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ABSTRACT

The high data dimensionality of hyperspectral images in-
creases the burden on data computation, storage, and trans-
mission; fortunately, the high redundancy in the spectral
domain allows for significant dimensionality reduction. Band
selection provides a simple dimensionality reduction scheme
by discarding bands that are highly redundant, therefore pre-
serving the structure of the dataset. This paper proposes
a new criterion for pointwise ranking-based band selection
that uses a non-homogeneous hidden Markov chain (NHMC)
model for redundant wavelet coefficients of the hyperspectral
signature. The model provides a binary-valued multiscale
label that encodes the presence of discriminating spectral in-
formation at different bands. A band ranking score considers
the average correlation among the class-wise average NHMC
labels for each band. Wavelet-based features provide robust-
ness to noise thanks to the multiscale analysis performed by
the transform. We also test richer label vectors that provide
a more finely grained quantization of spectral fluctiations. In
addition, since band selection methods based on band rank-
ing often ignore correlations in selected bands, we include
an optional redundancy elimination step and test its effect on
band selection performance. Experimental results include a
comparison with several relevant supervised band selection
techniques.

Index Terms— Band Selection, Hyperspectral Imaging,
Wavelet, Hidden Markov Model

1. INTRODUCTION

Hyperspectral remote sensors collect reflected image data si-
multaneously in hundreds of narrow, adjacent spectral bands.
The high dimensionality of hyperspectral data provides the
potential for better accuracy in discrimination among mate-
rials with similar spectral characteristics. However, such a
large data volume is likely to cause problems in data compu-
tation, storage, and transmission [1]. It also includes signifi-
cant redundancy in adjacent bands [2]. Thus, dimensionality
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reduction is a necessary preprocessing step for hyperspectral
data analysis.

One scheme for hyperspectral data dimensionality reduc-
tion is feature extraction. The most popular feature extrac-
tion techniques include principal component analysis (PCA),
and Fisher’s linear discriminant analysis (LDA). However, the
computation of new features requires the entire hyperspec-
tral datacube to be acquired, which increases the computa-
tion load. Moreover, feature extraction changes the original
data representation, thus cannot be applied in cases where the
physical meaning of individual bands needs to be maintained.
An alternative approach to dimensionality reduction is band
selection [3, 4], which aims to select a subset of the original
bands, thus taking the advantage of preserving the same fea-
ture space as that of the raw data, and avoiding the problem
of high computational load.

Band selection methods can be roughly classified into two
categories. Groupwise selection methods (e.g. [5, 6]) aim at
separating the entire set of spectral bands into several sub-
sets, and one representative is selected from each subset. In
contrast, pointwise selection methods perform a gradual band
selection procedure without relying on partitioning. Point-
wise selection methods can also be separated into two groups.
Subset search methods [7, 8] aim at optimizing some crite-
rion via search strategies, sequentially increasing or decreas-
ing the number of selected bands until the desired size is
achieved. In contrast, band ranking methods [9, 10] assign
rankings to individual bands to measure their priority in a
given task based on some criteria; then, bands with higher
rankings are selected. Compared with subset search, band
ranking does not need the computation of all possible com-
binations of band subsets, therefore reducing the computa-
tional cost significantly. Most of these methods suffer several
common issues that affect the performance of signal process-
ing, including sensitivity to noise and spectral variability. For
example, in classification, such artifacts may drive the band
selection to focus on non-informative features of the spectra
instead of its relevant or discriminative portions.

In this paper, we propose a supervised pointwise hyper-
spectral band selection scheme featuring a non-homogeneous
hidden Markov chain (NHMC) model. Instead of using the
raw data, we use binary labels obtained by the NHMC model
for each band and a variety of scales for each pixel. We use
these labels to calculate pair-wise class correlations for each



band as a criterion for ranking-based band selection. The rea-
son we use designed features instead of raw data is because
of the higher robustness to noise. By introducing multiscale
analysis in the process of feature design, the negative influ-
ence of noise on band selection can be reduced [11].

