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Abstract
Infrastructure-as-a-Service clouds are rapidly evolving
into market-like environments that offer a wide range of
server contracts. Amazon EC2’s spot market is the clear-
est example of this trend: it operates over 5000 markets
globally where users can rent servers for a variable price.
To exploit spot instances, while mitigating the risk of
price spikes and revocations, many researchers and star-
tups have developed techniques for modeling and pre-
dicting prices to optimize spot server selection. However,
prior approaches focus largely on predicting individual
server prices, which is akin to predicting the price of a
single stock. We argue that researchers should instead
focus on “index-based” modeling and prediction that ag-
gregates prices from many markets in each region and
availability zone. We show that, for applications flexi-
ble enough to select and “trade” servers globally, making
decisions based on broader indices lowers costs and im-
proves availability compared to index-agnostic policies.

1 Introduction

Infrastructure-as-a-Service (IaaS) clouds are rapidly
evolving into market-like environments that offer servers
for a variable price under a wide range of different con-
tract terms that differ in their time commitment, price
level, resource guarantees, and risk exposure. For exam-
ple, EC2’s spot market enables users to bid on servers,
such that if a user’s bid price exceeds the servers’ current
spot price, the platform allocates the servers to the user,
who pays the variable spot price for them. While spot
servers typically cost ∼50-90% less than on-demand
servers, they introduce a new element of risk: if the spot
price ever rises above the bid price, the platform immedi-
ately revokes the servers after a brief warning [3]. EC2’s
spot market is similar to other spot markets, particularly
for electricity, in allocating real-time capacity that cannot
be effectively stored to the highest bidder.

As shown in prior work, spot prices are not purely

driven by supply and demand, as Amazon owns all the
resources and sets the price [5]. However, regardless of
how prices are set, the variability in spot prices across
different servers and locations presents a new optimiza-
tion opportunity to select servers based on their dynamic
price characteristics. Prior work leverages this optimiza-
tion to select servers for various applications that offer
the best risk-adjusted returns, which takes into account
the cost of performance penalties due to server revoca-
tions [12, 13, 18]. While this work offers the potential for
significant cost savings, the magnitude of these savings
is not guaranteed, is based on future prices, and could
ultimately be negative if prices change. In general, prior
work simply computes the expected risk-adjusted returns
based on historical spot price traces, and thus implicitly
assumes that the past accurately predicts the future. As
a result, if the future deviates significantly from the past,
applications can experience substantial losses.

Thus, accurately predicting future server prices is im-
portant in both estimating the potential savings for dif-
ferent servers and in selecting the optimal server. As a
result, a number of researchers and startups [4, 8, 11]
have proposed more sophisticated techniques for mod-
eling and predicting spot market prices. For exam-
ple, in a recent whitepaper [17], Spotinst [8] claims to
use an “...in-house prediction algorithm...“ to “[choose]
the most effective and most likely available EC2 Spot
instance.” Researchers have proposed numerous sim-
ilar modeling and prediction techniques for EC2 spot
prices [1, 2, 5, 6, 9, 10, 16, 19, 20]. As one example,
DrAFTS is an online service that, given a bid price and
duration, returns the expected probability of acquiring an
individual spot instance for that duration [1, 20].

In general, prior spot prediction techniques have fo-
cused on predicting prices in individual server markets,
which dictate a dynamic price for each OS configuration
of each instance type in each availability zone (AZ) of
each region of EC2. For example, an m4.large running
Linux in AZ a of the us-east-1 region has its own dy-



namic spot price, which is distinct from other server con-
figurations and types in other AZs and regions. In aggre-
gate, there are ∼5000 individual server markets across
EC2’s global platform. Modeling and predicting the be-
havior of each of these markets presents multiple chal-
lenges. In particular, unlike prices in electricity spot mar-
kets, which correlate with weather metrics, such as tem-
perature, and other routine behavioral patterns, e.g., days
versus nights, it is less clear if server spot prices corre-
late with any easily-measured external variables. As a
result, price prediction techniques are inherently limited,
as the primary information they leverage for prediction
is historical prices. In addition, there is no guarantee a
one-size-fits-all model exists, as price characteristics are
based on local supply/demand conditions that may differ
across individual server markets, just as individual stock
prices may exhibit widely different characteristics.

