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Container Orchestration Platforms (COPs), such as Kubernetes, are increasingly used to manage large-scale
clusters by automating resource allocation between applications encapsulated in containers. Increasingly, the
resources underlying COPs are virtual machines (VMs) dynamically acquired from cloud platforms. COPs may
choose from many different types of VMs offered by cloud platforms, which differ in their cost, performance,
and availability. In particular, while transient VMs cost significantly less than on-demand VMs, platforms may
revoke them at any time, causing them to become unavailable. While transient VMs’ price is attractive, their
unreliability is a problem for COPs designed to support mixed workloads composed of, not only delay-tolerant
batch jobs, but also long-lived interactive services with high availability requirements.

To address the problem, we design TR-Kubernetes, a COP that optimizes the cost of executing mixed interac-
tive and batch workloads on cloud platforms using transient VMs. To do so, TR-Kubernetes enforces arbitrary
availability requirements specified by interactive services despite transient VM unavailability by acquiring
many more transient VMs than necessary most of the time, which it then leverages to opportunistically execute
batch jobs when excess resources are available. When cloud platforms revoke transient VMs, TR-Kubernetes
relies on existing Kubernetes functions to internally revoke resources from batch jobs to maintain interactive
services’ availability requirements. We show that TR-Kubernetes requires minimal extensions to Kubernetes,
and is capable of lowering the cost (by 53%) and improving the availability (99.999%) of a representative
interactive/batch workload on Amazon EC2 when using transient compared to on-demand VMs.
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1 INTRODUCTION

Container Orchestration Platforms (COPs), such as Kubernetes [9], Borg [22], Mesos [13], Docker
Swarm [4], and others, have evolved into de facto cluster “operating systems” by automating the
deployment of distributed applications encapsulated in containers, and managing the allocation of
resources between them. COPs manage clusters of tens of thousands of machines, and serve as the
primary interface users interact with to harness cluster resources. Thus, COPs must support the
availability and performance requirements of a wide range of applications, including long-lived
interactive services and non-interactive batch jobs, while also maintaining high cluster utilization.
To do so, COPs include a rich set of functions for i) handling failures that occur at large scales,
ii) spawning replacement containers, iii) load balancing network traffic, iv) provisioning new
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containers under constraint, i.e., autoscaling, and v) prioritizing resource requests (by revoking
resources from lower priority applications and allocating them to higher priority ones).

COPs were originally developed for managing a mostly static set of dedicated physical machines
in data centers. However, increasingly, the resources that underly COPs are virtual machines (VMs)
dynamically acquired from Infrastructure-as-a-Service (IaaS) cloud platforms. These platforms
offer many types of VMs under a variety of different contract terms, which differ in their cost,
performance, and availability. In particular, transient VMs are an increasingly popular VM type,
since they typically cost 50-90% less than on-demand VMs. However, in exchange for their low
cost, cloud platforms reserve the right to reclaim transient VMs at any time to satisfy higher
priority requests. Thus, while transient VMs’ low price is attractive, their unreliability makes
them unsuitable for COPs that must support long-lived interactive services with high availability
requirements. As a result, prior work focuses primarily on optimizing only batch workloads for
transient VMs, e.g., by tuning fault-tolerance mechanisms [11, 12, 18, 21, 25, 26].

To address the problem, we design TR-Kubernetes, a transient-aware COP that supports both
batch jobs and interactive services with high availability requirements at low cost using transient
VMs. To do so, TR-Kubernetes enables interactive services to explicitly specify their capacity
availability requirement. For example, a distributed web service may specify that it needs the
equivalent capacity of 500 m4.large servers from Amazon’s Elastic Compute Cloud (EC2) with 5
nines of availability (99.999%). TR-Kubernetes’s provisioning policy then selects a mix of different
transient VMs, from among the hundreds offered by cloud platforms, that satisfies the capacity
availability requirement with high probability. As we show, to enforce high availability using
unreliable transient VMs, TR-Kubernetes must acquire many more transient VMs than necessary
most of the time. Current transient VM prices are low enough that acquiring more transient VMs
than necessary—in some cases many more—is still much cheaper than using on-demand VMs to
satisfy the same capacity availability requirement. Thus, TR-Kubernetes often has much more
capacity provisioned than its interactive services require. TR-Kubernetes automatically leverages
this excess capacity to opportunistically execute delay-tolerant batch jobs at no additional cost.
If interactive services ever require additional resources, due to increased demand or transient
VM revocations, TR-Kubernetes leverages internal functions COPs already provide to revoke
resources from the batch jobs and allocate them to the interactive services. This re-provisioning of
containerized resources within a COP has much lower overhead than re-provisioning cloud VMs.