After the binary features for each spectrum are obtained,
we compute a numerical feature matrix for each class by aver-
aging the binary features for all samples in that class. We then
calculate the class-pairwise correlation for each band and use
the averaged class-pairwise correlation as a ranking criterion
for that band. Bands with the lowest average pairwise corre-
lation are assumed to be the most discriminative and therefore
ranked first. Finally, bands with higher rankings are selected
until the desired size is reached. The proposed scheme is a
pointwise band selection technique and features a low compu-
tational burden. To the best of our knowledge, neither wavelet
analysis nor hidden Markov models have been fully exploited
in the field of hyperspectral band selection in the past.

2. BACKGROUND:
STATISTICAL WAVELET MODELING

In this paper, we use the undecimated wavelet transform
(UWT) in conjunction with the Haar wavelet to obtain
wavelet representations of hyperspectral signatures. A one-
dimensional real-valued UWT of anN -sample signal x ∈ RN

is composed of wavelet coefficients ws,n, each labeled by a
scale s ∈ 1, ..., L and offset n ∈ 1, ..., N , where L 6 N . All
the coefficients are organized into a two-dimensional matrix
W of size L × N , where rows represent scales and columns
represent offsets.

The persistence property of wavelet coefficients [12, 13]
(which implies the high probability of a chain of wavelet
coefficients to be consistently small or large across adjacent
scales) can be accurately modeled by a non-homogeneous
hidden Markov chain (NHMC) using Gaussian mixture model
(GMM) with two Gaussian components that links the states
of wavelet coefficients in the same offset. We only consider
the parent-child relationship of the wavelet coefficients in the
same offset, which ignores the correlation between adjacent
coefficients from neighboring offset for computational con-
venience. The training process of an HMM is based on the
expectation maximization (EM) algorithm which generates a
set of HMM parameters, including the probabilities for the
first hidden states, the state transition matrices, and Gaussian
variances for each of the states. Given the model parameters,
the state label values for a given observation are obtained
using a Viterbi algorithm [14]. The state labels of a hyper-
spectral signature are organized in a 2-dimensional matrix
with the same size as its wavelet coefficient matrix.

Beside the NHMC with binary-state GMM, we also use
a GMM with multiple states to get a potential higher dis-
criminative power of features with finer characterization of
the structural information of hyperspectral signatures. The

training of multi-state GMM NHMC is also performed via an
EM algorithm. More details on feature design appear in the
full version of our paper [15].

3. PROPOSED FRAMEWORK

3.1. Ranking Score for Band Selection

After obtaining state label arrays for each training sample,
we construct the class state label array by calculating the
element-wise average value of the state label arrays among
training spectra in a certain class. Assume lc,j(s, n) denotes
the state label of sample j from class c at band n and scale s;
then, the class state label of class c at band n and scale s is
denoted as

lc(s, n) =

∑Nc

j=1 lc,j(s, n)

Nc
, (1)

where Nc denotes the number of training samples in class c.
Then for each band n, the correlation coeffcient of class p and
class q can be calculated as

ρn(p, q) =

∑S
s=1 lp(s, n)lq(s, n)√∑S

s=1 l
2
p(s, n)

∑S
s=1l

2
q(s, n)

. (2)

The criterion for the ranking of a certain band b is the average
of all the pairwise correlation coefficient values for band n:

Jn =
2

C(C − 1)

C−1∑
p=1

C∑
q=p+1

ρn(p, q), (3)

where C is the number of classes. We then rank the bands
in increasing order of correlation (i.e., the band with lowest
correlation is selected first).

