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Buildings consume over 40% of the total energy in modern societies, and improving their energy efficiency

can significantly reduce our energy footprint. In this article, we present WattScale, a data-driven approach

to identify the least energy-efficient buildings from a large population of buildings in a city or a region. Un-

like previous methods such as least-squares that use point estimates, WattScale uses Bayesian inference to

capture the stochasticity in the daily energy usage by estimating the distribution of parameters that affect

a building. Further, it compares them with similar homes in a given population. WattScale also incorpo-

rates a fault detection algorithm to identify the underlying causes of energy inefficiency. We validate our

approach using ground truth data from different geographical locations, which showcases its applicability in

various settings. WattScale has two execution modes—(i) individual and (ii) region-based, which we high-

light using two case studies. For the individual execution mode, we present results from a city containing

>10,000 buildings and show that more than half of the buildings are inefficient in one way or another indi-

cating a significant potential from energy improvement measures. Additionally, we provide probable cause

of inefficiency and find that 41%, 23.73%, and 0.51% homes have poor building envelope, heating, and cooling

system faults, respectively. For the region-based execution mode, we show that WattScale can be extended

to millions of homes in the U.S. due to the recent availability of representative energy datasets.
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1 INTRODUCTION

Buildings constitute around 40% of total energy and 70% of the overall electricity usage in the
United States [1]. Consequently, building energy-efficiency has emerged as a significant area of re-
search in smart grids. A typical city comprises a large number of buildings of different sizes and age.
In general, the building stock in many North American and European cities tend to be old—while
some are recently constructed, the majority were built decades ago. Moreover, it is not uncommon
for buildings to be over a hundred years old [1]. Technological advances in building construction
have yielded better-insulated envelopes as well as more energy-efficient air-conditioning, heating
furnaces, and appliances, which can reduce the total energy consumption of a building. While
newer buildings, as well as older ones that have undergone renovations, have adopted such effi-
ciency measures, most are yet to benefit from such efficiency improvements. Since roughly half
of a building’s energy usage results from heating and cooling, opportunities abound for making
efficiency improvements in cities around the world.

Since a city may consist of thousands of buildings, an essential first step for implementing
energy-efficiency measures is to identify those that are the least efficient and thus have the great-
est need for energy-efficiency improvements. Interestingly, naive approaches such as using the
age of the building or its total energy bill to identify inefficient buildings do not work well. While
older buildings are usually less efficient than newer ones, the correlation is shown to be weak [18].
Thus, age alone is not an accurate indicator of efficiency, since older buildings may have undergone
renovations and energy improvements. Similarly, the total energy usage is not directly correlated
to energy inefficiency. First, larger buildings will consume more energy than smaller ones. Even
normalizing for size, greater energy usage does not necessarily point to inefficiencies. For exam-
ple, a single-family home will have a higher energy demand (possibly due to the in-house washer,
dryer, and water heater) compared to an identically sized apartment home. Thus, finding truly
inefficient buildings requires more sophisticated methods.

In this article, we present a data-driven approach for determining the least efficient residential
buildings from a large population of buildings within a city or a region using energy data in as-
sociation with other external public data sources. Such buildings can then become candidates for
energy efficiency measures including targeted energy incentives for improvements or upgrades.
So far, lack of granular city-wide datasets prevented large-scale energy efficiency analysis of build-
ings. However, with increasing smart meter installations across a utilities’ customer base, energy
usage information of buildings is readily available. By 2016, the U.S. had more than 70 million in-
stalled smart meters (>700M worldwide) [2]. Also, real estate information describing a building’s
age, size, and other characteristic are public records in many countries. Further, weather condi-
tions can be accessed through REST APIs. Reliance on such readily available datasets make our
approach broadly applicable.

Given these datasets, our approach assumes it is possible to model a building’s total energy
usage as a sum of weather-dependent and weather-independent energy components. The weather-
dependent component captures the heating and cooling energy usage, which is typically a function
of the external temperature, while the weather-independent component captures the energy use
from all other activities. Using this approach, we can then extract the parameter distributions that
govern these energy components and identify causes of energy inefficiency by comparing them
to those of other homes in a given population. For example, a model’s parameter that is more
sensitive to external temperature is indicative of inefficient heating or cooling. We also develop
algorithms that use these comparisons to determine the probable causes of energy inefficiency.

While building energy models have been extensively studied in the energy science research for
many decades [13, 22, 36], and practitioners such as energy auditors routinely use them to analyze
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a building’s energy performance, there are important differences between current approaches and
our technique. First, current models employ several important parameters that are often chosen
manually, based on rules of thumb [29]. However, using manually chosen parameters may lead to
incorrect analysis [17]. However, our technique determines a custom parameter distribution of the
building model, and we experimentally show its efficacy over manual approaches. Second, the cur-
rent energy models are based on least-squares regression analysis that provides point estimates. In
contrast, our approach provides Bayesian estimates to determine building parameter distribution
that captures the stochasticity in energy use. Third, current approaches need manual intervention
to varying degrees to interpret model parameters and determine likely efficiency issues. Clearly,
this does not scale to thousands of buildings across a city. Our technique automates this process
by comparing model parameters with similar homes from the population and makes it feasible to
perform large-scale analysis. Thus, we go beyond determining which buildings are inefficient by
also designing algorithms that determine its probable causes.

In this article, we introduce WattScale, a data-driven approach to determine the most inefficient
buildings present in a city or a region. Our contributions are as follows:

Bayesian Energy Modeling Approach. WattScale improves over prior work that provides
point estimates by using a Bayesian inference to capture the building model parameter distribu-
tions that govern the energy usage of a building. These distributions are compared using second-

order stochastic dominance to create a partial order among building parameters. Further, we pro-
pose a fault analysis algorithm that utilizes these partial orders to report probable causes of
inefficiency.

Open-source tool with Dual Execution Modes. We implement WattScale approach as an open

source tool that enables determining inefficient buildings at scale. Our tool offers two execution
modes—(i) individual and (ii) region-based. In the individual execution mode, we flag inefficient
homes by comparing their building model parameter distributions with other similar homes in
a city. Whereas in the region-based execution mode, we compare the building model parameter
distributions of the candidate home with those learned for the entire population of similar homes
in a given region with similar weather conditions.

Model Validation and Analysis. We evaluate WattScale using energy data from three different
cities in geographically diverse regions of the U.S. In particular, we show that our approach can
disaggregate the buildings’ energy usage into different components with high accuracy and tighter
bounds on the model parameters—an improvement over the two popular baselines. Further, our
approach identifies buildings that have possible energy inefficiencies. In comparison to manual
audit reports, our approach correctly identified faults in nearly 95% of the cases.

Real-world case study analysis and wide applicability. We examine our approach using two
different case studies showcasing the efficacy of the two execution modes of WattScale. In the
first case study, we used the individual execution mode as we had energy usage from smart meters
deployed in 10,107 residential buildings in a city through a local utility. WattScale reported more
than half of the buildings in our dataset as inefficient, which indicates a significant scope for mak-
ing energy improvements in several cities. Further, our results indicate poor building envelope as
a major cause of inefficiency, which accounts for around 41% of all homes. Heating and cooling
system faults comprises 23.73%, and 0.51% of all homes, respectively. In another case study, we
used region-based execution mode on a smaller dataset of residential buildings from the city of
Boulder. Here, we showed that region-based mode can help detect faults in millions of residential
buildings in the U.S. and around the world, if a representative energy dataset if available. Thus,
using the region-based mode, the individual homeowners can proactively learn about the energy
efficiency of their homes without the intervention from their local utility.
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Fig. 1. Linear relationship between energy consumption and ambient temperature for a Single Family home

from the New England region of the U.S. (energy audit year: 2015).

