c

2

p
M such that no

reconstruction algorithm can uniquely recover ↵ from �↵; and
(iii) it is possible to recover most k-sparse vectors ↵ from
the measurement vector �↵ as long as k  c

3

M

logN

(which
can be much larger than c

2

p
M ), where c

1

, c
2

, and c
3

are
fixed constants. The EDGFs meet the coherence-based lower
bound on worst-case reconstruction and the order-optimal
upper bound on average-case reconstruction.

The rest of the paper is organized as follows. Section II
reviews Delsarte-Goethals frames (DGFs). Section III explains
the properties of the self-dual codes used in this paper.
Sections IV and V characterize the null space of the DGFs
and the EDGFs. The experiments are provided in Section VI.
Section VII concludes the paper.

II. BACKGROUND AND NOTATION

A. Worst-case vs. Average-case Compressed Sensing

A vector is k-sparse if it has at most k non-zero entries.
The support of a k-sparse vector indicates the positions of its
non-zero entries. Let � be an M⇥N matrix. Then � is a tight-
frame with redundancy ⇢ if ��† = ⇢I

N⇥N

, where �† denotes
the conjugate transpose of �. The spark of the measurement
matrix �, denoted as spark(�), is the size of the smallest set



of linearly dependent columns of �. Let '
i

denote the ith

column of �. The coherence between the columns of � is
defined as the maximum inner product between two distinct
columns of �:

µ
�

.
= max

i 6=j

|'†
i

'
j

|
k'

i

k
2

k'
j

k
2

.

In this paper, we simplify the analysis by focusing on the
noiseless CS problem, and note that it is straightforward to
generalize the analysis to include noise. The following two
theorems relate the maximum sparsity level k to the parameters
of the sensing matrix �, so that it is possible to efficiently
recover all (respectively most) k-sparse vectors ↵ from �↵.

Theorem 2.1 (Worst-case CS [9]): Let � be a an M ⇥ N
sensing matrix with worst-case coherence µ

�

. Then as long as
k = O(µ�1

�

), it is possible to efficiently recover every k-sparse
vector ↵ from the measurement vector �↵. In contrast, when
k � spark(�)

2

, there exist multiple k-sparse vectors that are
mapped to the same measurement vector, rendering recovery
impossible.

Theorem 2.2 (Average-case CS [6], [10]): Let � be a an
M ⇥ N tight-frame with redundancy ⇢ = N/M and with
worst-case coherence µ

�

. If k = O
⇣

min
n

µ

�2
�

logN

, M

logN

o⌘

,
then with probability 1 � 1/N , it is possible to efficiently
recover a k-sparse vector ↵ with uniformly random support
and uniformly random sign from the measurement vector �↵.

Throughout this paper, m denotes an integer and M = 2m.
Given a vector v with binary entries, we let v(x) denote the
entry of v indexed by x. The inner product of two binary
vectors u, v is denoted by u>v.

B. Delsarte-Goethals Frames

The Delsarte-Goethals frames (DGFs) are a class of CS
matrices that have been recently introduced by Calderbank,
Howard, and Jafarpour [5]. Specifically, let m be an odd
positive integer, and r to be an integer smaller than m�1

2

.
Next, let DG(m, r) denote the Delsarte-Goethals set of bi-
nary symmetric matrices, as described in [11]. Then, given
M = 2m and N = Mr+2, the M ⇥N DGF � is constructed
from DG(m, r) in the following way. Index the rows of � by
binary vectors x 2 Fm

2

and index the columns of � by pairs
(P, b), where P ranges over all 2(r+1)m binary symmetric
matrices DG(m, r) and b ranges over all members of Fm

2

.
The entries of � are given by

'
(P,b)

(x)
.
=

1p
M

ix
>
Px+2b

>
x,

where i =
p
�1. It is easy to see from this description that

(i) DGFs are unions of orthonormal bases and (ii) each DGF
can be represented as

� =
1p
M

[D
R

H, · · · ,D
1

H,H], (1)

where R = N�M

M

= Mr+1 � 1, H is the Hadamard matrix,
and each D

i

is a diagonal matrix whose (x, x) entry is

ix
>
Pix where P

i

is a binary symmetric matrix from the
Delsarte-Goethals set DG(m, r). A DGF is a tight-frame with
redundancy Mr+1 and worst-case coherence µ

�

= 2

r
p
M

[5].
As a result, it follows from Theorems 2.1 and 2.2 that as
long as k = O(

p
M/2r), it is possible to recover every k-

sparse vector ↵ from �↵ using the `
1

-minimization method.;
moreover, even if k = O

⇣

M

2

2r
logN

⌘

it is still possible to
recover most k-sparse vectors ↵ from �↵ using the same
techniques.