Investors face similar issues in financial markets when
making investment decisions. Since predicting individ-
ual stock prices is challenging, investors base investment
decisions, in part, on the characteristics of broader mar-
ket indices, such as the Dow Jones Industrial, the S&P
500, and the NASDAQ. This paper’s hypothesis is that,
rather than focus exclusively on predicting prices for in-
dividual server markets to guide decision-making, cloud
users should also make decisions, in part, based on these
broader market indices. This is especially true for appli-
cations that are not geographically constrained and are
flexible enough to “trade” resources as prices change,
i.e., migrate from one server to another. For these flexi-
ble applications, any individual server’s price is not par-
ticularly important, as it can simply trade servers if the
price rises too high (or the price of another server drops).
As we discuss, accurate price predictions for individual
servers are important only if applications are inflexible
and must commit to a server for their entire execution.

We provide initial evidence to support our hypothe-
sis by analyzing and characterizing various spot market
indices in EC2. We define indices based on the entire
market, each region, and each AZ, and show how their
broad characteristics differ with respect to each other
and to individual server prices. Then, to demonstrate
the benefits of index-based global trading, we compare
policies that select servers globally based on their indi-
vidual price characteristics versus selecting them based
on their broader index. We show that, since there are
non-trivial costs associated with migrating between AZs
and regions, selecting a server based on its AZ’s index
can yield lower costs and higher availability relative to
selecting based on individual server prices. In addition,
we also show that the aggregated price of these indices
is significantly less volatile (and thus more predictable)
than individual server market prices, further motivating
index-based trading for flexible applications.
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Figure 1: Overhead of migrating 10GB EBS disk in EC2.

2 Index-based Market Analysis

Our hypothesis is that users should make decisions on
which spot server to request based, in part, on broad mar-
ket indices, rather than the price characteristics of indi-
vidual spot servers. Our hypothesis is especially applica-
ble to “flexible” applications that are not geographically
constrained, capable of trading servers as prices change,
and resilient to revocations, i.e., they are either state-
less or employ fault-tolerance mechanisms to enable re-
starting on a new server. For these flexible applications,
any individual server’s price is not particularly important,
as it can simply trade servers if the price rises too high (or
the price of another server drops). Individual server price
predictions are important for inflexible applications that
are incapable of trading servers and are intolerant to re-
vocations. Inflexible applications must commit to a par-
ticular server and its price for the duration of their execu-
tion, and should select the individual server that exhibits
the best risk-adjusted returns.

Cloud applications are becoming increasingly more
flexible at both the systems- and application-level.
Systems-level migration and checkpointing techniques,
e.g., for nested virtual machines and resource contain-
ers, are rapidly maturing, while application-level fault-
tolerance mechanisms are already embedded into most
“big data” frameworks, e.g., Spark, Naiad, Hadoop, Ten-
sorFlow, etc., to handle inevitable failures at large-scales.
Since flexible applications can trade servers if prices
change, their primary constraint is the overhead to trade,
which is largely a function of the size of an application’s
state and the network’s characteristics. For example, a
stateless application incurs little trading overhead based
only on the delays imposed by the platform’s API.

In contrast, if an application maintains persistent disk
or memory state, this overhead is significant if a trade
crosses an AZ or region, compared to trades within an
AZ, as disk volumes are only accessible within an AZ.
Trading across AZs and regions requires first migrating
the server’s disk volumes, e.g., in EC2’s Elastic Block
Store (EBS), from one AZ to another (by storing the data
in S3 and then using EBS’s SnapshotCopy function).
Figure 1 quantifies the overhead to migrate a 10GB EBS
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Figure 2: Market index for all 2287 Linux server markets
across all 14 regions in EC2 over the last 2 months.
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Figure 3: Price of a representative Linux server
(r3.4xlarge) across each AZ of the us-east-1 region.
disk between AZs both within and across regions. The
figure shows that, while overhead is variable, it ranges
from ∼1-2min/GB. In addition, migrating between AZs
within a region (indicated by the diagonal from upper-
left to lower-right) has ∼20-50% less overhead than mi-
grating across regions. In contrast, migrating state within
an AZ incurs a small fixed overhead (∼120s) as servers
within the AZ can directly mount any EBS volume.