2 BACKGROUND

In this section, we present background on energy efficiency in buildings and techniques used to
model a building’s energy usage.

2.1 Energy Efficiency in Buildings

Energy usage in residential buildings has different sources such as heating and cooling, light-
ing, household appliances, and so on. There can be many causes of inefficiencies in each of these
components, such as the use of inefficient incandescent lighting and the use of inefficient (e.g.,
non-energy star) appliances. Studies have shown that heating and cooling is the dominant portion
of a building’s energy usage, comprising over half of the total usage [1, 32], and it follows that the
most significant cause of inefficiency lies in problems with heating and cooling. Two factors deter-
mine heating and cooling efficiency of a building: (1) the insulation of the building’s external walls
and roof (“building envelope”) and their ability to minimize thermal leakage, and (2) the efficiency
of the heating and cooling equipment. Recent technology improvements have seen advancements
on both fronts. New buildings are constructed using modern methods and better construction
materials that yield a building envelope that minimizes air leaks and thermal loss through better-
insulated walls and roofs and high-efficiency windows and doors. Similarly, new high-efficiency
heating and AC equipment are typically 20–30% more efficient than equipment typically installed
in the late 1990s and early 2000s.

Unfortunately, older residential buildings and even ones built two decades ago do not incor-
porate such energy efficient features. Further, the building envelope can deteriorate over time
due to age and weather and so can mechanical HVAC equipment. Consequently, an analysis of
a building’s heat and cooling energy use can point to the leading causes of a building’s energy
inefficiency.

2.2 Inferring a Building Energy Model

One approach to modeling a building’s heating and cooling usage is to model its dependence on
weather [40]. For example, a building’s heating and cooling usage can be modeled as a linear func-
tion of external temperature. To intuitively understand why, consider cooling energy usage during
the summer. The higher the outside temperature on hot summer days, the higher the AC energy
usage. Since the difference between outside and inside temperatures is large, there is more thermal
gain, which requires longer duration of cooling to maintain a set indoor temperature. Thus, there is
a linear relationship between heating/cooling energy use and outside temperature (see Figures 1(a)
and 1(b)). Given the linear dependence, linear models are commonly used within the energy sci-
ence research [22, 33], to capture the relationship between energy use and outside temperature.
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Fig. 2. Overview of WattScale approach.

However, most of the prior approaches do not consider uncertainties that are associated with in-
dicators of building performance. Primarily, these models do not capture the stochastic variations
in heating and cooling as well as the weather-independent energy usage resulting from day to day
variations in human activities inside a home. As seen in Figure 1, such energy variations exist and
our approach uses Bayesian inference to determine the distributions of the building parameter that
models these uncertainties in energy use.

2.3 Problem Formulation

Consider a large population of buildings in a city. We assume that a trace of the total daily energy
usage is available for each building. We also assume building characteristics, such as age, size, and
type (Single Family, Apartment, etc.) for each building along with the daily outdoor temperature
data are available.

Let B be the set of all residential buildings containing information on building charac-
teristics in a city. Further, bi ∈ B denotes the ith residential building defined by a tuple
〈Etotal

i,[1...D]
,Aдei , Sizei ,Typei 〉. Here, Etotal

i,[1...D]
is the energy usage recorded by smart meters for a

period of D days. Moreover, T[1...D] is the external ambient temperature for the city during the D
days. Thus, givenbi ∈ B andTd∀d ∈ D, our problem is to determine (a1, . . . ,am )i ∈ {False,True}m ,
where a1, . . . ,am are them possible faults associated with the residential buildings.

3 WATTSCALE: OUR APPROACH

In this section, we describe the details of our data-driven approach. WattScale’s approach is de-
picted in Figure 2 and it involves three key steps: (i) Learn a building energy model for a home or
a region from energy usage data, (ii) Create a partial order of buildings using its parameter distri-
bution from the building model, and finally (iii) Detect building faults causing energy inefficiency
for a home. Below, we discuss each step in detail.

3.1 Building Energy Model

We first provide the intuition behind our approach. Heating and cooling costs for a building can be
understood using elementary thermodynamics. Typically, in colder months, the outside ambient
temperature is colder than the inside building temperature, resulting in a net thermal loss where
the inside heat flows outside through the building envelope, causing the inside temperature to
drop. In warmer months, the opposite is true. The building experiences a net heat gain where the
heat flows inside, causing the building temperature to rise.
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Fig. 3. An illustrative figure showing energy usage versus ambient outdoor temperature.

It follows that every home has a specific temperature Tb , where there is neither thermal loss
nor thermal gain, i.e., the thermodynamic equilibrium. When the outside temperature is aboveTb ,
there is a need for AC to cool the home. Conversely, when the temperature is below Tb , there is
a need for a heater to heat the home. This temperature Tb is called the balance point temperature
of the building.1 The rate of thermal loss or thermal gain depends on the degree of insulation,
airtightness of the building envelope and surface area exposed to outside elements. Better the
insulation and airtightness, smaller the rate of loss or gain for a given temperature differential
relative toTb . The difference between the outside temperature and the balance point temperature
Tb is also referred as the degree-days—an indication of how many degrees warmer or colder is the
outside weather relative to the building’s balance point.

Based on this intuition, we now describe our building energy model. Any energy load in a
building can be classified as weather independent and dependent. A weather independent load
is one where the energy consumed by the device is uncorrelated to the outside temperature—
consumption from loads such as lighting, electronic devices, and household appliances depend on
human activity rather than outside weather. Heating and cooling equipment constitute weather
dependent loads, as their consumption linearly dependent on the outside temperature relative to
the balance point.

If we assume that weather independent loads are distributed around a constant value (also called
the base load), then the total energy consumed is the sum of the base load and the weather depen-
dent loads (heating and cooling loads) and defined as

Etotal
d = Eheat

d + Ecool
d + Ebase ∀d ∈ D, (1)

where Etotal
d

denotes the total energy used by a building on day d ∈ D. Eheat
d

and Ecool
d

denote the

energy used for heating and cooling, respectively, on dayd , whileEbase denotes the energy usage of
base load appliances. Thus, given a series of observations of the total energy usage and the outside
ambient temperature, it is possible to fit a regression and learn the fixed weather independent
component (base load) and the temperature dependent component (heating and cooling). This
forms the basis for inferring our weather-aware building energy model.

Figure 3 illustrates the relationship between outdoor temperature and the energy consumption
of a building. The individual data points represent the daily energy usage (along the Y-axis) for
a given average outdoor temperature (along the X-axis) of a building. The figure shows that the
building has two balance point temperatures—a heating balance point temperature T heat , below
which heating units are turned on, and a cooling balance point temperature T cool , above which
air-conditioning is turned on. Further, the figure also shows a piecewise linear fit over the daily

1Note that this balance point temperature is not the indoor thermostat setpoint temperature of the building. It is merely a

thermodynamic construct where the heat transfer between the building and the outdoor environment is zero.
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energy usage. When the outdoor temperature is between the two balance points, the building
consumes energy that is distributed around a constant value defined as the base load Ebase energy
consumption. The weather dependent components, i.e. the heating Eheat and cooling Ecool energy
consumption, are a function of ambient outdoor temperature Td and are defined as

Eheat
d = γheat (T heat −Td )+ ∀d ∈ D, (2)

Ecool
d = γ cool (Td −T cool )+ ∀d ∈ D, (3)

where γheat and γ cool are the heating and the cooling slope in the above linear equations and rep-
resent a positive constant factor indicating the sensitivity of the building to temperature changes;
and ()+ indicates the value is zero if negative and ensures either energy from heating or cooling
is considered. Using Equations (2) and (3), energy model in Equation (1) can be represented as a
piecewise linear model:

Etotal
d =Ebase + γheat (T heat −Td )+ + γ cool (Td −T cool )+∀d ∈ D. (4)

The model in Equation (4) is known as the degree-day model [33] and forms our base en-
ergy model for estimating the building parameters. A more in-depth explanation is presented in
ASHRAE guideline 14 referring to the five-parameter change point model [25]. Note that the above
model will work when data for at least a year is available. However, a truncated version of the
model can be employed when only heating (cooling) data is available for winter (summer) months.