3.2. System Overview

We provide an overview of the NHMC-based band selection
procedure in Fig. 1. The NHMC parameter training stage uses
a training library of spectra containing pixels randomly sam-
pled from the raw hyperspectral image cube and runs them
through the UWT. The wavelet representations are then used
to train a single NHMC model, which is then used to compute
state labels for each of the training spectra using a Viterbi Al-
gorithm. The feature for each class is then constructed via the
combination of state array of each sample in that class. After
that, pairwise class correlation is computed for each band and
bands are ranked based on the corresponding average corre-
lation value. The average correlation value for each band is
then used as the criterion for ranking-based band selection.

4. EXPERIMENT AND RESULT ANALYSIS

This section presents the experimental results for the com-
parison between our proposed method and relevant tecniques
including both pointwise and groupwise band selection.



Fig. 1. System overview. Top: The NHMC Training Module collects a set of training spectra, computes UWT coefficients for each, and
feeds then to a NHMC training unit that outputs Markov model parameters and state labels for each of the training spectra, to be used as
classification features. Bottom: The Band Selection Module merges the state label matrices of training samples for each class via averaging,
calculates class-wise correlation matrices for each band, ranks bands according to the average class-wise correlation coefficient values, and
finally uses these values in ranking-based band selection.

4.1. Dateset Description

The 92AV3C (indian pines) is a well-known hyperspectral im-
age acquired by AVIRIS with 145 × 145 pixels, 220 spectral
bands, and 17 classes, which is a small portion of a larger
image that is known as Indian Pines. In this experiment, we
consider the whole Indian Pines image, which has 2166×614
pixels and 58 classes. However, performing classification on
such a large database with a time consuming classifier (SVM)
takes a significant amount of time. We reduce the number
of pixels for our simulation by preserving only those classes
containing at least 1000 pixels, and we randomly select 1000
pixels for each of these classes. Finally, we have removed
bands covering the region of water absorption with 200 bands
remaining. For classification purposes, 39 classes were used
in this experiment.

4.2. Experiment Setup

In order to increase the statistical significance of experimental
results, the final classification accuracy of each method corre-
sponds to the average from five-fold cross validation testing
experiments. For each fold, data from each class were sepa-
rated into a training set and a testing set in split of 20% and
80%; we refer to this average as the overall classification rate
in the sequel. The classifier selected for testing is support vec-
tor machine (SVM) [16] using the LibSVM implementation
[17] with a radial basis function (RBF) kernel.

We also conduct some comparison between our proposed

method with some relevant techniques. The competitors are
Relief-F [18], feature weighting (FW) [10], minimum esti-
mated abundance covariance (MEAC) [8]. MI is a key step in
many band selection approaches such as [5] and [19]. We also
test a commonly used approach based on mutual information
(MI), which selects the bands featuring highest MI with the
label across all training samples [20].

4.3. Overall Classification Results Review

Figure 2 illustrates our experimental results. We find that
for all five methods, the overall classification accuracy have
a sharp increasing slope for small numbers of selected bands.
This behavior is described in [5] in terms of transitory and flat
zones in the figure. In the sequel, we consider a much crisper
measure of performance for the band selection methods by
determining the smallest number of bands that decreases the
classifcation performance metric by up to 1% of its original
value; we denote this situation as approximate performance.
We also measure the minimum number of bands for which the
classification performance metric meets or exceeds the value
obtained when all bands are used, which we term as lossless
performance. This is in keeping with the goal of band se-
lection in classification: to reduce computational and storage
load caused by high data dimensionality while minimizing the
effect of subsampling on the classification performance.

Table 1 shows the estimated number of bands needed to
achieve approximate and lossless performance levels, with the
specific performance levels obtained; our search uses a step
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Fig. 2. Mean overall classification rates for the band selection
schemes tested in our experiments. NHMC shows the performance
for 2-state GMMs, as well as the maximum performance among k-
state GMMs for k = 2, . . . , 8. Numbers on the top of each figure
correspond to the number of Gaussian states achieving the best clas-
sification performance.