III. BINARY SELF-DUAL CODES

We start by defining a binary self-dual code and explaining
some of its properties.

Definition 3.1 (Binary Self-Dual Code): A binary code C is
self-dual if

C? .
=
�

u : u>w = 08w 2 C
 

= C, (2)

Let C be a self-dual code of length m, and let b be a binary
m-tuple vector in the finite field Fm

2

. Throughout the paper,
by b� C we mean {b� c : c 2 C}.

Definition 3.2: Let C be a binary self-dual code of length
m. The binary vector v of length M = 2m with entries v(x) =
1 if x 2 C and v(x) = 0 if x /2 C is called the indicator of C.

A direct calculation, captured in the following lemma,
shows that the indicator of a self-dual code can be viewed as
the binary counterpart of the Dirac comb in Fourier analysis.

Lemma 3.1: Let C be a binary self-dual linear code of
length m, and let v 2 {0, 1}M be the indicator of C. Let
H be the M ⇥M Hadamard matrix. Then Hv = |C|v.

Next, we use the vector v to construct a sparse vector in
the null space of the matrix �

0

=
h

I, 1p
M

H
i

.

Theorem 3.1: Let �
0

=
h

I, 1p
M

H
i

be an M ⇥ 2M matrix
generated from concatenating the identity matrix and the
normalized Hadamard matrix. Let C be a binary linear self-
dual code with indicator v. Define v

2

.
= [�v, v]>. Then

I. �
0

is a tight frame with redundancy 2.
II. v

2

is a 2
p
M -sparse vector in the null space of �

0

.
Therefore spark(�

0

)  2
p
M .

Proof: We prove each part separately:
I. �

0

is a union of two orthonormal bases, therefore
��† = 2I

M⇥M

.
II. Every self-dual code of length m has dimension m

2

, and
hence exactly

p
M different codewords. Therefore, v isp

M -sparse, and by construction, v
2

has exactly 2
p
M

non-zero entries. Moreover, it follows from Lemma 3.1
that Hv =

p
M Iv or equivalently

h

I, 1p
M

H
i

[�v, v]> =

0.

Corollary 3.1: Let D be an M ⇥M diagonal matrix, and
let �

1

= 1p
M

[DH,H] be an M ⇥ 2M matrix generated from
concatenating the modulated Hadamard (DH) matrix and the
Hadamard (H) matrix. Define vN

.
=
h

� 1p
M

H
�

D�1v
�

; v
i

.
Then vN is in the null space of �

1

.



Proof: Theorem 3.1 guarantees that 1p
M

H v � I v = 0.
On the other hand, since the Hadamard matrix has orthogonal
binary-valued rows, we have H�1 = 1

M

H , and therefore

H v �DH

✓

1p
M

HD�1v

◆

= H v �
p
MDH(DH)

�1 v = 0.

Finally, we consider the sparsity degree of vN . Since v isp
M -sparse, only

p
M of the second M entries of vN are non-

zero. Now we analyze the first M entries of vN . Let � denote
the diagonal of D�1, let ⇠ .

= D�1v, and denote ⌘
.
= H⇠. Here

we focus on a special but important case where there exists an
m⇥m binary symmetric matrix P such that �(x) = i�x

>
Px

for every x 2 Fm

2

. This is the case for a large class of CS
matrices, including the DGFs.

For every binary m-tuple x we have

⇠(x) =

⇢

�(x) if x 2 C
0 otherwise ,

and ⌘(x) =
X

y2Fm
2

(�1)x>y⇠(y) =
X

y2C
(�1)x

>
y�(y) =

X

y2C
(�1)x

>
yi�y

>
Py.

Note that the calculation y>Py+2x>y is now over Z
4

and not
Z
2

. Let ⌘(x) denote the complex conjugate of ⌘(x). Observe
that ⌘(x) is zero if and only if ⌘(x) is zero. Therefore, it is
sufficient to analyze ⌘(x).

Theorem 3.2: Let P be an m⇥m binary symmetric matrix,
and let E be the null space of P. Define

⌘(x)
.
=
X

y2C
iy

>
Py+2x

>
y, where x 2 Fm

2

.

