
Compressive Sensing with Biorthogonal Wavelets
via Structured Sparsity

Marco F. Duarte
Department of Computer Science

Duke University
Durham, NC 27708

Richard G. Baraniuk
Electrical and Computer Engineering

Rice University
Houston, TX 77005

Compressive sensing (CS) merges the operations of data acquisition
and compression by measuring sparse or compressible signals via
a linear dimensionality reduction and then recovering them using a
sparse-approximation based algorithm. A signal is K-sparse if its
coefficients in some transform contain only K nonzero values; a
signal is compressible if its coefficients decay rapidly when sorted
by magnitude. The standard CS theory assumes that the sparsifying
transform is an orthogonal basis.

Recently, progress has been made on CS recovery using more
general, non-orthogonal transform based on frames. A tight frame
consists of an analysis frame Ψ̄ and a synthesis (dual) frame Ψ such
that ΨΨ̄T = I . A signal x is analyzed by findings its transform
coefficients via θ = Ψ̄T x and synthesized via x = Ψθ. Currently,
provable CS recovery in a frame can be accomplished when either
(A1) the coherence of the frame (the maximum inner product between
any two synthesis frame vectors) is low [1], or (A2) the signal has
a sparse or compressible analysis coefficient vector θ = ΨT x [2].

An important set of CS applications revolves around image
acquisition, where CS has been used to boost the resolution of
digital cameras at exotic wavelengths, reduce the scan time in MRI
scanners, and so on. The sparsifying transforms of choice for image
compression have long been the biorthogonal wavelet bases (BWBs),
which are non-redundant tight frames with the property that the
roles of the analysis and synthesis frames are interchangeable (i.e.,
ΨΨ̄T = ΨT Ψ̄ = I). In contrast to orthogonal wavelet bases (OWBs),
BWBs can have symmetrical basis elements that induce less distortion
on image edges when the coefficients θ are sparsified by thresholding.
Symmetrical elements also yield more predictable coefficients, which
boosts compression performance [3].

Unfortunately, BWBs not always satisfy condition (A1). As an
example, the CDF9/7 synthesis frame elements are far from orthog-
onal; indeed the coherence is slightly greater than 1

2
for a 512× 512

2-D synthesis frame. As a result, attempts at CS recovery using
greedy techniques fails miserably (see Fig. 1(b)). In contrast, since the
analysis and synthesis frames are interchangeable, then the approach
in [2] is equivalent to standard `1-norm minimization, requiring
M = O(K log(N/K)) measurements.

We develop a new CS recovery technique for BWBs based on
the notion of structured sparsity [4], which can provide near-optimal
recovery from as few as O(K) CS measurements. The particular
model we apply is the quad-tree sparse/compressible model of [4],
which is prevalent in BWB synthesis coefficient vectors for natural
images. To provide recovery performance guarantees for signals with
structured sparsity in a frame rather than a basis, we marry the
concepts of the D-RIP [2], which requires near-isometry for signals
with sparse synthesis coefficient vectors, with the structured RIP
and RAmP [4] that restricts this near isometry only to signals with
synthesis coefficient vectors that follow the quad-tree sparsity and
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Fig. 1. (a) Original Cameraman image. Sparse recovery of the 512 × 512
Cameraman test image from M = 60000 noiselet measurements using: (b)
CDF9/7 BWB and conventional CoSaMP [5] recovery; (c) D8 OWB and
conventional CoSaMP; (d) CDF9/7 BWB and `1-norm minimization; (e) D8
OWB and tree-structured CoSaMP [4]; (f) CDF9/7 BWB and tree-structured
CoSaMP. The CoSaMP-based algorithms use K = 10000.

compressibility models. The number of measurements needed in these
cases is still M = O(K). This class of signals includes the majority
of the set of natural images, which can be shown to belong in a
sufficiently smooth Besov space.

The benefits of structured sparse recovery in a BWB are clear
from Fig. 1(f), which boasts both a higher recovery signal-to-noise
ratio (SNR) and noticably sharper edges and less ringing than the
D8 OWB recovery in Fig. 1(c,e) or the CDF9/7 BWB recovery in
FIg. 1(d). Our results can be easily extended to more general BWBs
and redundant wavelet representations for smooth signals.
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