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Abstract

Computational spot markets enable users to bid on
servers, and then continuously allocates them to the high-
est bidder: if a user is “out bid” for a server, the market
revokes it and re-allocates it to the new highest bidder.
Spot markets are common when trading commodities to
balance real-time supply and demand—cloud platforms
use them to sell their idle capacity, which varies over
time. However, server-time differs from other commodi-
ties in that it is “stateful”: losing a spot server incurs
an overhead that decreases the useful work it performs.
Thus, variations in the spot price actually affect the in-
herent value of server-time bought in the spot market.
As the spot market matures, we argue that price volatil-
ity will significantly decrease the value of spot servers.
Thus, somewhat counter-intuitively, spot markets may
not maximize the value of idle server capacity. To ad-
dress the problem, we propose a more sustainable alter-
native that offers a variable amount of idle capacity to
users for a fixed price, but with transient guarantees

1 Introduction

Infrastructure-as-a-Service (IaaS) platforms, such as
Amazon’s Elastic Compute Cloud (EC2) and Google
Compute Engine (GCE), are growing rapidly as users
migrate to the cloud. While these platforms leverage sta-
tistical multiplexing at massive scales to reduce costs,
they still experience daily and seasonal fluctuations in
demand. Thus, to prevent rejecting server requests, plat-
forms must provision for their expected peak demand,
which often results in a large number of idle servers.

Maintaining idle servers is a waste of money: it wastes
the capital expenses used to purchase and house the
servers and the operational expenses used to power and
cool them. Thus, to gain additional revenue and flexibil-
ity, platforms are increasingly renting out idle servers to
users, while reserving the right to reclaim them to service
higher-priority requests. EC2 pioneered this approach

with its spot market, which enables users to place a bid
for one or more servers. If the bid price is greater than
the servers’ current spot price, EC2 allocates them to the
user, who pays the per-hour spot price for them. How-
ever, if the spot price, which varies in real time, ever rises
above the user’s bid price, EC2 revokes the servers. Spot
markets are commonly used when trading commodities
to balance real-time supply and demand. Commodities
sold in a spot market are delivered immediately, which
differs from a futures market where commodities are de-
livered at a future time. Spot markets enable users that
purchase commodities in a futures market (based on what
they expect their future demand will be) to resolve in real
time the difference between their expected demand and
their actual demand by buying or selling resources.

Cloud platforms increasingly resemble a commodities
market for server-time. For example, in addition to the
spot market, EC2 also manages a reserved market where
users may sell the remaining term on server reservations
they have previously purchased. The reserved market
is effectively a futures market for server-time. While
market-based resource allocation of server-time has been
a research topic for nearly 50 years [12], EC2 is the first
system to employ market-based allocation at scale. As
prior work describes, market-based allocation is attrac-
tive, since it determines the “right” price to balance sup-
ply and demand [10]: it automatically prioritizes access
to limited resources (by giving them to the users willing
to pay the highest price) and eliminates idle resources (by
lowering the price until users are willing to buy them).

However, spot markets are inherently volatile, as
prices vary due to changes in supply and demand. Ma-
ture markets should follow the efficient market hypoth-
esis, which states that you cannot “beat the market” by
predicting future prices, as the current price already re-
flects all available information. Thus, mature markets
are also inherently unpredictable. Prior research has not
considered how volatile and unpredictable markets affect
application performance. As we discuss, the volatility



and predictability of spot market prices directly affect the
value of the underlying servers. Server-time fundamen-
tally differs from other commodities in that it is “state-
ful”: losing a server incurs an overhead that decreases
the “useful” work it performs. Thus, while high market
volatility in the five-minute energy spot market does not
decrease the amount of energy purchased, it does reduce
the amount of useful server-time purchased.