3.1.1 Bayesian Inference Parameter Estimation of a Building. While methods like Maximum
Likelihood Estimation (MLE) or Maximum a posteriori estimation (MAP) can be used for deter-
mining the building parameters, they provide point estimates that can hide relevant information
(such as not capturing the uncertainties in human energy usage). To capture human variations, we
require probability density function of the parameters. Thus, we use Bayesian inference approach,
which provides the posterior distribution of parameters.

We model Equation (4) using a bayesian approach and assume the error process to be normally
distributed (N (0, σ 2)). Thus, the daily energy consumption Etotal

d
is normally distributed with pa-

rameters mean (μ) and variance (σ 2), where μ is equal to the right hand side of Equation (4). Note
that energy consumption Etotal

d
is known and so is the independent variable i.e. ambient temper-

ature Td . However, the building parameters (γheat , γ cool , T heat , T cool , and Ebase ) are unknown.
Using Bayesian inference, we can then compute a posterior distribution for each of these parame-
ters that best explains the evidence (i.e., the known values for Etotal

d
and Td∀d ∈ D) from initially

assuming a prior distribution.
To determine the posterior distribution of the individual parameters, we use the Markov chain

Monte Carlo (MCMC) method that generates samples from the posterior distribution by forming a
reversible Markov-chain with the same equilibrium distribution. We introduce a prior distribution
that represents the initial belief regarding the building parameters. For example, the two balance
point temperatures will be between a wide range of 32°F and 100°F. This belief can be represented
using a uniform prior with the said range. Similarly, the baseload, heating slope, and cooling slope
can be drawn from a weakly informative Gaussian prior having non-zero values. This is because
baseload, a unit of energy, cannot be negative. Similarly, slope values must be positive as they
represent increase in energy per unit temperature. The parameters of the gaussian priors are scaled
to our setting and selected based on the recommendations provided by Gelman et al. [24]. To
simplify our building model, we assume that the parameters are independent, i.e., the heating,
cooling and the baseload parameters do not affect one another.

Several MCMC methods leverage different strategies to lead from these priors towards the target
posterior distribution. We employed No-U-turn sampler, a sophisticated MCMC method, which has
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Table 1. Bayesian Formulation of our Building Energy Model

Prior

Ebase ∼ N (20, 20), γheat ∼ N (0, 4), γ cool ∼ N (0, 4)
T heat ∼ U (32, 100), T cool ∼ U (32, 100), σ ∼ Cauchy (0, 5)
Regression Equation

μd = Ebase + γheat (T heat −Td )+ + γ cool (Td −T cool )+ ∀d ∈ D
Model Likelihood

Etotal
d

∼ N (μd ,σ
2)

Parameter Bounds

Ebase ,γheat ,γ cool >= 0 and T heat <= T cool

shown to converge quickly towards the target distribution. Thus, after an initial burn in samples,
we can draw samples approximating the true posterior distribution. From these post-burn-in sam-
ples, a posterior distribution for the individual building parameters can be formed. Our complete
Bayesian model is defined in Table 1.

Since buildings are of different sizes, simply comparing the parameters in absolute terms is not
meaningful. To enable such comparison, we initially normalize the energy usage by building size
before the Bayesian inference. Hence, in our case, Ebase represents base load energy use per unit
area. Similarly, heating slope γheat and cooling slope γ cool gives change in energy per degree
temperature per unit area. The balance point parameters (T heat and T cool ) are not normalized as
they are unaffected by the size of the house. We construct a cumulative distribution (Fγ heat , Fγ cool ,

FEbase ) for each of the building model parameter (γheat , γ cool , Ebase ) from their respective density

functions (posterior) obtained after the inference. For the balance point parameters (T heat and
T cool ), we only use its mean values as they tend to remain fixed for a given building irrespective
of human variation.

3.1.2 Building Parameter Estimation of a Region. The building energy model in Equation (4) can
also be used to the estimate the building parameters for a region. Estimating the distribution of
building parameters of a region can allow efficient comparison of a building to a general popula-
tion. Here, we describe how we can create the building energy model for a given region. Since the
above model uses daily energy usage for each home, estimating the parameter distribution for an
entire population may be inefficient and time-consuming. Further, such fine-grained daily energy
usage for all homes in a region may not be available. Instead, we use the annual consumption infor-
mation to estimate the population’s building parameter [6]. To do so, we modify our energy model
as follows. Similar to Equations (2) and (3), the weather component of a building can be defined as

Eheat
h = γheat

h

D∑
d

(
T heat

h −Td

)+
∀h ∈ H , (5)

Ecool
h = γ cool

h

D∑
d

(
Td −T cool

h

)+
∀h ∈ H , (6)

where H is a set of homes in a region and Eheat
h

and Ecool
h

are the annual heating and cooling
consumption for home h. Further, the energy model of a home h can be represented as

Etotal
h =Ebase · |D | + γheat

h

D∑
d

(
T heat

h −Td

)+
+ γ cool

h

D∑
d

(
Td −T cool

h

)+
∀h ∈ H , (7)
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where Etotal
h

is the total annual energy consumption of home h. This forms the base energy model
for estimating the building parameters of a home in a region.

In Equations (5), (6), and (7), there are five unknowns per home associated with the five param-
eters (γheat

h
, γ cool

h
, Ebase

h
,T heat

h
, andT cool

h
). By assumingT heat

h
= T cool

h
= 65°F, we can estimate the

other parameters by solving these equations using the known annual energy consumption val-
ues available per home—i.e., Eheat

h
, Ecool

h
, and Etotal

h
. Next, we construct a cumulative distribution

(F̂γ heat , F̂γ cool , F̂Ebase ) for each of the building model parameter (γheat , γ cool , Ebase ) of the input
region using the Kernel Density Estimation,2 a popular nonparametric approach to estimate a ran-
dom variable. Later, we will show how we use this parameter distribution of a region to identify
an inefficient home.

3.2 Partial Order Creation

Rather than relying on rule-of-thumb measures to interpret model parameters that change with
geography and many other building characteristics, we propose comparing them with those of
similar homes from a given population. Given the above model, we create a partial order of build-
ings as follows. We first create peer groups using the building’s physical attributes (e.g., age of the
building, building type, etc.). Next, within each peer group we create a partial order of the buildings
for each building parameter distribution. Below, we describe each step in detail.