Let d
P

denote the diagonal of P and assume that d
P

2 C. This
assumption is easily satisfied if we only consider zero-diagonal
matrices in the construction of the DGFs. Define

C
0

.
= {z 2 C : Pz 2 C} . (3)

Then ⌘(x) 6= 0 for at most 2t values of x, where t = m �
dim(C

0

).
Proof: We have

⌘(x)
2

=
X

y,y

02C
iy

>
Py+y

0>
Py

0
+2x

>
(y+y

0
)

=
X

y,y

02C
i(y+y

0
)

>
P(y+y

0
)+2y

>
Py

0
+2x

>
(y+y

0
).

Changing variables to z = y + y0 and y gives

⌘(x)
2

=
X

z2C
iz

>
Pz+2x

>
z

X

y2C
(�1)(z+y)

>
Py (4)

=
X

z2C
iz

>
Pz+2x

>
z

X

y2C
(�1)(dP+Pz)

>
y.

The inner sum is zero if (d
P

+ Pz) /2 C. Otherwise the inner
sum is |C|, and we have

⌘(x)
2

= |C|
X

z2C0

iz
>
Pz+2x

>
z.

Now observe that for any z
1

, z
2

2 C
0

,

(z
1

+ z
2

)>P(z
1

+ z
2

) + 2x>(z
1

+ z
2

)

= z>
1

Pz>
1

+ 2x>z
1

+ z>
2

Pz
2

+ 2x>z
2

+ 2z>
1

Pz
2

(5)
= z>

1

Pz>
1

+ 2x>z
1

+ z>
2

Pz
2

+ 2x>z
2

(mod 4),

where the second equality follows from the fact that both Pz
1

and z
2

are codewords of C. If this linear map is the zero
map on x, then |⌘(x)|2 = |C||C

0

|, and otherwise ⌘(x) = 0.
As a result, ⌘(x) vanishes for all but 2t values of x, where
t = m� dim(C

0

).

IV. THE NULL SPACE OF DELSARTE-GOETHALS FRAMES

In this section, we construct a basis for the null space of
matrices of the form of Equation (1). To do this, we first
provide an orthogonal basis for the null space of the matrix
�

0

.
=
h

I, 1p
M

H,
i

.
Let a be a binary m-dimensional vector. The time-shift

matrix A
a

is a circulant matrix so that every row x of A
a

has only one 1 at the corresponding column indexed at x� a
and zeros elsewhere. Similarly, the frequency-shift matrix B

a

is a diagonal matrix with diagonal entries (�1)xa
>

, where
the m-dimensional binary vector x ranges over all M = 2m

rows. A direct calculation reveals that HA
a

= B
a

H , and
HB

a

= A
a

H .
Lemma 4.1: Let �

0

and v be as above, and let a and b be
any two binary m-dimensional offsets. Then the vector w

2

=
[A

a

B
b

v;�B
a

A
b

v] is in the null space of �
0

.
Proof: We have �

0

w
2

=

A
a

B
b

v � 1p
M

HB
a

A
b

v = A
a

B
b

v �A
a

B
b

1p
M

Hv (6)

= A
a

B
b

✓

I,
1p
M

H

�

[v;�v]

◆

= 0.

Lemma 4.2: Let

W = {w
2

: w
2

= [A
a

B
b

v;�B
a

A
b

v], a, b 2 Fm

2

} .

Then W is an orthogonal basis forming the null space of �
0

.
Proof: Since v is the indicator of a self dual code, it

is
p
M -sparse. Moreover, there are exactly

p
M offsets a that

produce distinct shifts of v. The reason is that since C is linear,
if c is any codeword of C, then both A

a

v and A
a�c

v provide
the same vector whose non-zero entries correspond to indices
of the form z� a where z ranges over all codewords. That is
A

a

v = A
a�c

v. Similarly, since C is self-dual, for every pair
of codewords z and c we have (�1)b>z = (�1)(b�c)

>
z . This

implies that there are
p
M distinct choices b for the frequency

shift of the vector v.
Now we show that these M vectors are orthogonal. To see

this, let (a, b) and (a0, b0) be two distinct pairs of time and
frequency shift offsets. Let ⇠

1

= B
a

A
b

v and ⇠
2

= B0
a

A0
b

v.
Then, it is sufficient to show that if ⇠

1

and ⇠
2

are distinct,
then ⇠

1

>⇠
2

= 0.
Since v is the indicator vector of a linear self-dual code,

then if Supp(⇠
1

) \ Supp(⇠
2

) contains some element y, then



the set y � C is also in the intersection of the two supports.
This set has

p
M elements, and since both supports also havep

M elements, we must have Supp(⇠
1

) = Supp(⇠
2

). As a
result, if A

b

v 6= A0
b

v then Supp(⇠
1

) \ Supp(⇠
2

) = Ø, and
therefore B

a

A
b

v and B0
a

A0
b

v are orthogonal.
On the other hand, if A

b

v = A0
b

v, then ⇠
1

and ⇠
2

are two
distinct Walsh tones restricted to the set b � C. Now let c̃ be
an element in C such that c̃>(a� a0) = 1. Then

(�1)c̃
>
(a�a

0
)

 

X

x:x�b2C
(�1)x

>
(a�a

0
)

!