Given this relationship between useful server-time and
market dynamics, we argue that, as computational spot
markets mature, the value of the resources they allocate
will decrease. This is currently not a problem in EC2
because its spot market is highly under-utilized. As a
result, the spot price is low and relatively stable across
most of EC2’s roughly 4500 spot markets. For example,
in many markets the spot price of a server is ∼10× less
than the price of the equivalent on-demand server (which
EC2 cannot revoke). In addition, third parties estimate
that only 3-5% of the servers allocated by EC2 currently
come from the spot market [3]. However, prior research
and many startups [5, 7] propose to exploit the existing
arbitrage opportunities between the price of on-demand
and spot servers. This body of work proposes to dynam-
ically shift computation between spot and on-demand
servers as spot prices change to minimize cost [9, 11].

As users (and applications) become more sophisti-
cated, we expect them to increasingly exploit these ar-
bitrage opportunities to lower their costs. Unfortunately,
the more these arbitrage opportunities are exploited, the
higher, more volatile, and more unpredictable spot prices
will become. This will, in turn, decrease the inherent
value of a spot server—in terms of the amount of useful
work it can perform—due to overhead from i) recomput-
ing lost state after a spot server revocation or ii) migrat-
ing or saving state in anticipation of a spot server revo-
cation. Of course, assuming rational users, the market
should reach an equilibrium price that balances expecta-
tions of price volatility with the value of server-time at
that volatility level. However, this equilibrium price may
be significantly less than the value (and price) a cloud
platform could offer using other pricing mechanisms.

In this paper, we propose a more sustainable alterna-
tive to spot markets based on offering users transient
guarantees when selling idle capacity. The goal of tran-
sient guarantees is to allow platforms to retain the free-
dom to reclaim idle capacity when necessary, but pro-
vide users with statistical assurances about its availabil-
ity, volatility, and predictability. Unlike spot markets,
these assurances enable users (and platforms) to maxi-
mize the value of such transient servers. For example, a
platform might sell idle capacity for a fixed price, similar
to GCE’s Preeimptible Instances, but provide a transient
guarantee on its mean-time-to-revocation.

2 Example Application

To understand how market dynamics affect server value,
consider stateful batch applications that perform signifi-
cant computations on in-memory datasets and only pe-
riodically checkpoint their intermediate state to disk.
Examples of such applications include scientific simu-
lations, e.g., for weather forecasting and drug discov-
ery, and next generation big data frameworks, such as
Spark [14] and Naiad [6], that operate on distributed
volatile in-memory state without writing it to disk. The
loss of in-memory state due to a failure or, equiva-
lently, a spot server revocation requires these applica-
tions to restart from their last checkpoint. Importantly,
the overhead of recomputation and checkpointing reduce
the amount of server-time devoted to useful computation.

While most prior work focuses on the availability
of spot servers, the value derived from spot servers
for such stateful applications is actually a function of
price volatility and predictability. The frequency and
predictability of revocations determine how applications
should tune fault-tolerance mechanisms to minimize the
impact of revocations. For the stateful applications
above, this translates to setting the optimal checkpoint
frequency that minimizes running time by balancing re-
computation and checkpointing overhead. Other ap-
plications might use other fault-tolerance mechanisms,
e.g., consensus protocols, primary-backup systems, era-
sure codes, etc. Each of these mechanisms incur over-
head that is related to the availability, volatility, and pre-
dictability of spot servers, which reduces the server-time
applications are able to devote to useful computation.

To illustrate, for a simple single-node batch job, the
optimal checkpointing interval that minimizes job run-
ning time (when accounting for the overhead of recom-
putation and checkpointing) is topt ∼

√
2∗δ ∗MT T R,

where δ is the time to write each checkpoint and MTTR
is the mean-time-to-revocation [2, 4, 8, 13]. Thus, every
topt interval, the application must spend δ time writing a
checkpoint. Since a spot server’s MTTR is a function of
price volatility, the more volatile the prices, the less use-
ful work on average the job can perform per unit time.
Based on the equation above, given an accurate MTTR,
users can set their checkpointing interval to minimize
overhead and running time. Our premise is that, as the
market matures to follow the efficient market hypothe-
sis, the spot price will become more volatile and less pre-
dictable, which will decrease the MTTR and the amount
of useful computation extracted from a spot server.