3.2.1 Peer Groups Creation. A naive approach of comparing model parameters of any two
homes has several shortcomings. First, building parameters may vary based on the building type.
As an example, consider the energy use of a studio apartment and a three-bedroom apartment.
Both building type have completely different energy needs in term of cooling/heating loads, and
the rate of heat gain (or loss) would be different. Hence, a building model’s heating/cooling param-
eter from two different building type would be different, and thus, should not be compared in the
same cohort. Second, even for the same building type, the model parameters from two buildings
built in a different year, may belong to two different families of distributions, and thus may be an
unfair comparison. As an example, assume two houses are equal in all aspects (building charac-
teristics, occupancy patterns, etc.) except year built. Due to advances in building technology and
energy efficiency standards, a newer home will have building envelopes made using more energy
efficient material than a comparatively older home. While the newer home may be energy efficient
compared to older homes, the newer home may still be energy inefficient compared to cohort of
homes built around the same year. Thus, it would be unreasonable to compare the building model
parameters from homes with a sizeable age difference as outlier detection techniques will always
mark older homes as inefficient. To overcome some of these limitations, WattScale allows the
creation of peer groups to allow comparison within a cohort to determine inefficient homes.

To enable a meaningful comparison, we compare the building model parameters only within
their cohort. We use three building attributes for peer group creation, namely: (i) property class
(e.g., single family, apartment, etc.), (ii) built area (e.g., 2,000 to 300 sq. ft.), and (iii) year built (e.g.,
1945 to 1965). For instance, buildings constructed in different years adhere to different energy
regulations and standards, and thus, it is not meaningful to compare them. Similarly, building
types and age group have different characteristics and it would be unreasonable to compare them.
Hence, our approach allows the creation of peer groups to enable comparison within a cohort to
determine inefficient homes.

2This is also called Parzen-Rosenblatt window method.
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Fig. 4. Stochastic ordering of two distributions Fp and Gp . (a) Fp does not dominate Gp . In (b) and (c) Fp

dominates Gp .

3.2.2 Stochastic Order of Building Parameters. Since the building model parameters are proba-
bilistic distributions, we cannot simply compare these uncertain quantities and create a total order-

ing. Statistics, such as mean, median or mode, provide a single number to capture the behavior of
the whole distribution. While these point estimates can be used to compare two distributions, they
typically hide useful information regarding their shape and may not account for any heavy-tailed
nature that is present in a building parameter distribution. Hence, we use second-order stochas-

tic dominance, a well-known concept in decision theory for comparing two distributions [34], to
create a partial order of the building parameters within a peer group.

The main idea behind determining second-order stochastic dominance is that for a given building
model parameter p, if distribution Fp dominatesGp , i.e., Fp �2 Gp , then the area enclosed between
Fp and Gp distribution should be non-negative up to every point in x :∫ x

a

(Gp (t ) − Fp (t ))dt ≥ 0 ∀x ∈ [a,b]. (8)

Figure 4 depicts stochastic ordering of two distribution Fp andGp where; (i) Fp does not dominate
Gp i.e. Fp �2 Gp and (ii) Fp dominatesGp i.e., Fp �2 Gp . The area shaded in green shows the region
where Fp dominates Gp , and the red region shows Gp dominates Fp . In Figure 4(a), we observe
that Fp �2 Gp , since there are no green area greater or equal to the left of the red area. In contrast,
Figures 4(b) and 4(c) show Fp dominatesGp , because for every red area, there exists a larger green
area located to its left.

To intuitively understand the implications of stochastic dominance in our scenario, let us con-
sider two distributions Fp and Gp of a building parameter p from two separate buildings A and
B, respectively. As noted earlier, building parameters influences energy usage, such that higher
parameter values implies higher energy usage, and vice-versa. Let us assume that building A’s
normalized energy usage is greater than building G’s normalized energy usage, such that distri-
bution Fp dominates Gp i.e., Fp � Gp . Clearly, the building parameter distribution Fp for building
A will lie on the right-side of distribution Gp as A has higher energy usage. In fact, since Fp � Gp ,
by definition, the distribution Fp will be on the right of Gp for a majority of the region. However,
homes may have similar building parameter distribution, i.e., the distribution has similar shape
and tendency. In such cases, it is possible that neither home will dominate the other. Stochastic
dominance thus enables interpretation of the building parameter distribution with respect to one
another, with higher energy usage buildings having a tendency to lie on the right side of the pop-
ulation. This allows separation of homes with dominant distributions from non-dominant ones.

3.2.3 Dual Execution Modes. Our WattScale approach can be used in two execution modes—(i)
individual and (ii) region-based. In the individual approach, we run a pair-wise comparison of all
buildings within a cohort for each building model parameter p. This gives us the partial order for
all pairs and parameters, which we use to detect inefficient homes. In the region-based approach,
we compare the building model parameter to that of the region’s parameter distribution.
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Using the stochastic order criteria, it is simple to compare two distributions and identify the
dominant distribution. But, there may be cases where there are not sufficient buildings in a region
to create a building parameter distribution of a region. This is because energy consumption data
for a given cohort may be sparse. A small city or a region may not have enough buildings to
create a parameter distribution for that region and cohort. To handle such cases, one approach is
to use candidate buildings from nearby regions to create a region-wide parameter distribution for
comparison.

In our approach, we use an R-tree-based data structure to access buildings within a region.
R-tree data structures can provide efficient access to spatial objects, especially geographical co-
ordinates. The key idea is that the data structure groups nearby homes and represent them with
their minimum bounding rectangle. At the leaf level, each rectangle can be represented as a tree,
and subsequent aggregation at higher levels, combine nearby objects, providing a coarse approx-
imation of the data. Thus, it provides fast and efficient access to a group of homes for any region
within the bounding rectangle, and the search area can be increased as needed. In our approach,
the search space is increased if we do not find sufficient homes to create a building parameter
distribution of a region that meets the specified filter criteria. For instance, R-tree can be used to
retrieve all homes within a region that were built within a specific year and are of a particular
property type (e.g., single family homes). If there are not enough homes that meet the criteria,
then we include buildings from nearby regions such that the climate conditions of these areas
are similar. After sufficient buildings are found, we use these buildings to create the parameter
distribution of the region for that peer group.

3.3 Fault Detection and Analysis

We first discuss the causes of inefficiencies associated with the different model parameters. Later,
we present our algorithm that identifies inefficient homes and its potential cause.

3.3.1 Parameter Relationship with Building Faults. Heating slope γheat and heating balance
point temperature T heat are the two parameters that enable our model to interpret the heating
inefficiencies of a home. Buildings with high γheat lose heat at a higher rate, which in turn affects
heating unit usage (i.e., consumes more power) to compensate for the high loss rate. A high energy
loss rate can be attributed to poor building insulation, air leakages, or inefficient or heating unit.
Separately, heating balance point temperature also indicates inefficiencies in the heating compo-
nent of a home. A high balance point temperature suggests two possible inefficiencies: (i) high
thermostat set-point temperature3 and (ii) poor building insulation. If the set-point temperature is
high during winters, then heating units turn on more frequently to maintain the indoor tempera-
ture at set-point. In contrast, if building insulation is poor, more heat is lost through the building
envelope. Thus, heating units will be turned on frequently to sustain the high heating balance
point temperature. Similarly, we can interpret the cooling slopes γ cool and cooling balance point
temperature, which points to inefficiencies in cooling units or building envelope.

Homes with high Ebase indicate high appliance usage or inefficient appliances. In such homes,
energy retrofits may not help reduce energy consumption. However, these homes may benefit from
replacing old appliances (water heater, dryer) with newer energy star rated ones. We summarize
the association between probable causes of building faults and model parameter in Table 2.