(7)

=

 

X

x:x�b2C
(�1)(x�c̃)

>
(a�a

0
)

!

=
X

x:x�b2C
(�1)x

>
(a�a

0
).

Therefore, we must have
P

x:x�b2C(�1)x
>
(a�a

0
) = 0,

which proves that ⇠
1

and ⇠
2

are orthogonal. A similar argument
can be used to show that if ⇠

1

= A
a

B
b

v and ⇠
2

= A0
a

B0
b

v,
then, if ⇠

1

and ⇠
2

are distinct, then ⇠
1

>⇠
2

= 0.
As a result, we have M distinct linearly independent vectors

of the form w
2

= [A
a

B
b

v;�B
a

A
b

v] which are all in the null
space of �

0

. On the other hand, since �
0

is M ⇥ 2M , its
null space has dimension M , and therefore the M null space
vectors above form a basis for the null space of �

0

.
Next we show that the same argument can be used to form
an orthogonal basis for the null space of matrices of form
�

1

= 1p
M

[DH,H], where D is a diagonal matrix with

diagonal entries
h

ixPx

>
i

, x 2 Fm

2

.

Theorem 4.1: Let �
1

= 1p
M

[DH,H], where D = [ixPx

>
],

and where P is a zero-diagonal binary symmetric matrix1. Let
C be a self-dual code such that for any codeword c, Pc is
also a codeword in C. Let v denote the indicator vector of the
codewords of C. Let

W2 =

⇢

w
2

: w
2

=



HD�1

p
M

A
a

B
b

v;B
a

A
b

v

�

, a, b 2 Fm

2

�

.

Then W2 forms an orthonormal basis for the null space of the
matrix �

1

; moreover, every element of W2 is 2
p
M -sparse.

Proof: Let w be any vector in W2. We have

�
1

w =
1p
M

[DH,H]



HD�1

p
M

A
a

B
b

v;B
a

A
b

v

�

(8)

= [A
a

B
b

v � 1p
M

HB
a

A
b

v] = 0.

Now we show that any vector w
2

2 W2 is 2
p
M -sparse.

First, note that since v is the indicator of a self-dual code,
and the operators A

b

and B
a

do not change the sparsity level,
B

a

A
b

v is
p
M -sparse. Hence, we need to show that !

.
=

HD�1A
a

B
b

v is also
p
M -sparse. We have

1The zero-diagonal assumption is only for simplifying the calculations, and
is easy satisfied by using the Gray map [12].

!(x) =
X

y2C
(�1)b

>
yi(y�a)

>
P (y�a)(�1)(y�a)

>
x (9)

= ia
>
Pa(�1)a

>
x

X

y2C
i2(b+x+Pa)

>
y+y

>
Py.

Since C is self-dual and y and Py are both codewords in C, the
mapping y ! 2(b+x+ aP )>y+ y>Py is a linear map from
C to Z

4

. Theorem 3.2 now guarantees that w(x) is non-zero
only for

p
M choices of x.

Remark 4.1: So far we have shown how to generate a basis
for the null space of a M ⇥ 2M matrix of the form [DH,H].
This construction can be generalized to matrices of form
[D

R

H, · · · ,D
1

H,H] in a straightforward manner by first zero-
padding each null space vector, so that it becomes (R+1)M -
dimensional, and then collecting all these RM vectors. For
instance, a basis for the null space of a M ⇥ 3M matrix
[D

2

H,D
1

H,H] has the form

2

4

0 V 0
2

V 0
1

0
V
1

V
2

3

5 , (10)

where [V 0
1

;V
1

] is a basis for the null space of [D
1

H,H], and
[V 0

2

;V
2

] is a basis for the null space of [D
2

H,H].