Based on the relationships above, we can derive the
inherent value of a spot server for our batch job in terms
of volatility, checkpointing/recomputation overhead, and
the price of an equivalent on-demand server. In this
case, the expected completion time E[Tj] for a job j
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Figure 1: Availability, volatility, and predictability are three distinct metrics that affect spot server value.

with running time Tj on a spot server will be E[Tj] =

Tj +
Tj

topt
δ +

Tj
MT T R ∗

topt
2 , where the first term is the job’s

actual running time, the second term is the overhead from
checkpointing (at the optimal frequency), and the last
term is the expected recomputation overhead across all
revocations. Based on this analysis, the spot server is
only worth Tj

E[Tj ]
of the on-demand server. That is, if

an on-demand server costs po, then a user should not be
willing pay more than pe = po ∗

Tj
E[Tj ]

for the equivalent
spot server. However, if the current spot price pc < pe,
an arbitrage opportunity exists that rational users have
an incentive to exploit. We call pe the equilibrium price
of the spot server—it represents its maximum value as
a function of the price of an on-demand server. Note
that this equilibrium price is application-dependent, as
other types of applications might value spot servers dif-
ferently. For example, the value of spot servers for state-
less applications, i.e., those that only serve static content
or write all intermediate state to disk, is largely a function
of availability (and not volatility or predictability).

Consider a specific example where a batch job takes 12
hours to complete uninterrupted on an on-demand server.
However, on a spot server, after considering the time δ

to write each checkpoint and the MTTR (at a certain bid
price), the job takes 24 hours to finish. Also assume that a
spot server is always available in one of EC2’s 4500 spot
markets, such that upon revocation the job resumes im-
mediately on another available spot server. Thus, since
the job takes twice as long running on spot servers, the
performance is 50% that of the on-demand server. As a
result, the maximum a user should be willing to pay for
spot server is 50% of the on-demand price. Put another
way, if a spot server’s price is >50% of the on-demand
price, the overall cost of executing the job on spot servers
will actually be more than on an on-demand server due
to the overhead of recomputation and checkpointing.

Note that EC2 only advertises the absolute differ-
ence in price between spot and on-demand servers, e.g.,
spot servers cost 50-90% less than equivalent on-demand
servers. However, as our simple example above illus-

trates, spot servers are worth fundamentally less than on-
demand servers. The actual discount a spot server pro-
vides must also consider its performance relative to an
on-demand server. In the example above, if the spot price
is 50% of the on-demand price, then spot servers offer
no real discount over on-demand servers. Finally, our
analysis above assumes the MTTR is well-known. How-
ever, setting an incorrect MTTR will further decrease the
useful server-time. Of course, accurately estimating the
MTTR requires accurately predicting future spot prices,
which will become more difficult as the market matures.

3 Characterizing Spot Server Value

The previous section highlights three key metrics for
characterizing spot servers: availability, volatility, and
predictability. Availability is the percentage of time a
spot server is available; in EC2, this translates to the
percentage of time the spot price is below a user’s bid
price. By contrast, volatility is the frequency of revoca-
tions a spot server experiences; in EC2, this translates
to the frequency at which the spot price rises from be-
low to above a user’s bid price. Finally, predictability
captures the stationarity of the spot price time-series; in
EC2, predictability is a measure of how much the mean
and variance of the spot price change over time.

Figure 1 illustrates, in the context of our simple batch
job, that these three metrics are distinct from each other.
Figure 1(a) shows a time-series of spot server availability
that is not volatile and highly predictable. In this case,
there is only a single revocation, and since the revoca-
tion is predictable, the application need only checkpoint
immediately before the revocation occurs, thereby mini-
mizing its overhead (in green) and maximizing the useful
work it performs (in grey). Figure 1(b) shows a similar
time-series with the same availability over time, but with
high volatility that includes many revocations. In this
scenario, the application incurs more overhead (in green)
than before because it needs to checkpoint more fre-
quently, but, since the revocations are highly predictable,
it still need only checkpoint immediately prior to a revo-
cation. Finally, Figure 1(c) shows a time-series with the
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Figure 2: Impact on performance of a spot instance when (a) varying availability, (b) varying volatility at a given level
of availability (c) varying predictability at a given level of availability and volatility.

same availability but with high volatility and low pre-
dictability. Here, the application incurs a higher check-
pointing overhead (in green), as it does not know pre-
cisely when to checkpoint, and also incurs recomputation
overhead (in red) when a revocation occurs unexpectedly.