Based on the overheads above, we examine market
price indices at the region-, AZ-, and server-level, and
characterize their salient attributes. In this paper, we de-
fine simple indices across different administrative bound-
aries, e.g., all of EC2, each region, and each AZ, using
the arithmetic mean of the price per ECU-hour for each
server normalized by its on-demand price. Note that
other indices are also possible, e.g., across each server
type or family, and may be relevant to certain classes of
applications. For example, stock market indices often
use a weighted average based on a company’s capital-
ization or size. Figure 2 shows the global spot market
index for Linux servers across all of EC2 over the past
2 months. Here, we plot the price per ECU-hour for all
2287 Linux spot servers across all 14 EC2 regions nor-
malized by the on-demand price per ECU-hour across all
Linux servers. Note that, to reduce each graph’s size, we
only plot the maximum index price each hour. The graph
shows that EC2’s global spot market is stable, with prices
bounded between ∼40-60% of the on-demand price with
low variance. This differs from the individual server
prices in Figure 3, which exhibit “peaky” behavior with
long periods of flat prices interspersed with large spikes.

We can also examine the market indices on a regional
basis to get an idea each region’s overall behavior with
respect to the others. While the global spot market in-
dex reveals the general state of the market, per-region
indices can inform users’ choice of regions in the global
market. This choice is important based on the overheads
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Figure 4: Select regional spot market indices.

in Figure 1: since the cost to “trade” within a region
is much less than across regions, applications may not
be able to exploit low prices in another region. Fig-
ure 4 demonstrates that the regional price indices dif-
fer widely in both their magnitude and variance. For
example, the US regions (top) are highly stable with
the us-east-2 index price remaining at ∼13% of the on-
demand price for nearly the entire two months. In con-
trast, the EU regions (middle) exhibit much higher over-
all variance coupled with abrupt phase changes. In eu-
west-1, the index rose by over 2× near January 20th.
Such abrupt increases likely reflect internal changes in
supply that are not market-driven. We have also found
that newer regions often exhibit more volatile prices than
older regions, presumably because they are not as well-
provisioned and thus have a higher variance in their idle
spot capacity. For example, both eu-west-2 and ca-cent-
1, which opened in late 2016, exhibited highly volatile
spot prices over the past two months (bottom).

The magnitude of regional spot prices also varies
widely. Since on-demand prices vary across regions and
we normalize the prices in Figure 4 relative to local on-
demand prices, and show the average on-demand price
per region in Figure 5 to permit a rough comparison.
As the figure shows, not only do us-east-2 and us-west-2
have lower spot prices relative to their local on-demand
price, they also have some of the lowest average on-
demand prices. Thus, us-east-2 and us-west-2 are much
more attractive options than either i) us-east-1 and us-
west-1 (which are also stable but have much higher over-
all prices) or ii) eu-west-2 and ca-cent-1 (which have
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Figure 5: Average on-demand price in each region.
lower on-demand prices but more volatile spot prices).

Finally, just as per-region indices reveal more detail
than the global market index, per-AZ indices provide a
deeper breakdown into each region. Figure 6 shows AZ-
level indices for us-east-1, us-east-2, and eu-west-1. We
see that, while us-east-1’s regional index is largely stable,
its AZ-level indices are less stable and have a large vari-
ation in their magnitude, ranging from a constant 30% of
the on-demand price (1e) to over 100% of the on-demand
price (1c and 1d).1 In contrast, in us-east-2, the AZ-level
indices are highly correlated and all similar to the re-
gional index. Thus, while both us-east-1 and us-east-2
have similarly stable regional prices, us-east-1 imposes
a much higher risk, as it exhibits much higher volatility
at the AZ level. Finally, in eu-west-1, we see that the
abrupt spike near January 20th was the result of a corre-
lated spike in only two of the AZs (1a and 1b) with one
AZ maintaining low and stable prices.

Our analysis confirms the intuition that, in general, the
broader the index, the more stable and predictable its fu-
ture prices. The global spot market index is generally
more stable than the regional indices, which are more
stable than the AZ-level indices, which are in turn more
stable than the individual server markets. Thus, appli-
cations should have more confidence over region- and
AZ-level decisions compared to decisions based on ex-
pectations of individual server prices.