3.3.2 Inefficient Home Analysis Algorithm. We present the pseudo-code to determine inefficient
buildings in Algorithm 1. Depending on the execution mode, we can use our algorithm to find

3Set point temperature and balance point temperature have a linear relationship.
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Table 2. Indicator Building Model Characteristics and Associated Probable

Building Faults

Indicator Characteristics Probable Building Faults

High Heating Slope Inefficient Heater, Poor Building Envelope
High Cooling Slope Inefficient AC, Poor Building Envelope
High Heating Balance Point High Set point, Poor Building Envelope
Low Cooling Balance Point Low Set point, Poor Building Envelope
High Base load Inefficient Appliances

ALGORITHM 1: Identify Inefficient Homes Algorithm

1: Inputs: Sensitivity (τ ), buildings (B)

2: procedure FindInefficientHomesCohort(τ , B)

3: count = {}; homes = {}

4: for p in [γheat ,γ cool ,Ebase ] do

5: for (b1, b2)← |B |P2 do // all-pairs permutation

6: if Fp (b1) �2 Fp (b2) then

7: count[p, b1] +=1

8: for b ← B do homes[b][p] = count[p, b] ≥ τ

9: for b ← B do homes[b][Theat ] = Theat
b

> 70◦F

10: for b ← B do homes[b][T cool ] = T cool
b

< 55◦F

11: return homes

1: Inputs: Candidate Building (h), Location (L), Attribute(A), Cohort Size (S)

2: procedure FindInefficientHomesRegion(h, L, A, S)

3: γ̂heat , γ̂ cool , Êbase = getPeerCohortDistribution(L, A, S)

4: home = {}

5: home[γheat ] = h[γheat ] �2 γ̂
heat

6: home[γ cool ] = h[γ cool ] �2 γ̂
cool

7: home[Êbase ] = h[Ebase ] �2 Êbase

8: home[Theat ] = h[Theat ] > 70◦F
9: home[T cool ] = h[T cool ] < 55◦F

10: return home

inefficient homes within a cohort or identify whether a candidate home is inefficient. Below, we
outline both scenarios.

Identify Inefficient Homes within a Cohort: In this scenario, we identify homes that are in-
efficient homes within a cohort. To do so, we first use the partially ordered set of buildings to
determine the outliers for each parameter. To determine outliers, note that the energy usage of an
inefficient home would be high. Thus, the building parameter distribution of an inefficient home
will tend to be stochastically dominant with respect to others in their peer group. However, among
inefficient homes, the building parameter distribution may be similar, and thus their distributions
may not be stochastically dominant to one another. Similarly, within energy efficient homes this
distinction of dominance may not be apparent, as their distribution may be identical to one an-
other. We use this insight to define a building as inefficient in a given model parameter, if it is
stochastically dominant compared to a majority of the homes within its cohort. For instance, if a
building’s heating parameter distribution Fγ̂ heat is dominant across more than τ% of the buildings,
we conclude that the building is inefficient and has a high heating slope. Here, τ is the sensitivity
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ALGORITHM 2: Fault Analysis Algorithm

1: Inputs: building (h), parameters (P ), fault_map (M)

2: procedure GetRootCause(h, P , M)

3: faults = []

4: for p ← P do

5: if h[p] then

6: faults += M[p] // append list

7: return faults

threshold for WattScale and provides the flexibility to control the number of inefficient homes.
The higher the threshold value, the higher the possibility of identifying an inefficient home. For
all experiments, we chose this to be 75%. Thus, for each parameter, we determine whether a build-
ing is inefficient if its distribution is dominant beyond a certain threshold. We use a balance point
threshold to determine buildings with high balance point temperature. We flag buildings as ineffi-
cient if the mean value obtained after inference for heating (or cooling) balance point temperature
T heat (or T cool ) is greater than (less than) specific heating (or cooling) balance point threshold
70°F (55°F)—a common choice employed by expert auditors. However, these values can also be
provided as parameters to the algorithm. The pseudo-code to determine inefficient homes within
a cohort is presented in Algorithm 1.

Identify Inefficient Home within a Region: To identify whether a candidate building is inef-
ficient, we use their location information to first create a cohort for comparison. The difference
between the previous scenario is that, here, the cohort is not provided in advance. We create the
cohort based on the region and the attributes of the candidate building. Further, unlike the previ-
ous scenario, where the task is to identify all homes that are inefficient within a cohort, it requires
performing an all-pairs comparison within the cohort. In this case, we only have to compare the
candidate building against the region’s building parameter distribution to examine whether it is
inefficient. This approach is illustrated in Algorithm 1. Our approach finds all candidate buildings
in a location L that meets the criteria specified in attribute A. Depending on the size of the co-
hort, our approach expands on the search over a region until sufficient buildings are identified to
create the cohort. Once the peer cohort is created, we create and the building distribution param-

eters of the cohort, namely, the heating slope γ̂heat , cooling slope γ̂ cool , and the base load Êbase of
the region. These parameters are then used to compare against the candidate building to identify
any inefficiencies. For instance, if the candidate building’s cooling slope is stochastically dominant
compared to the region-wide cooling slope parameter, then we indicate it to be inefficient.

3.3.3 Root Cause Analysis. As noted earlier, each parameter in the building model affects an
energy component defined in (4). Any irregularity in the building parameter, in comparison to its
peer group or the region, points to possible inefficiency in the said energy component. We outline
our pseudo-code for finding root cause in Algorithm 2. First, we create a mapping of indicators of
deviations in building model parameters to possible faults using Table 2. We provide the mapping
as an input to our algorithm. Next, we associate a fault to a home if it was flagged inefficient for
the given parameter p. For instance, if a home is flagged as high base load, we say that the home
has inefficient appliances. Similarly, an inefficient home with high heating slope is assigned faults
related to heating inefficiencies. We then generate a report of the list of potential faults in a given
home.
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4 IMPLEMENTATION

WattScale is split into two components—(i) a Unix-like command line tool4 that uses PyStan, a
statistical modeling library, to implement our bayesian model, and (ii) a web-based application
interface implemented using Django framework for interacting with the command line tool. Users
can interact with either component to determine likely reasons of inefficiency of an individual
building or a group of buildings.

To determine the inefficiencies in a single building (i.e., region-based execution mode), we pro-
vide users an interface to upload their Green Button friendly format energy usage information [4].
The Green Button initiative provides energy consumers access to their energy consumption data
collected from their smart meters. Since many utility companies widely support the Green Button
format, this enables our service to be used by millions of consumers in the U.S. When users up-
load their Green Button data, along with building information (such as zip code, year built, etc.),
WattScale creates a custom bayesian model of the home using the local weather data and the de-
tails provided by the user. The weather data of a nearby airport is used as a proxy for local weather
conditions, and WattScale periodically fetches and updates this data from public APIs. Further,
we use the location data to create a cohort group that matches the attribute of the building pro-
vided. For instance, if the user’s building is a single family home that was built in the year 1940,
our algorithm uses this information to create a peer cohort having similar features, that is, single
family homes built around 1940 under similar climate conditions, to enable a fair comparison. We
expand our search space, using R-tree based data structure, to identify additional homes if there
are not sufficient homes in a given region that match the filter criteria. Next, we create a building
parameter distribution of the cohort and compare it with the candidate home provided by the user
to determine inefficiencies. We then highlight the likely faults in the home.
WattScale can also identify inefficient homes within a group of buildings (i.e., individual ex-

ecution mode). This mode is useful for utility companies that have access to energy data from
several homes in a region to identify a set of homes that are energy inefficient. In this mode, a user
uploads the energy information and building attributes for a group of buildings. Here, we assume
that the weather conditions are similar for all the input buildings. As again, we use the location of
the building to retrieve the local weather data and build a custom bayesian model of the home. We
also use the building attributes to create custom peer groups within the set of buildings. Next, users
provide a sensitivity threshold that is used to create a partially ordered set of inefficient homes.
As utility companies may have a limited audit budget to manually inspect homes, the threshold
provides a user the flexibility to control the list of least efficient home. Figure 5(a) shows how users
can adjust the sensitivity parameter to get inefficient homes. Finally, our WattScale generates a
report listing inefficient homes and their likely faults. Figure 5(b) shows the inefficiency report for
a single home listing likely faults.