Similarly, Figure 2 shows how the value of spot
servers vary, measured as a percentage of their perfor-
mance relative to on-demand servers, for each metric.
Figure 2(a) simply shows that the percentage of time a
spot server is available is linearly related to its rate of
computation: if spot server is only available 50% of the
time, its rate of computation is at most 50% that of on-
demand. However, the availability of any single spot
server is not a particularly significant metric, as EC2’s
spot market is so large that spot servers of some type are
always available (for a certain price). Thus, rather than
waiting for a specific spot server price to drop before re-
suming an application, rational users should immediately
migrate to the next-lowest priced spot server and con-
tinue execution. Since some spot (or on-demand) server
is always available, volatility and predictability are much
more important in assessing the value of spot servers.

Figure 2(b) shows that the more volatile a spot server,
i.e., as its MTTR decreases, the less valuable it is rel-
ative to an on-demand server. In this case, to isolate
volatility from availability, we assume spot servers are
always available, but are revoked and lose state accord-
ing to the MTTR. In these graphs, the equilibrium price
can be computed by simply multiplying the on-demand
price by the percentage of useful server-time on the y-
axis. The graph shows that if the MTTR were to de-
crease to between 15 and 30 minutes, the actual amount
of server-time provided by a spot server would only be
30%-70% that of an equivalent on-demand server. This
would effectively eliminate the actual discount that spot
servers provide; that is, they might cost 30% of an on-
demand server but they would only provide 30% of the
performance. Similarly, Figure 2(c) shows that as spot
server revocations become less predictable, their value
relative to an on-demand server further decreases. Here,
the x-axis is the difference between an application’s pre-
dicted MTTR and the actual MTTR (for a fixed volatility

of MTTR equal to 4 hours and 100% availability).
Our results show that a low availability, high volatil-

ity, and low predictability can significantly decrease the
value of spot servers in terms of their performance rel-
ative to on-demand servers. Since each characteristic
is a function of changes in the spot price, the value of
the spot servers is a function of the magnitude, vari-
ance, and stationarity of the spot price. The decrease
in value due to spot market volatility is currently not an
issue in EC2, as its spot market is highly under-utilized.
However, if market volume increases and the spot mar-
ket becomes more highly utilized, the market is likely to
become more volatile and less predictable, thereby de-
creasing the value of the resources bought in it. There
are already indications that this might happen.

Figures 3(a) and (b) shows spot prices for the
c4-large and cg1-4xlarge over the past two months.
We expect that the c4-large is a much higher volume and
mature market than the cg1-4xlarge market, since the
c4-large is a current generation compute-oriented server
while the cg1-4xlarge is a more exotic GPU-oriented
server that is deprecated. The graphs show that prices
for the more mature c4-large market are much more
volatile. Figure 3(c) then plots the performance of these
spot servers for our example batch job as a function of
the equivalent on-demand server (given a bid equal to
the on-demand price). The figure shows that the value
of the spot server in the more stable cg1-4xlarge market
is close to that of an on-demand server, while the value
of the spot server in the volatile c4-large market is only
60% that of the on-demand server. In this case, since the
average spot price of $0.212 is already more than double
the on-demand price, using an unreliable c4-large spot
server is a 250% cost increase over a reliable on-demand
server, when considering its revocation overhead.