Table 1. Performance Loss Evaluation

Approximate Lossless
NHMC 120(99.21%) 140(100.09%)
MEAC 170(99.12%) 200
MI 170(99.56%) 200
FW 150(99.02%) 190(100.02%)
Relief-F 180(99.35%) 190(101.85%)

size of 10 bands. From Table 1 we can find that our proposed
method uses the smallest number of bands to achieve both
approximate and lossless performance.

We observe that most methods are able to achieve higher
classification rates with band selection than when using all
bands. However, there are two reasons why these advantages
in classification rates for band selection methods are not em-
phasized in this paper. First, in most cases, the band num-
bers needed for improved classification performance are too
large to enable the computational load reduction that moti-
vates band selection. Second, in all three tested images, none
of the tested methods achieved a classification rate greater
than 2% above that of using all bands. This means that such
advantages are negligible.

Recall that Section 2 argued for increasing the number
of states in the GMM so improve the discriminability of the
obtained label-based feature between different spectra. From
Fig. 2, we can find that for most cases, multi-state GMM
achieves better performance than binary-state GMM. How-
ever, the advantage of multi-state GMM is usually less than
1%. Although a large number of GMM states captures more

structural information in hyperspectral data, it might also have
a negative influence on the classification results. First, the
GMM state of a particular wavelet coefficient ws,b is deter-
mined by the coefficient’s magnitude with respect to those
for the rest of the NHMC training spectra, the state label of
its parent Ss−1,b, and the transition probability matrix As,b.
In practice, such dependence causes different maps between
coefficient value ranges and GMM states across scales and
offsets (s, b). The variance often makes it difficult to assess
the semantic information in the label array of a spectral sig-
nature. In practice, this variance may sometimes affect the in-
terpretability of features obtained from GMM labels. Further-
more, the likelihood of such variability in the value-to-state
mappings could increase when more states are used. Second,
when more states are introduced, the likelihood of fine-scale
coefficients being labeled as large/significance also increases.
Therefore, the classification performance may be more sensi-
tive to noise.

5. CONCLUSION

We propose a supervised band selection framework that re-
duces redundancy in hyperspectral image bands whilepre-
serving useful semantic information. The proposed scheme
uses a non-homogeneous hidden Markov chain (NHMC)
model in conjunction with an undecimated wavelet transform
to design features capturing the semantic information in the
structure of each pixel’s spectrum while reducing the effect
of noise. The obtained experimental results demonstrate the
advantages of our method over other relevant techniques. In
addition, we also tested the influence brought by increased
GMM state number and impacts of redundance elimination.
The results demonstrate the feasibility of a simple GMM.

In the future, we will focus on the fusion of band selection
and spatial information in hyperspectral classification prob-
lems. Additionally, the extention to unsupervised band selec-
tion will also be considered.

Acknowledgment

We thank Mr. Ping Fung for providing an efficient implemen-
tation of our NHMC training code that largely decreased the
time of running experiments.

References
[1] Q. Du, J. E. Fowler, and W. Zhu, “On the impact of

atmospheric correction on lossy compression of multi-
spectral and hyperspectral imagery,” IEEE Trans. Geo-
science and Remote Sensing, vol. 47, no. 1, pp. 130–
132, 2009.



[2] L. O. Jimenez, D. Landgrebe, et al., “Supervised classi-
fication in high-dimensional space: geometrical, statis-
tical, and asymptotical properties of multivariate data,”
IEEE Trans. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, vol. 28, no. 1, pp. 39–54,
1998.

[3] L. Bruzzone, F. Roli, and S. B. Serpico, “An extension
of the Jeffreys-Matusita distance to multiclass cases for
feature selection,” IEEE Trans. Geoscience and Remote
Sensing, vol. 33, no. 6, pp. 1318–1321, 1995.

[4] S. B. Serpico and L. Bruzzone, “A new search algorithm
for feature selection in hyperspectral remote sensing im-
ages,” IEEE Trans. Geoscience and Remote Sensing,
vol. 39, no. 7, pp. 1360–1367, 2001.
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