Maintaining excess capacity for interactive services also offers the additional benefits below.

e Higher Availability. TR-Kubernetes’s excess capacity enables higher availability than is
typically offered for on-demand cloud VMs. For example, EC2’s SLA for on-demand VMs only
provides refunds if availability is less than 99.99%, while TR-Kubernetes can satisfy arbitrarily
high availability requirements, e.g., 5 nines or higher, albeit at an increasing cost.

o Greater Responsiveness. Interactive services often experience sudden workload spikes that
require quickly provisioning additional VMs to satisfy the increased demand. However, since
detecting a spike and provisioning additional cloud VMs may take on the order of minutes,
while response time Service Level Objectives (SLOs) are generally on the order of milliseconds,
sudden spikes may cause SLO violations in the interim. In this case, the excess capacity provides
headroom to satisfy unexpected workload spikes without requesting new cloud VMs.

The advantages of maintaining excess capacity for interactive services are a complex function of
a COP’s interactive-to-batch workload mix, availability requirements, and transient VM prices. For
example, satisfying higher capacity availability requirements requires maintaining more excess
resource capacity at a greater cost. However, if these resources can effectively be used by batch jobs,
then TR-Kubernetes remains cost-efficient. Conversely, a lower capacity availability requirement
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requires maintaining fewer excess resources at a much lower cost, but results in fewer excess
resources available to run batch jobs, which either increases job completion time (by requiring these
jobs to wait until resources are available) or increases costs (by requiring the COP to provision new
cloud VMs to run the jobs). We evaluate these tradeoffs on EC2 using a public workload trace [23].
Interestingly, the reason COPs include internal support for revocations, and thus transience,
is the same reason cloud platforms offer transient VMs: to increase overall cluster utilization by
enabling lower-priority (and delay-tolerant) batch jobs to run whenever resources are available,
while also supporting higher-priority interactive tasks with strict performance and availability
requirements. Thus, existing integrations of COPs with cloud platforms typically run interactive
services on high-cost on-demand VMs, and run delay-tolerant batch jobs on low-cost transient VMs.
In contrast, our hypothesis is that TR-Kubernetes can enable higher availability, better performance,
and lower costs by running mixed interactive and batch workloads entirely on transient VMs. In
evaluating our hypothesis, we make the following contributions.
TR-Kubernetes Design. We outline TR-Kubernetes’s simple design, which mostly relies on exist-
ing COP mechanisms, e.g., for handling revocations, spawning replacement containers, autoscaling,
etc., and existing cloud APIs, e.g., for allocating and replacing transient VMs. TR-Kubernetes’s de-
sign then builds on these basic mechanisms by introducing i) an intelligent provisioning policy that
selects transient VMs to ensure a specified capacity availability at a low price and ii) a background
daemon that coordinates the graceful revocation of transient VMs.
Provisioning Policy. We present TR-Kubernetes’s provisioning policy that selects unreliable
transient VMs from among the hundreds offered by cloud platforms based on cost and availability
estimates. As we show, our policy achieves a cost savings near that of the optimal cost-minimizing
policy, while achieving an availability near that of the optimal availability-maximizing policy. Our
comparison is based on an analysis of the price and availability of 350 spot VMs across all EC2
regions and availability zones (AZs), i.e., data centers, in the U.S. over a 3 month period.
Implementation and Evaluation. We implement and evaluate TR-Kubernetes’s provisioning
policy by minimally extending Kubernetes for AWS [5]. We show that transient VM revocations do
not significantly affect interactive service performance and reliability. We also implement a trace-
driven simulator to quantify TR-Kubernetes’s benefits over long periods using a publicly-available
workload trace [23]. We show that if interactive services comprise 50% of the workload and require
99.999% availability, then TR-Kubernetes lowers the cost of hosting these interactive services by
53% and executing the batch jobs by 30% compared to using on-demand VMs.

2 BACKGROUND

TR-Kubernetes is a Container Orchestration Platform (COP) that uses unreliable transient cloud
VMs to execute mixed batch/interactive workloads at low cost. This section provides background
on COPs, transient VMs, and our underlying assumptions.