4 Transient Guarantees

Since the value of spot servers will decrease substantially
as the market matures, the spot market may not maximize
the value of a variable supply of idle capacity. Of course,
there are other ways to sell transient servers. For ex-
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Figure 3: Spot prices in more mature markets (a) are much more volatile and less predictable than spot prices in less
mature markets (b). As a result, server-time in more mature markets is worth less than in less mature markets (c).

ample, GCE recently introduced Preeimptible Instances,
which it sells for a fixed per-hour price but may revoke
at any time (and always within 24 hours). However, one
problem with GCE’s approach is that it conveys no infor-
mation to the user about revocation characteristics, e.g.,
the availability, volatility, and predictability. Thus, it is
impossible for users to quantify the true value (or equilib-
rium price) of Preeimptible Instances. In contrast, since
EC2 releases spot price history, users can at least esti-
mate the value of spot instances based on historical data.

To address the problem, we propose a new abstraction
called a transient guarantee, which provides users sta-
tistical assurances about the availability, volatility, and
predictability of transient servers. EC2 is already experi-
menting with one type of transient guarantee in the form
of spot blocks, which provides a spot server for a fixed
block of time. Spot blocks make the revocation time en-
tirely predictable, as EC2 guarantees to revoke the server
at the end of the time block. Based on our analysis in the
previous section, spot blocks are worth much more than
spot servers, since applications only need to incur the
overhead of checkpointing once (at the end of the time
block), and not at a fixed frequency (as is the case when
revocations are unpredictable). Of course, spot blocks re-
quire a platform to precisely predict its variations in idle
capacity, which is likely not possible at large scales as it
would require platforms to know exactly when customers
would make new requests for on-demand resources. EC2
likely only offers a small fraction of its idle capacity as
spot blocks to prevent rejecting requests for on-demand
instances because it cannot revoke a spot block server.

Platforms may be able to more accurately predict the
statistical characteristics of the supply of idle capacity
over time, e.g., its mean and variance. A platform could
also exploit this information by offering a transient guar-
antee that ensures a specific MTTR for transient servers,
enabling applications to correctly tune fault-tolerance
mechanisms and value these servers. Predictions of the
statistical characteristics of idle capacity by the platform
are likely to be much more accurate than predictions of
spot prices by users, as the former are only a function of
supply while the latter are a function of both supply and
demand, e.g., the number of bids by users and their value.

In addition, unlike spot blocks, statistical guarantees on
availability, volatility, or predictability allow platforms to
retain some flexibility to revoke servers when necessary,
while enabling users to maximize server value.

Of course, platforms may wish to relax an MTTR, e.g.,
by guaranteeing a shorter MTTR than predicted, to ac-
count for inaccurate supply predictions. Transient guar-
antees expose the relationship between future knowledge
of supply and value: the more accurate a platform can
predict their supply, the higher the value of the tran-
sient guarantee they can offer and the more revenue they
can generate from their resources. Recent work exploits
this property to define an economy class of on-demand
servers using a fraction of the idle capacity (although
without considering overheads), which has 98% avail-
ability and costs much less than on-demand servers [1].
Transient guarantees generalize this property, and apply
it to any characteristic that affects spot server value.

Transient guarantees raise other interesting research
problems. For example, how do users verify transient
guarantees that are based on statistical properties? While
large-scale users can average their performance across
a large number of requests, small-scale users will not
necessarily know if the platform is maintaining transient
guarantees across its user base. We are currently ex-
ploring crowd-sourced techniques for verifying transient
guarantees that enable small users to anonymously pool
their revocation data to verify these guarantees.

5 Conclusion

Based on the relationship between market dynamics and
spot server value, we argue that spot markets are not
sustainable. Instead, we propose a new abstraction of a
transient guarantee, which enables platforms to retain the
freedom to revoke servers while maximizing their value.
In maximizing value, platforms can either increase the
price of transient servers (to near the equilibrium price)
or provide better performance for users than competitors
at the same price. We are currently exploring different
types of transient guarantees, and their relative benefit
compared to volatile and unpredictable markets.
Acknowledgements. Work supported by the NSF
(#1422245) and a Google Faculty Research Award.
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