3 Comparing Global Trading Policies

We demonstrate the importance of index-based global
trading using a generic long-running application in sim-
ulation. We assume our application i) has no geograph-
ical constraints, ii) is capable of consuming whatever
resources are available, and iii) executes within a vir-
tualized environment, such as a nested virtual machine
or resource container, that makes it capable of trad-
ing servers via transparent systems-level migration. We
also assume the application can gracefully handle IP ad-
dress changes when crossing regions and AZs, and em-
ploys fault-tolerance mechanisms, such as replication or
checkpointing, to make it robust to revocations. Solu-
tions to enabling these assumptions are well-known, as

1Note that this analysis includes spot prices that are 10× the on-
demand price in the index price. However, since 10× the on-demand
price is the maximum bid, these spot servers are effectively unavailable.
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Figure 6: Select AZ-level spot market indices

prior work on superclouds has resolved many of these
“plumbing” issues [7, 15]. We simulate the application’s
behavior over the past two months using real spot market
prices from EC2’s 2287 Linux spot markets. To enable
trading, we assume the application monitors spot prices
in each of these Linux spot markets, and includes a trad-
ing policy that dynamically migrates as prices change to
the server with the lowest current price per ECU. Our
simulation accounts for the overhead of trading across
AZs and regions based on Figure 1.2 We define multiple
global and local trading policies, as outlined below.

• Market-based No Trading selects the individual
spot server across the global market with the highest
Sharpe ratio below, which is a standard measure for
estimating an asset’s risk-adjusted returns: for an as-
set i, it is the ratio of the expected difference between
the asset’s returns Ri and the risk-free returns R f ree
divided by the standard deviation of the returns σi.
In this case, the on-demand price captures the risk-
free returns. As in nearly all prior work on spot in-
stances, this policy commits to its chosen server and
never trades, regardless of price changes.

Si =
E[Ri −R f ree]

σi
(1)

• Market-based Local Trading selects the individual
spot server in the global market with the lowest price
per ECU, and then actively trades within that server’s
AZ to ensure it always runs on the server with the

2Note that the cost to migrate the 10GB state across regions (at
$0.20) is negligible compared to the average time between trades.
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Figure 7: Comparison of cost and availability for our generic application using each of our four policy variants.

lowest price per ECU. Thus, this policy avoids any
trading overheads from crossing AZs and regions.

• Market-based Global Trading selects the spot
server in the global market with the lowest price per
ECU, and then actively trades across the global mar-
ket to ensure it always runs on the server with the
globally lowest price per ECU. The policy incurs the
trading overheads from crossing AZs and regions.

• Index-based Global Trading first selects the AZ
with an index having the highest Sharpe ratio, then
selects the individual spot server in that AZ with
the lowest price per ECU, and finally actively trades
within that server’s AZ to the server with the lowest
price per ECU. As shown in Figure 4, the AZ with
the highest current Sharpe ratio in EC2 is us-east-2.

Note that incorporating risk, in this case using the
Sharpe ratio, is most important when committing to a
subset of markets (either the individual server market in
the first bullet or the AZ in the last bullet). Considering
risk is much less important when actively trading, as the
application often migrates before revocations ever occur.

Figure 7 shows both the overall cost (left) and avail-
ability (right) of running our generic application over
the two month period. The cost is normalized as a per-
centage of the No Trading policy to illustrate the bene-
fits of actively trading servers as market prices change.
As mentioned above, this No Trading policy is sim-
ilar to policies in prior work, which commit to spot
servers and only select a new server after a revoca-
tion [12, 14, 18, 21]. Since spot prices for individual
servers are generally stable, revocations are rare, and
thus there are few opportunities for selecting a new server
in prior work. However, given the large number of indi-
vidual server markets, the lowest cost server (across the
global market, region, or AZ) actually changes quite fre-
quently. Thus, policies that actively trade servers can re-
duce their costs relative to policies that do not actively
trade. As the figure shows, the No Trading policy incurs
a higher cost than all of the active trading policies.