2.1 Container Orchestration Platforms

There are many publicly-available COPs that offer similar functionality and support diverse work-
loads on large, mixed-use clusters, including Kubernetes [9], Mesos (with Marathon) [13], and
Docker Swarm [4]. These platforms not only manage the allocation of cluster resources between
distributed applications encapsulated in containers, but also provide a rich set of functions for
supporting distributed applications and tightly integrate with IaaS cloud platforms. In addition, IaaS
platforms now natively provide container orchestration platforms hosted on their VMs, such as
Amazon’s EC2 Container Service for Kubernetes (EKS) [3], Google’s Kubernetes Engine (GKE) [2],
and Azure Kubernetes Service (AKS) [1]. These native platforms are largely the same as the
open-source platforms, but are configured automatically by the cloud provider and support elastic
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autoscaling, i.e., by automatically allocating and releasing VMs as necessary. While our prototype
extends Kubernetes on AWS, our work is applicable to any COP on any cloud platform.

A key assumption COPs make is that distributed applications that run on them can handle i)
the failure or revocation of containers, and ii) the allocation of new replacement containers. This
assumption enables COPs i) to scale up to many thousands of servers, where some failures are
inevitable, by automatically replacing failed containers with new containers, and ii) to freely revoke
containers from applications without affecting application correctness. COPs generally support two
broad classes of applications—interactive services and batch jobs [22]. Interactive services must
respond to user requests in real-time at millisecond-scale latencies, while batch jobs are tolerant
to delays and thus typically run in the background without strict deadlines. Internal support for
revocations enables COPs to allocate available resources to batch jobs, while also enabling them to
revoke these resources and re-allocate them to interactive services if their demand spikes.

Thus, distributed applications that run on COPs are designed to handle container failures,
revocations, and re-allocations. Interactive services are typically designed to be stateless and
often leverage load balancers natively built into COPs that spread requests among services’ active
containers. These load balancers automatically update the active set of containers as VM failures
and revocations occur. In contrast, batch jobs either restart from the beginning, or from the most
recent checkpoint, on a VM revocation. Many distributed big data frameworks, such as Spark [27],
Naiad [15], TensorFlow [7], etc., that cache large datasets in volatile memory include built-in
functions for checkpointing job state. Optimizing this checkpointing based on job characteristics
and VM revocation rates is the subject of active research [17, 21, 25, 26]. As discussed in §6, batch
jobs that run on TR-Kubernetes may leverage such checkpointing policies.

Since TR-Kubernetes extends an existing COP in Kubernetes, it makes the same assumptions as
above. In particular, we assume distributed applications are designed to handle container failures
and revocations. We also assume i) interactive services are stateless and leverage Kubernetes’s
internal load balancer to spread their load across the active set of containers, which is dynamically
updated as revocations occur, and ii) stateful batch jobs must re-start, either from the beginning or
from their last checkpoint, on each revocation. Note that, as with Kubernetes, TR-Kubernetes does
not natively support stateful interactive services that cannot gracefully handle revocations. In §6,
we discuss related work that TR-Kubernetes could incorporate to support such services.

2.2 Transient Cloud VMs

Transient VMs are available temporarily for an uncertain amount time, as platforms may revoke
them at any time with little warning. As discussed above, since COPs support revocations, they
implicitly allocate transient VMs to lower-priority jobs, which are generally batch jobs. IaaS
cloud platforms offer transient VMs to customers for similar reasons as COPs: they enable cloud
platforms to earn revenue from their idle capacity, while retaining the flexibility to reclaim it to
satisfy requests for higher-priority on-demand VMs, which they try not to revoke. Each of the
major cloud platforms—Google Cloud Platform (GCP), Microsoft Azure, and Amazon EC2—now
offer transient VMs. GCP and Azure offer transient VMs for a fixed price, called preemptible VMs
and low-priority batch VMs, respectively, while EC2 offers spot instances for a variable spot price.

TR-Kubernetes uses estimates of each transient VM’s cost, availability, and revocation frequency
to select VMs that satisfy the capacity availability requirements of an interactive service. Note
that the unavailability of transient VMs is dictated by the presence of high-priority jobs, which
causes platforms to preempt VMs executing low-priority jobs, and not hardware failures. Prior
work on optimizing batch jobs for transient VMs derives availability estimates from historical
usage, internal logs, or public price traces. In particular, EC2 publicly releases price traces for its
transient spot VMs, which enables users to infer their unavailability, since it correlates with high
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Fig. 1. Comparison of d2.2x1large and m4.2x1arge spot prices in us-west-1c from 2017/9 - 2017/12.

prices. For example, Figure 1 shows a spot price trace for two transient VMs from September to
December 2017, which includes the latest change in EC2’s spot pricing algorithm to smooth price
fluctuations. The dotted lines indicate each VM’s on-demand price: the transient VM is unavailable
when the price is above the dotted line, and a revocation occurs whenever the spot price crosses the
dotted line. Importantly, each VM type exhibits its own availability characteristics. Cloud platforms
include hundreds of VM types in each region. In EC2, us-east-1 alone has 375 types of VMs.