5 EXPERIMENTAL VALIDATION

We first validate our model estimates against ground truth data from three cities and evaluate its
efficacy. For each of these datasets, we convert the heating fuel type usage to kWh equivalent.

5.1 Dataset Description

5.1.1 Dataset 1: Dataport (Austin, Texas). Our first dataset contains energy consumption infor-
mation from homes located in Austin, Texas from the Dataport Research Program [3]. The dataset
contains energy breakdown at an appliance level, which serves as ground truth to understand how
our approach disaggregates energy components. We select a subset of homes (163 in total) from

4We have publicly released the code and the tool: http://bit.ly/2nU7kA5.
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Fig. 5. Screenshot of our implementation of WattScale.

this dataset having HVAC, baseload appliances along with the total energy usage information.
Since most homes enrolled in the Dataport research program are energy-conscious homeowners,
and have energy efficient homes, we use this dataset only for validating our energy disaggregation
process.

5.1.2 Dataset 2: Utility Smart Meter Data (New England). This dataset contains smart meter
data for 10,107 homes from a small city in the New England region of the United States [28]. The
dataset has energy usage (in kWh) from both electricity and gas meters. Each home may have more
than one smart meter—such as a meter to report gas usage and another to report electricity usage.
For homes with multiple meters (gas and electric), we combine their energy usage to determine
the building’s daily energy consumption for an entire year (2015). Apart from energy usage, the
dataset also contains real estate information that includes building’s size, the number of rooms,
bedrooms, property type (single family, apartment, etc.). We also have manual audit reports for
some of the homes. We use this as our ground truth data for validating our approach. Further, we
have weather information of the city containing average daily outdoor temperature.

5.1.3 Dataset 3: Dataport (Boulder, Colorado). Our third dataset contains energy consumption
information from homes located in Boulder, Colorado from the Dataport Research Program [3].
Similar to dataset 1, this one contains energy breakdown at an appliance level. We select a subset
of homes (32 in total) from this dataset having several appliances along with the total energy
usage information for a period of one year. We will use this dataset to validate the performance
of WattScale in identifying inefficient homes using the distribution of building model parameters
for a region. We summarize the characteristics of all three datasets in Table 3.

5.2 Energy Split Validation

We now validate the efficacy of our model in disaggregating the overall energy usage into distinct
energy components, i.e., heating, cooling, and baseload. For this experiment, we restrict our
analysis to the 163 homes from the Dataport (Austin) dataset.

We compare our technique with two baseline techniques (LS 65F and LS Range), commonly
used in prior work, which use the degree-days model to provide point estimates of the individual
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Table 3. Key Characteristics of Dataport and New England-based Utility

Smart Meter Dataset

Charactersitics Dataset 1 Dataset 2 Dataset 3

# of Homes 163 10,107 32
Duration 2013 2015 2014–15

Built Area Range (sq. ft.) 758–6,516 250–10,000 1,030–4,673
Year Built Range 1912–2014 1760–2013 1910–2004

Location Austin, TX A city in New England Boulder, CO

Fig. 6. Validation of energy split using the

two baselines and our model.

Fig. 7. Comparison of the standard devia-

tion of parameters.

building model parameters. Our first baseline technique, LS 65F, estimates the three building
energy parameters (γheat , γ cool , σ , Ebase ) using least-squares fit and assumes the balance point
temperature to be constant (65◦F). This is a widely used approach by energy practitioners around
the U.S. and recommended by official bodies such as ASHRAE [14]. Our second baseline technique,
LS Range, estimates all the five building energy parameters (γheat , γ cool , T heat , T cool , and Ebase )
using the least-squares fit. Unlike the baseline approaches, WattScale estimates the parameter
distribution and thus to compare we use the mean of the posterior distribution of the parameters
to get the fixed proportion of the energy splits.

Figure 6 shows the distribution of percentage difference in the energy usage with the ground
truth for each energy component. While LS Range and WattScale have median error of ≈−1.6%,
LS 65F have a median error of 10% for baseload energy. Unlike LS 65F, LS Range and WattScale
do not assume a constant balance point temperature and thus have lower error. Figure 7 com-
pares the standard deviation of the building parameters from the two approaches. In WattScale,
the standard deviations are obtained from the parameter posterior distributions. Whereas, in case
of LS Range, the standard deviations are calculated from the covariance matrix outputted by the
least-squares routine. While the results for the four parameters are similar, the spread of standard
deviation for the lower balance point is much smaller in WattScale compared to LS Range. Thus,
WattScale provides an equivalent or tighter bound compared to LS Range.

Summary: Fixed parameters provide poor estimate of the building parameter. WattScale provides

lower error and tighter parameter estimates compared to other baseline techniques.
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5.3 Faulty Homes Validation

We now examine the accuracy of our model in reporting homes with likely faults. We ran our
algorithm on all homes in the New England dataset to generate a list of outlier homes for each
of the parameter and then compare our results with findings from manual energy audits (ground
truth). Since manual audit reports contain faults related to building envelope and HVAC devices
only, we only report these results and inefficiencies arising from base energy usage and faulty set
points were not analyzed.

To determine the accuracy, we compare an inefficient building’s parameter to the audit report
conducted in the past and verify whether it has any building faults. The audit reports were manu-
ally compiled by an expert on-field auditor identifying and suggesting energy efficiency improve-
ment measures. We find that WattScale reported 59 homes with building envelope faults, out of
which 56 buildings were in the audit report, an accuracy of 95%. Moreover, we find that 46 of the
56 homes with building envelope faults also had faulty HVAC systems.

Summary: WattScale identified parameter related faults in a building with high accuracy. In par-

ticular, our approach correctly identified 95% of the homes that were flagged by expert auditors as

having either faulty building envelope or HVAC systems.

6 CASE STUDY: IDENTIFYING INEFFICIENT HOMES IN A CITY

We conduct a case study on the New England dataset to determine the least efficient residential
buildings in the city using the individual execution mode. In particular, we seek to gain insights
on the following questions: (i) What percentage of the homes are energy inefficient? (ii) Which
groups of homes are the most energy inefficient? (iii) What are the most common causes of energy
inefficiency? We first provide a brief analysis of the distribution of the energy split.

6.1 Energy Split Distribution Analysis

To get the fixed proportion of the energy split, we use the mean of the posterior estimates to com-
pute the disaggregated energy usage, i.e., heating, cooling, and base load components. To compare
the energy components, we compute the Energy Usage Intensity (EUI), by normalizing the energy
component with the building’s built area. Figure 8(a) shows the heating, cooling, base load and
total EUI distribution grouped by property type across all homes. The figure shows that the base
load is the highest component of energy usage in most Mixed Use and Apartment property types
followed by heating and cooling. However, for Single family homes, the heating cost is usually
higher. The high base load can be attributed to lighting, water heating, and other appliances. Fur-
ther, since the New England region has more winter days, homes require more heating, and thus
expected to have a higher heating energy footprint compared to cooling. In particular, the average
heating energy required is almost 20× that of average cooling energy. We also observe that the
normalized total energy usage of single and multi family homes is the highest—presumably due to
more number of appliances. The median energy EUI of the Single family home is ≈53 kBtu/sq. ft.
(1 kW = 3.412 kBtu), which is almost twice that of Apartment homes (≈26.8 kBtu/sq. ft.).