The figure also shows that the Market-based Lo-
cal Trading policy incurs a much higher cost than the
Market-based Global Trading policy. Since the local
trading policy only trades within its own AZ to elimi-
nate trading overhead, it cannot take advantage of low
prices in other AZs. In general, the individual server in
the global market that has the best combination of price

and risk, as measured by the Sharpe ratio, is not necessar-
ily contained in the AZ with the best combination. Over-
all, the Market-based Global Trading policy achieves the
lowest cost, even when accounting for its high trading
overhead, as it always actively migrates to the globally
least-cost server. In comparison, the index-based global
trading policy, which commits to the AZ with the highest
Sharpe ratio, but then restricts itself to intra-AZ trading
to mitigate trading overhead, incurs only a slightly higher
cost than the Market-based Global Trading policy.

To quantify availability, we assume the application is
unavailable when trading servers according to the bench-
marks in Figure 1 with intra-AZ trades incurring an un-
availability of two minutes. The figure shows that, while
the Market-based Global Trading policy has the lowest
cost, it also has the lowest availability (1 nine) due to the
high trading overhead imposed by frequently crossing re-
gions and AZs. While it is costly, the No Trading pol-
icy exhibits a slightly higher availability (2 nines), since
it never trades and only experiences downtime when its
spot price spikes. The Market-based Local Trading pol-
icy has the highest availability (4 nines), since it also re-
stricts trades to within its AZ; by actively moving to the
lowest-cost server it experiences few price spikes that
cause unavailability. However, the policy incurs a high
cost, since it selects an initial server based on its price
characteristics and not AZ-level characteristics. Finally,
in this case, our index-based policy achieves the best of
both worlds—a high availability (3 nines) at a low cost—
by selecting an AZ with an index price that has low mag-
nitude and variability, and then actively trading within
it. Of course, the best policy is application-dependent,
and varies based on an application’s footprint and other
availability constraints. We are developing application-
specific trading policies as part of future work.

4 Conclusion

This paper highlights the importance of selecting spot
servers based, in part, on broad price indices, rather
than individual server prices. While predicting individ-
ual server prices is a popular research topic, we argue
that it is not particularly important for flexible applica-
tions that are capable of actively trading servers.
Acknowledgements. This work is supported by NSF
grant #1422245 and a Google Faculty Research award.



5 Discussion Topics

Our paper takes a different approach than prior work in
this space by advocating decisions based on index-level
price analyses, rather than analyses at the individual spot
server-level. Ultimately, any system that optimizes its
use of low-cost spot instances has to base allocation de-
cisions on (implicit or explicit) predictions of future mar-
ket prices. Our approach parallels the real world, where
investors not only model individual stock prices, but also
make decisions based on broader market trends. In addi-
tion, just as in investing, there are different overheads
associated with trading different types of investments,
e.g., based on their liquidity. We believe our approach
is becoming more relevant as cloud applications are be-
coming more flexible, enabling them to actively migrate
to new servers as market prices change. We would wel-
come the community’s feedback on this hypothesis.

Our work is only an initial simplistic example of
the benefits of index-based trading. Other indices are
also possible. For example, some applications might
be bound to certain server families in the cloud, such
that they would trade based on indices for these server
families. Our simulation experiments also make a num-
ber of simplifying assumptions due to space constraints,
such as no geographic constraints and a workload that
can fully saturate any server. In practice, applications
are likely to have some geographic constraints and ex-
hibit a variable workload that would also influence deci-
sion making. In general, we believe there are many par-
allels between the financial world and emerging cloud
markets. Thus, adapting and modifying methodologies
from finance can advance market-based applications. In
this case, we noted a difference between existing work
on spot markets, which focuses on price prediction for
individual servers, and financial investing, which is more
sophisticated and generally takes a higher-level view.

We expect the paper to generate interesting discus-
sions at the workshop. One point of discussion could be
that EC2’s spot market is neither general nor real (having
been artificially constructed by Amazon). Thus, the idea
could “fall apart” if Amazon either eliminated or altered
its spot market. However, we believe index-based trad-
ing can apply to other contract variants, such as burstable
instances, spot blocks, the reserved marketplace, Google
preeimptible VMs, etc. There are also many other clear
parallels (and differences) between the diversity of con-
tract types in cloud platforms and in existing commodity
markets. For example, companies that operate in com-
modity markets focus on achieving the best mix of con-
tracts to balance their risk and reward. Of course, there
are key differences in the cloud. For instance, server
availability is less constrained than other commodities
with less volatile prices that generally drop over time.
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