To simplify using transient VMs, cloud platforms include tools to automate their allocation
and replacement. For example, EC2 offers Spot Fleet, which enables users to specify a policy to
automate the replacement of revoked transient VMs (either to minimize cost or maximize diversity).
Unlike TR-Kubernetes, Spot Fleet’s policy is agnostic of application availability and capacity
requirements. We compare TR-Kubernetes’s provisioning policy with Spot Fleet in the next section
and in §5. In addition, EC2 users can submit persistent requests for transient VMs which direct
EC2 to automatically re-acquire a revoked VM once it becomes available again after a revocation.
Persistent requests simplify TR-Kubernetes’s implementation by requiring its provisioning policy to
specify only the initial VM selection, and automating all subsequent VM allocations and revocations.
Persistent requests also enable spot hibernation, a new feature where EC2 automatically checkpoints
VM memory state prior to a revocation and restores it on re-allocation. Note that spot hibernation
only works when resuming on the same transient VM, as with persistent requests. We evaluate
TR-Kubernetes with and without automated checkpointing via spot hibernation in §5.

3 DESIGN

We first outline TR-Kubernetes’s extensions to Kubernetes and then present its transient-aware
provisioning policy, which enables interactive services to specify a capacity availability requirement.

3.1 TR-Kubernetes Design

TR-Kubernetes’s design relies heavily on existing functions built into Kubernetes, as well as other
COPs. The primary difference is that TR-Kubernetes enables users to specify a capacity availability
requirement for an aggregate amount of computational capacity in their service description for
an interactive service. Figure 2 depicts TR-Kubernetes’s extensions to Kubernetes. These include
an offline tool that runs TR-Kubernetes’s provisioning algorithm to generate service descriptions,
which specify the transient VMs necessary to satisfy the capacity availability requirement. This
service description is then submitted along with the job via the Kubernetes command-line tool.
Since our prototype runs on EC2, users specify capacity in terms of EC2 Compute Units (ECUs),
which is a relative measure of a VM’s integer processing power [8]. As an example, an interactive
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Fig. 3. Depiction of states, events, and state transitions when responding to transient VM revocation and
re-allocation.

service might specify that it requires 10,000 ECUs with an availability of 99.999%. TR-Kubernetes’s
provisioning policy (§3.2) then determines which transient VMs to request and how many based on
availability estimates, such that they satisfy the capacity availability requirement at the lowest cost.
Since Kubernetes is already widely used by major enterprises, a key goal of TR-Kubernetes is to
minimally alter its operational model by only requiring users to additionally specify a service’s
target capacity availability. TR-Kubernetes otherwise preserves Kubernetes’s existing approach
for specifying service descriptions, which requires services to specify their resource requirements,
and not their performance requirements, e.g., for average or tail latency. However, we do evaluate
TR-Kubernetes’s effect on performance and tail latency in §5. Once transient VMs are allocated
based on a service description, TR-Kubernetes relies on functions already built into Kubernetes
on AWS, an open source implementation of Kubernetes designed to run on VMs dynamically
acquired from EC2. Kubernetes on AWS supports EC2 services, such as Auto Scaling and Spot
Fleet, designed to automate resource allocation and revocation. As a result, Kubernetes on AWS can
handle revocations by simply detecting them as failed VMs and removing them from the cluster.
TR-Kubernetes also employs an external revocation daemon that interacts with cloud APIs and
Kubernetes to detect imminent revocations and proactively remove revoke VMs to minimize failed
requests. In addition, if a revoked VM reduces the capacity of an interactive service below the
requirement in its service description, Kubernetes’s replication controller can automatically spawn
replica container pods, i.e., co-located groups of containers, on the remaining VMs to replace
the resources on the revoked VM. If necessary, to ensure the required capacity, Kubernetes will
revoke resources internally from lower-priority batch jobs. Of course, if there are no lower-priority
resources left to revoke, TR-Kubernetes may not satisfy a service’s capacity requirement for brief
periods, which increases its unavailability. However, our provisioning algorithm described in §3.2 is
designed to ensure these periods preserve the capacity availability requirement over the long term.
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Fig. 4. Comparison of average transient VM cost and availability in us-west-Tc from 2017/9-12.