V. EXTENDED DELSARTE-GOETHALS FRAMES

In this section, we use the results of the previous sections
and design an M ⇥ N sensing matrix with M ⌧ N for
which there exists constants c

1

, c
2

, and c
3

, such that (i) it
is possible to uniquely recover every k-sparse vectors as long
as k  c

1

p
M ; (ii) there exists a k-sparse vector ↵ with

k = c
2

p
M such that no reconstruction algorithm is able to

uniquely recover it from the measurement vector f = �↵; and
(iii) it is possible to uniquely recover most k-sparse vectors
as long as k  c

3

M/ logN .
The extended Delsarte-Goethals frame (EDGF) is con-

structed by concatenating the M ⇥ M identity matrix to a
DGF.

Theorem 5.1: Let r be a constant integer, and let m > 2r+
1 be an integer. Then:

I. The EDGF has M = 2m rows, and N = Mr+2 + M
columns

II. The EDGF is a tight frame with redundancy Mr+1+1,
and coherence 2

r
p
M

.
Proof: The proof of Part I follows from the construction

of the EDGF. To prove Part II. observe that the EDGF is a
union of orthonormal bases, and therefore it is a tight-frame
with redundancy N

M

. The coherence bound follows from the
fact that the inner product between two distinct columns of a
DGF is bounded by 2

r
p
M

, and that the inner product between
a column of a DGF, and a column of the identity matrix is
bounded by 1p

M

.
Since the matrix �

0

= [I, 1p
M

H] is a submatrix of any
EDGF, it follows from Theorem 3.1 that the spark of any
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Fig. 1: Probability of exact recovery of the Basis Pursuit algorithm
in recovering sparse vectors using a 256 ⇥ 512 submatrix of the
DG(8, 0) frame. The matrix has a 256⇥80 rank-deficient submatrix
with rank 76.

EDGF is at most 2
p
M . As a result, there can be two distinctp

M -sparse vectors mapped to the same low-dimemsional
measurement vector. On the other hand, Theorem 2.1 states
that it is possible to uniquely recover every k-sparse vector
with sparsity k  c

1

p
M . In contrast, it follows from Theo-

rem 2.2 that if ↵ is a k-sparse vector with uniformly random
support and random sign, then as long as k  c

3

M/ logN
(which can be much larger than c

1

p
M ), ↵ is uniquely

recoverable from f = �↵ with overwhelming probability.

VI. EXPERIMENTAL RESULTS

The experiments of this section compare the performance
of the Basis Pursuit algorithm [6] in recovering sparse vectors
with uniformly random supports versus recovering sparse
vectors supported on a rank-deficient submatrix obtained using
a self-dual code. We provide the comparisons for the DGFs
(Fig. 1), as well as for the EDGFs (Fig. 2).

In Fig. 1 we used a 256 ⇥ 512 matrix of the form � =
1p
M

[H,D
1

H], where D
1

is a diagonal matrix with d
D1(x) =

ix
>
Px, and P is the 8 ⇥ 8 zero-diagonal binary symmetric

matrix obtained from applying the Gray map [12] to a 7⇥ 7
binary DG(7, 0) matrix. We also used the self-dual Hamming
code C of length 8 in order to find a rank-deficient submatrix
of �.

A simple calculation reveals that only 4 codewords are in C
0

(defined by eq. (3)). Therefore, dim(C
0

) = 2, and Theorem 3.2
predicts that HD�1

1

v must have 256/4 = 64 non-zero entries.
A direct calculation reveals that HD�1

1

v indeed has 64 non-
zero entries. Therefore, the null space of 1p

M

[H,D
1

H] has a
80-sparse element. That is, there exists, a 256⇥ 80 submatrix
of � that is rank-deficient. As illustrated in Fig. 1, the Basis
Pursuit Algorithm fails to recover some k-sparse vectors with
sparsity level k > 40 which are supported on this rank-
deficient submatrix. However, it is still possible to recover
most k-sparse vectors with uniformly random support over
the 512 columns, even for sparsity level k = 80. Fig. 2 shows
the result of the same experiment using an EDGF.
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Fig. 2: Probability of exact recovery of the Basis Pursuit algorithm
in recovering sparse vectors using a 256 ⇥ 5120 submatrix of the
extended DG(8, 0) frame. The matrix has a 256⇥ 32 rank-deficient
submatrix with rank 31.

VII. CONCLUSION

We have determined a natural basis for the null space
of an extended Delsarte-Goethals frame and shown that this
null space contains a vector that is 2

p
M -sparse. We have

demonstrated that this family of measurement matrices meets
the lower bound of k = O(

p
M) on worst-case CS as well as

the order optimal upper bound of k = O(M/ log(N)).
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