Observation: Heating energy consumption is 20× that of cooling energy on an average. Energy con-

sumption among Single and Multi family homes is much higher than Apartment or Mixed use homes.

6.2 Efficiency Analysis

In this section, we analyze the results of our approach on the utility company’s dataset described
earlier. We created peer groups to identify inefficient homes in their respective cohort. To do so,
we used three building attributes (property type, age, and area), which created 120 peer groups in
total. Among these peer groups, we discarded groups with less than 20 homes, as it did not have
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Fig. 8. (a) Disaggregated energy usage for all homes. (b) and (c) Possible fault types in different building

groups.

enough population size for a meaningful analysis. In all, 67 peer groups containing a total of 186
homes were discarded. Below, we present our analysis on the remaining 9,921 homes.

6.2.1 Identifying Inefficient Homes. We examine the number of homes that are flagged as in-
efficient for each of the energy components using our approach. Table 4 shows the summary of
inefficient homes across all peer groups. We note that a home may have multiple inefficiencies,
such as inefficient heating and high base load and thus may be inefficient in several of the energy
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Table 4. Summary of all Inefficient Homes in the

Data Set

Heating Cooling Base load Overall
Outliers Outliers Outliers Outliers

3162 1033 2016 5079

components. Our results show that the overall percentage of inefficient homes across all residen-
tial homes is 50.25%. Further, almost 62.25% of all inefficient homes have either inefficient heater
or poor building envelope, and 4,144 homes have either inefficient heating or cooling.5

Observation: More than half of the buildings in our dataset are likely to be energy inefficient, of

which almost 62.25% homes have inefficient heating as a probable cause.

6.2.2 Identifying Faults in Inefficient Homes. We now analyze the cause for inefficiency in these
inefficient homes. Figure 8(b) shows the percentage of inefficient homes within each building age
group across all faults. Note that a home may have multiple faults. We observe that the building
envelope fault is the major cause of inefficiency, followed by inefficiency in heaters and other base
load appliances. Across all age groups, nearly 41% of the homes have building envelope faults,
while 23.73% and 0.51% homes have heating and cooling system faults, respectively. The figure
also shows that some homes might have set point faults. In particular, 18.06% of the homes have
issues with either high heating or low cooling set point temperature. These faults indicate likely
issues with thermostat setting. Adjusting the thermostat set point temperature in these home may
likely improve its efficiency. As shown, homes built/altered before 1945 have a higher proportion
of inefficient homes. However, the percentage difference with other age groups is <15%.

Figure 8(c) shows the percentage of inefficient homes within each building property type and
faults. We observe that the building envelope faults are the most common faults across all building
types. Further, we find that except for HVAC appliance related faults, mixed use property type has
the highest percentage of inefficiency in the remaining fault categories. After mixed use property
type, apartments tend to have a higher percentage of inefficient homes followed by multi family
and single family property types.

Observation: Building envelope faults is one of the major cause for inefficiency and present in nearly

41% of homes. However, 18.06% of homes have thermostat set point faults. Changing their set-point

may likely improve efficiency in these homes.

6.2.3 Neighborhood Analysis. We plot inefficient homes spatially to observe whether inefficient
homes are clustered together. To anonymize the data, we partition the map into 5,166 grids of
size 100×100 meters. Further, we bucketize all homes in these grids and report the percentage of
inefficient homes within each of them. Figure 9 shows the heat map of the percentage of homes that
are inefficient in each grid. The gray sections in the figure are uninhabited areas with no buildings.
The light colored patches are areas with few or no inefficient buildings, while the darker colored
areas reveal a higher proportion of inefficient buildings. As seen in the figure, most inefficient
homes are co-located. In particular, we find that just 100 grids (=1 sq. km. area) out of the overall
51.66 sq. km. area has more than 50% of all inefficient homes.

5The number of outliers found will vary due to changes in geographic regions, prevalent building codes, age of the building,

property type, and so on. We are not making any claims regarding the generality of the final results of the analysis across

geographies. However, the analysis itself is quite general and can be applied to data from any part of the world as the main

categories of building faults do not change from region to region.
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Fig. 9. Spatial distribution of inefficient homes in the city.

Observation: Most inefficient homes are co-located. In particular, 50% of all inefficient homes lie in

1 sq. km. area.

We summarize the result in Table 4. In percentage terms, among the mixed use peer groups
33.33% of the homes are inefficient. While, in the case of single family peer groups, the fraction
of inefficient homes is only 12.74%. However, in absolute values, single family property type has
the highest number of inefficient homes (575 homes) followed by apartments (558 homes). Since
most of the apartment homes belong to the older age group i.e. buildings built before 1945, these
groups can be likely candidate targets. We also observe that in some age groups, there were few
outliers, which can be attributed to fewer homes in these groups.

Observation: Newer homes are more energy efficient than older ones. Homes built before 1945 rep-

resent ≈72% of the total outliers.

7 CASE STUDY: IDENTIFYING INEFFICIENT HOMES ANYWHERE IN THE U.S.

We present another case study on the Dataport (Boulder) dataset to validate the energy efficiency
results from our scalable region-based execution mode with the results obtained from the individ-
ual execution mode. To get the distribution of building parameters of a region, we use the publicly
available Building Performance Database (BPD) [6]. BPD is the United States’ largest dataset con-
taining energy-related information of commercial and residential buildings.

7.1 Energy Split Distribution Analysis

Once again to get the fixed proportion of the energy components, we use the mean of the posterior
estimates of the building model parameters. Figure 10 shows the heating, cooling, and the base load
EUI’s distribution across all the 32 homes. In this dataset, baseload energy component dominates
energy consumed for heating and cooling. The average daily energy consumed to run non-HVAC
appliances is almost 3.88× and 15.53× that of average heating and cooling energy, respectively. In
fact, 15 of the 32 homes have zero cooling needs.

Observation: Baseload is the dominant component of energy usage in Dataport (Boulder) dataset.

Cooling is a very small proportion of energy used among the single family households in Boulder, CO.

7.2 Energy Efficiency Analysis

We now compare the efficacy of the region-based mode in WattScale with the individual mode
used to flag inefficient homes. The individual mode needs energy consumption data from several
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Fig. 10. Energy Components of the single family homes in Boulder (Dataport dataset).

Fig. 11. Heatmap showing results of outlier homes for baseload.

Fig. 12. Heatmap showing results of outlier homes for heating slope.

homes present in the same peer-group. Whereas, in the region-based mode, we compute the
building model parameters of all the homes in the region to identify the causes of inefficiency.

Figure 11 shows the baseload outliers identified by the two modes. As shown, both modes dis-
cover six homes with excessive baseload energy usage. Five of the six homes flagged by the two
modes are common, pointing to significant agreement between them. Home IDs 7 and 16 were
only identified by one of the two modes.

Figure 12 shows the heating slope outliers identified by the two modes. Here, the region-based
approach did not flag a single home. Whereas, the individual mode detected 5 out of the 32 homes
to have a higher heating slope. This discrepancy exists as in the region-based mode as we compare
the heating slope distribution of each home with the distribution learned from the various homes
in BPD, a highly representative set of residential buildings in any region of the U.S. On the con-
trary, homes in the Dataport (Boulder) dataset consist of energy conscious households that have
undergone energy audits.

Observation: WattScale provides two execution modes to flag inefficient homes. The region-based

mode provides comparable performance to the individual mode, provided the dataset used to compute

the model parameter distributions for the region is from a representative set of homes.