Kubernetes includes a built-in load balancer, which distributes interactive service requests across
the active container pods, automatically removes pods on failed/revoked VMs from the active set,
and automatically adds newly scheduled container pods to the active set. As a result, Kubernetes’s
internal functions already largely mask failures/revocations from the external users or applications
of interactive services. If EC2 revokes a VM executing a batch job, then Kubernetes re-schedules
and queues the revoked batch job. TR-Kubernetes can either queue the job to run on the next
available resource (of those remaining), or, if no resources are available, provision a new transient
or on-demand VM to execute the job immediately. Kubernetes on AWS natively supports the
reactive autoscaling above for interactive services or batch jobs to replace failed/revoked VMs with
on-demand cloud VMs, and can also be configured to use transient VMs. Likewise, Kubernetes
on AWS is also able to re-incorporate re-allocated transient VMs (from a persistent request) that
were previously revoked. In this case, when the transient VM starts again (possibly with a new IP
address and DNS name), as part of its boot-up procedure, it contacts the Kubernetes master and
re-registers itself as a new worker.

To illustrate, Figure 3 depicts various states, events, and state transitions that may occur with
TR-Kubernetes. The left figure (a) represents a steady state with 20 transient VMs such that the
interactive service capacity requirement is only 14 transient VMs. If any VMs from the interactive
service are revoked, Kubernetes internally revokes resources from batch tasks and allocates them
to the interactive service to maintain its capacity requirement, and places the batch jobs in the
queue (b). If any VMs running batch jobs are revoked, as in (c), jobs running on these VMs also get
queued and are re-scheduled to run once VMs are re-allocated, as in (d).

3.2 Provisioning Algorithm

TR-Kubernetes enables users to specify an availability requirement for a specified capacity in their
service description for an interactive task. As discussed in §2, since we assume interactive services
are stateless and leverage Kubernetes’s built-in load balancer to distribute requests across VMs,
it assumes any composition of VMs that satisfies the ECU requirement is acceptable, as the load
balancer will distribute requests evenly based on each VM’s resource capacity. Of course, there
are many such VM combinations with different costs that could satisfy a fixed ECU requirement,
such as 10,000 ECUs. For example, 1000 m5. 1large on-demand VM’s, which have 10 ECUs, at a cost
of $96 per hour (or $0.0096/ECU/hr), or 34 m5. large and 28 m5.24x1arge on-demand VM’s (345
ECUs) at a cost of $132.29 (or $0.013229/ECU/hr). The latter option costs more, in part, because
the m5. 24x1arge has slightly more memory per ECU (1.1MB/ECU to 0.8MB/ECU). Note that TR-
Kubernetes’s current policy specifies capacity in terms of ECUs, and enables applications to only
set a minimum aggregate memory threshold.

The differences in cost between different combinations of on-demand VMs are small, since
on-demand VMs (within each VM class) are consistently priced in proportion to their ECU and
memory capacity. The cost differences, however, are often much higher for transient VMs. For
example, Figure 1 shows the m4.2x1large’s spot price and the d2.2xlarge’s spot price over the
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Fig. 5. Heatmap showing the correlation in availability periods of spot VMs in us-west-1c from September
to November 2017. The figure shows that availability periods are largely independent across spot VMs.

same three-month period. The figure shows that the m4. 2x1arge is often much cheaper (by 4x) than
the d2.2x1large, but is also occasionally more expensive. However, even though the m4.2x1large
is cheaper on average, its spot price is more variable. In this case, the capacity of d2.2x1large and
m4.2xlarge is similar, with 28 and 26 ECUs, respectively. Figure 4 illustrates the complexity of
selecting transient spot VMs in EC2 that are both low cost and satisfy a target availability. The
figure shows that cost and availability are not correlated, such that the VM with the lowest price
is not necessarily the most available, and that there are a wide range of options with different
tradeoffs. Note that availability is on a log scale to emphasize that small differences are important.

Our provisioning policy addresses this problem by selecting transient VMs to jointly optimize
both cost and availability subject to the availability target. To do so, TR-Kubernetes maintains a
table of price and availability estimates for each transient VM. Given the table, computing the
aggregate availability of different capacities for a pool of transient VMs is non-trivial, especially
if transient VM availability is highly correlated. Fortunately, Figure 5 shows that availability for
transient VMs is not highly correlated in EC2. While we show only 11 VM types from us-west-1c
here, our analysis across the other regions, zones, and VM types yields similar results.