8 DISCUSSION

With increasing penetration of smart meter data, building energy usage is easily accessible for
a wide population of consumers. At the same time, weather and real-estate data has never been
more readily accessible for major parts of the world. Since WattScale uses coarse-grained daily
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and annual energy consumption to create distribution for a building and region, respectively, we
see enormous potential in applying our data-driven approach for various energy-efficiency related
analytics. We note that distribution of building parameters for a region can be computed easily as
several utilities provide typical load profiles of different sizes of residential homes they serve [5,
9, 10]. In this section, we briefly describe how our approach can benefit various stakeholders to
improve the overall energy efficiency of buildings.

Utility Companies: As discussed earlier, our approach helps identify inefficient buildings within a
cohort. This information when combined with geospatial data can reveal inefficient neighborhoods
that can benefit from utility-scale energy awareness drives. Such energy awareness campaigns can
foster better customer engagement and also improve the overall energy-efficiency of the locality.
Further, based on the likely faults identified, special evidence-based policies can be designed to
target inefficient groups and maximize its impact.

Policymakers and Government entities: In the U.S., rebates and incentives are provided both at
the federal [8] and the state levels [7, 11]. Policymakers can assess the impact of various subsidies
and how it will impact the overall energy consumption. When combined with other information,
such as census data, one can target subsidies to economically poor households. These households
can benefit from government subsidies to not only improve their overall energy efficiency but also
help save money.

Researchers: Since our approach can be used beyond the city-scale for different regions, re-
searchers can use our system to study the impact of pre- and post-retrofit modifications in a home
and perform randomized tests (A/B Testing). Our tool can be used to create control groups based
on various factors such as year built, area, fuel type that affect the efficiency of a building. For
example, if a county has incorporated a new energy policy for providing rebates/subsidies, we can
assess the impact of the policy by comparing it to other counties. Our tool can also be used for
longitudinal studies that record several measurements over multiple years. We can create a build-
ing model for individual home across several years and carefully study the impact of retrofits and
renovations over time. Further, we can study the impact of any energy policy that the household
participates.

Homeowners: Our approach can provide custom recommendations to homeowners that best help
reduce their energy footprint. When combined with geolocation data, homeowners can compare
their efficiency to any region, including nearby neighborhoods. Such personalized energy reports
can encourage consumers to take energy efficiency measures to reduce their footprint and energy
costs.

9 FUTURE WORK

We now discuss WattScale’s strengths, limitations and future directions of our work. One of the
strengths of WattScale is its applicability to large parts of the world. Since smart meters are being
extensively deployed around the world, our approach can be used by tens of millions of homes that
collect energy data. Further, our data-driven approach reduces the need for a full manual energy
audit in homes. By identifying potential faults in homes, only a partial audit may suffice, thereby
freeing resources and provide cost benefits.

For WattScale to provide accurate analysis, it requires energy consumption data at daily granu-
larity. However, the building model can be modified to work with monthly energy bills, which are
more widely available, especially in homes that do not have smart meters installed. Although the
accuracy of the estimate of the building parameters may be lower in comparison to models built
using daily energy. To overcome this limitation, one can use energy data across multiple years,
which remains a part of our future work.
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The approach detailed in this work relies on comparing building parameters among similar
homes. Currently, WattScale only looks at the following a building attributes—(i) building age,
(ii) size, and (iii) property type. In the New England dataset, we observed that building age and
property type are proxies for several low-level features—i.e., style of the building, flooring type,
roof type, and so on. We believe that this is due to buildings adhering to the prevalent building
codes of the time. However, one can also additionally use satellite data to augment our analysis.
For example, we can learn if a home has a swimming pool that may require heating and a water
pump, which increases its energy usage. Such homes can be compared to others with swimming
pools for fair energy efficiency evaluation. We believe this is an interesting line of research and
deserves more attention to gain new insights. Similarly, as part of future work, we intend also
to utilize occupancy patterns a building attribute while creating the cohorts. For example, 24/7
occupancy homes should form a separate cohort.

In the future, WattScale can also be enhanced to track energy savings and quantify the effec-
tiveness of retrofits in homes. Moreover, while in our current work we look at residential buildings,
our work can also be extended to identify inefficiencies in commercial buildings. Additionally, an-
alyzing the seasonal changes (especially weekly) could yield insights on energy usage patterns for
different households. Such an analysis could provide feedback to the homeowners interested in
knowing more about their energy consumption profile. For example, the energy data may reveal
higher HVAC usage on Sundays, when homeowners are outdoors, thereby encouraging home-
owners to set thermostats schedules.

10 RELATED WORK

Diagnosing and reducing energy consumption in buildings is an important problem [16, 23, 31, 41].
Various methods have been proposed to detect abnormal energy consumption in a building [20,
31, 35]. However, these methods focused on commercial buildings that require expensive build-
ing management systems [20, 35] or requires costly instrumentation using sensors for monitoring
purposes [16, 30]. Sensors allow fine-grained monitoring of energy usage but are not scalable due
to high installation costs. Unlike prior approaches, our model does not require building manage-
ment systems or costly instrumentation and use ubiquitous smart meter data to determine energy
inefficiency in buildings.

Prior work have also proposed automatic modeling of residential loads [12]. Studies have shown
that compound loads can be disaggregated into basic load patterns. Separately, there has been stud-
ies on non-intrusive load monitoring (NILM), which allow disaggregation of a household’s total
energy into its contributing appliances, and does not require building instrumentation [15, 26].
However, most NILM techniques require fine-grained datasets for training purposes and assume
energy consumption patterns are similar across homes [15]. However, our approach makes no
such assumption on energy consumption patterns and is applicable across multiple homes as it
uses coarse-grained energy usage data that are readily available from utility companies [4].

Various energy performance assessment methods exist to quantify energy use in buildings and
identify energy inefficiency [27, 37, 39]. A common approach is to use degree-days method, a lin-
ear regression model, for calculating building energy consumption [21, 22, 33]. However, these
approaches do not consider uncertainties that are associated with indicators of building perfor-
mance. The idea of modeling uncertainties in thermal comfort is studied in [19]. But, it is restricted
to a single office building with cooling and heating systems. Unlike previous studies, our approach
can be used to identify least energy efficient home at scale without manual expert intervention.
More recently, AI-based approaches have gained significant popularity in the energy and sustain-
ability literature. Wang et al. [38] present a detailed review of AI-based models for energy usage
in buildings. In our case, we propose a novel Bayesian model that has better interpretability as it

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 3. Publication date: January 2021.



3:24 S. Iyengar et al.

accounts for uncertainties arising from human factors. Finally, we use actual ground truth data to
validate our approach and show its efficacy on a large scale city-wide data.

11 CONCLUSIONS

Improving efficiency of buildings is an important problem, and the first step is to identify ineffi-
cient buildings. In this article, we proposed WattScale, a data-drive approach to identify the least
energy efficient homes in a city or region. We also implemented our approach as an open source
tool, which we used to evaluate datasets from different geographical locations. We validated our
approach on ground truth data and showed that our model correctly identified 95% of the homes
with inefficiencies. Our case study on a city-scale dataset using the individual execution mode
showed that more than half of the buildings in our dataset are energy inefficient in one way or
another, of which almost 62.25% of homes with heating related inefficiencies as probable cause.
This shows that a lot of buildings can benefit from energy efficiency improvements. Further, as
WattScale provided region-based execution mode that allows energy efficiency analysis of mil-
lions of homes in the U.S. using publically available datasets.

As part of future work, we intend to deliver individual inefficiency report generated from our
web application to the different homeowners. These nudges can be used to motivate and incen-
tivize homeowners towards energy efficiency measures.
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