In this case, we characterize each transient VM’s availability as a time-series with a value of 1 if
the VM is available, and 0 if it is unavailable. Here, we assume a spot VM is available if its spot
price is less than the corresponding on-demand price, and unavailable otherwise. We then compute
the Pearson Correlation Coefficient (PCC) between all pairs of VM types in Figure 5. With PCC, 1
represents a total positive linear correlation, —1 represents a total negative linear correlation, and 0
represents no linear correlation. The heat map shows that the availability periods are either zero
or are close to zero for all pairs of different types. Given this, in our analysis below, we assume
availability periods are independent. Also note that transient VMs of the same type are perfectly
correlated, since a single price dictates their availability en masse.

3.2.1 Computing the Availability of a Target Capacity. Before describing our provisioning algorithm,
we first outline how to compute the availability of a target capacity C across a pool of transient
VMs with different availabilities. Since transient VMs of a given type are either available or
unavailable, our approach, described below, essentially computes the probability of all possible
available/unavailable combinations, and then sums the probabilities of all combinations that yield
a capacity > C. To do so, we first denote each transient VM’s availability as p; and its capacity as c;.
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We can then represent a transient VM i as a polynomial of degree n; X ¢;, where we have n; for each
transient VM i. This polynomial Q;(x) is given by the following equation, which we use below.

Qi(x) = (1 = pi)x” + pix"€ (1)

This representation conveys that with probability (1 — p;), transient VMs of type i are unavailable
and yield zero capacity, and with probability p;, they are available and yield n; X¢; capacity. Here, the
exponents of x represent the capacity of transient VMs of type i, while their coefficients represent
the probability that a certain capacity is available (either zero or n; X ¢;). We use this polynomial to
indirectly represent the probability mass function of transient VMs of type i. Of course, any single
VM type is either available or unavailable, which yields a simple form for Q;(x). To compute the
availability of an arbitrary capacity C for a pool of different VM types, we require a representation
for the entire pool’s probability mass function, which is more complex, since it must capture the
capacities and availabilities of different transient VMs.

Before outlining the probability mass function for a pool of transient VMs, we first consider
a trivial example. Our example includes just two transient VMs, each of capacity 1 ECU with
availability 90%, where our aggregate capacity availability requirement is 1 ECU at 99%. Thus,
selecting one or more of any single transient VM type yields only 90% availability of at least 1 ECU,
since we assume the availability of transient VMs of the same type are perfectly correlated. In
this case, while we have 2 ECUs 90% of the time, 10% of the time we have 0 ECUs, which violates
our capacity availability requirement of 1 ECU at 99%. If we pick one instance of each type, we
can compute the pool’s availability at the full capacity of 2 ECUs by multiplying the individual
availabilities together, since they are independent (from Figure 5), which yields 0.9 X 0.9 = 81%
availability for 2 ECUs. Similarly, we can compute the availability (or unavailability) of 0 ECUs
by multiplying the unavailability of each type, yielding 0.1 X 0.1 = 1% availability. Since this case
specifies only a capacity of 1 ECU, we can directly compute the availability of the pool offering 1 or
more ECUs by simply subtracting the availability of 0 ECUs from 100%, which yields 1 —0.01 = 99%
availability, which satisfies the availability requirement above.

We can generalize this example and apply it to any number N of transient VM types of different
capacities and availabilities, for any capacity and availability requirement, by using the polynomial
representation of each transient VM type i described above. In this case, for N different transient
VM types, with n; of each type, we derive our representation of the probability mass function of
the transient VM pool by simply multiplying the polynomials of each transient VM, as they are
independent. This gives the polynomial representation Q,;(x) for the transient VM pool below.

N
Qpoot(x) = | | Qi) (2)
i=1

Similar to above, Qp001(x) represents the probability mass function of the entire transient VM
pool, where x’s exponents represent the capacity for some set of transient VMs, and the coefficients
represent the probability that this set of transient VMs are the only ones that are available. A term
exists in Q,001(x)’s expanded polynomial for every possible available/unavailable combination of
the pool’s transient VMs. From this equation, we can compute the availability at a target capacity m
(m < C) by simply adding the coefficients of x’s exponents, where the respective exponent is > m,
as these are the combinations of transient VMs that yield greater than the capacity requirement.
Applying this methodology to the trivial example above enables us to compute the availability
of 1 ECU in a different, but more general, way, which does not rely on the capacity requirement
being 1 ECU. In particular, we have Q;(x) = 0.1x° + 0.9x! and Q»(x) = 0.1x° + 0.9x!, where
multiplying these two gives Qpoor(x) = (0.1x° +0.9x") X (0.1x° +0.9x") = 0.01x° + 0.18x" + 0.81x
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and the availability at target capacity of 1 is the sum of coefficients of x! and x?, which yields
0.18 +0.81 = 0.99.

Note that the methodology above is equivalent to taking the convolution of multiple independent
binomial random variables, where we represent i) each transient VM type’s availability as an
independent binomial random variable A; Vi € [1, N] and ii) the transient VM pool as the sum of
the respective transient VMs’ binomial random variables. More formally, we use the probability
mass function below of independent binomial random variables A; Vi € [1, N] to represent the
ith transient VM’s capacity availability where p;, n; and c; represent the availability, number, and
capacity of the ith transient VM in the pool, respectively.

0,x <0
fa,(x)={1-pix=0 3)
pi,x = n; Xc¢j

We then represent the pool of transient VMs as the random variable Z below, which is the sum
of the random variables of the individual transient VM types in the pool.

Z=A +A,+...+ AN (4)

Since each A; Vi € [1, N] are independent of each other (from Figure 5), we can compute the
probability mass function of Z by taking the convolution of probability mass functions of A;
Vi € [1, N] as below, which is equivalent to Equation 2.

N
fz=] |1 )

3.3 Greedy Algorithm

The approach above enables us to compute the aggregate availability of any specified capacity for
a particular pool of transient VMs. We next outline how TR-Kubernetes selects transient VMs for
the pool to minimize cost, while satisfying the target level of availability for the specified capacity.
The problem is complex, since there are hundreds of transient VM types within each cloud region
(including each AZ), and we may select multiple instances of any one transient VM. As a result,
there are an exponential number of possible pools that satisfy the capacity availability requirement.

Our problem appears similar to a multi-dimensional unbounded knapsack problem, where the
VMs are akin to items, ECUs and availabilities are akin to weight dimensions, VM pools are akin
to knapsacks, and costs are akin to item value. However, there are two primary differences that
prevent applying common techniques, such as dynamic programming, to the problem. In particular,
in unbounded knapsack, the size of the each knapsack (along each dimension) is known in advance,
whereas we do not know the final number of ECUs required for a given target availability (as it
depends on the target and the individual VM availabilities). In addition, the availability dimension
is not strictly additive based on §3.2, since the increase in availability from adding a new transient
VM to a pool, i.e., the “knapsack,” depends on the other transient VMs already in the pool.

Thus, we instead initially employed a simply greedy algorithm that selected transient VMs in
order of their lowest cost (per ECU-hour) per marginal increase in availability of the specified
capacity relative to the currently selected pool of transient VMs. If the currently selected pool
has less than the target capacity, then we compute the marginal increase in availability of the
capacity of the currently selected group. This approach favors low cost transient VMs that yield
high availabilities. Note that we select based on the marginal increase in availability with respect to
the currently selected group, and not the absolute availability of the transient VM. For example, if
we select a transient VM of type i with an availability of 99%, the marginal increase in availability
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Fig. 6. Comparison of availability and cost of different provisioning policies for a target capacity of 5000
ECUs at a target availability of 99.999%.

from selecting another transient VM of type i is 0, since the availability of the same type is perfectly
correlated with all other VMs of that type.

When we directly employed the greedy approach above, we found that it did not work well
because it applied the same weight to cost and availability. However, transient VM availability
in cloud platforms is currently high (above 90%) and users typically reason about and specify
availability based on small orders of magnitude, i.e., some number of 9s of availability. In contrast,
users reason about and specify cost based on much larger orders of magnitude, i.e., reducing cost by
50% is significant, while reducing it by 1% or 0.1% is generally not. By weighting cost and availability
equally, our greedy sorting criteria above tends to allocate the next globally cheapest transient VM,
since most transient VMs currently have availability greater than 90%. For example, if we have two
transient VMs where their cost and availability is ($0.0047/ECU-hour,99%) and ($0.005/ECU-hour,
99.99%), respectively, the policy above will favor the former even though the latter has two orders
of magnitude better availability at only a marginally higher cost. As a result, we modified our
initial approach above by quantifying availability on a logarithmic scale using the equation below,
assuming transient VM availability is <100%, where p; is the availability of transient VM’s of type
i and o is its cost per ECU-hour.

log%) X 0 (6)

Our algorithm greedily selects transient VMs based on the criteria above one by one until the
pool satisfies the specified capacity availability requirement, or its cost exceeds the cost of using
on-demand VMs to satisfy the requirement, in which case TR-Kubernetes requests on-demand
VMs. Note that our approach naturally diversifies transient VM selection across types, since always
selecting the same transient VM (even if it has the highest availability) does not result in a marginal
increase in the pool’s availability. We compare our greedy algorithm with other approaches in
Figure 6. In this case, we set our required capacity equal to 5000 ECUs with a target availability of
99.999%, i.e., 5 nines. We also limit transient VMs in a pool to be from the same AZ. The bars are
the average availability and cost across all 14 EC2 AZs in the U.S., where the error bars indicate
the maximum and minimum AZ. We plot the cost as a percentage of the on-demand cost for the
equivalent VMs, and plot availability on a log scale.

We compare with multiple other provisioning policies, including those used by Spot Fleet, EC2’s
tool for automatically managing transient spot VMs. Spot Fleet (cheapest) is a greedy policy that
greedily selects the cheapest VM until it reaches the ECU capacity; Spot Fleet (diverse) always
selects the next-cheapest VM until it reaches the ECU capacity, but does not select the same VM
twice (until it has selected 10 different VM types); and Greedy (availability) greedily selects the VM
that results in the greatest increase in marginal availability until it reaches the capacity availability
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requirement. Note that the former two policies are application-agnostic and do not consider an
availability target, while the latter policy does, as it is essentially a variant of TR-Kubernetes’s
policy above that only considers marginal availability and not cost.

The graph shows that picking the cheapest transient VMs with Spot Fleet (cheapest) results in
the lowest cost, but a much lower availability (3 nines) as well. In contrast, Spot Fleet (diverse) and
Greedy (Availability) result in a high availability, but also a higher cost (60-80% of the on-demand
cost). Further, Spot Fleet (diverse) results in slightly less than the availability target on average
with a high variance, while Greedy (availability) has a high variance in cost (with cost sometimes
exceeding the on-demand cost). In contrast, TR-Kubernetes achieves the target availability at the
lowest cost at less than 50% of the on-demand cost on average.

3.4 Supporting Multi-Tier Services

Our greedy algorithm above selects transient VMs to satisfy the capacity availability requirement of
a single interactive service. However, in many cases, interactive services operate as one of multiple
tiers of a larger interactive service, such as 3-tier web application that includes web, application,
and database server tiers. In Kubernetes, users specify multi-tier services by submitting a separate
service description for each tier that specifies its resource requirements. Since a key goal of TR-
Kubernetes is to minimally alter Kubernetes, we adopt the same approach with users independently
specifying the capacity availability requirement of each tier. A key problem with such independent
resource specifications is they do not allow users to specify availability for the aggregate multi-tier
service. However, we show that we can derive this availability from the requirements of the tiers.

We consider a multi-tier service to be available if the capacity requirement of each of its tiers is
concurrently satisfied. If the availability of the transient VMs allocated in each tier is independent
and the capacities are the same, then the availability of the aggregate service is simply (p;)*Vi €
[1, k], where p; is the availability of the ith of k tiers. In this case, to enable an availability of p for
the multi-tier service, users should specify an availability of {/p for each tier. Thus, users must
specify a higher availability for each tier relative to their desired availability for the multi-tier
service. If each tier’s availability is independent, but the capacity is different, then we can simply
treat each tier as a single transient VM equal to the specified capacity with availability p;, and use
the same approach as in §3.2.1 to compute the availability of the multi-tier service.

However, note that even when we determine each tier’s transient VM allocation independently

based on the greedy algorithm above, the resulting allocation is entirely dependent across tiers. That
is, if each tier’s capacity and availability requirement are the same, then each tier’s allocation will be
exactly the same, as our algorithm is deterministic. In this case, if each tier’s availability requirement
is p, then the availability of the multi-tier service will also be p, regardless of the number of tiers.
This also holds if the capacity of each tier is different, but their availability requirement is the same,
since any tier’s transient VM allocation will be a subset of the allocation for all tiers with a higher
capacity. If both the capacity and availability of each tier are different, then the availability of the
multi-tier service is bounded by the tier with the lowest availability.
Summary. TR-Kubernetes does not alter Kubernetes’s independent specification for each tier
of a multi-tier service. The availability of a multi-tier service is bounded by the tier with the
lowest availability, regardless of each tier’s capacity requirement; if each tier specifies the same
availability, then that is the availability of the multi-tier service, also regardless of each tier’s
capacity requirement. To illustrate, Figure 7 shows the availability of a three-tier service when
the capacities are each equal to 400 ECUs, and a more realistic case where they are different (with
capacities of 800 ECUs for the front-end, 400 ECUs for the middle tier, and 200 ECUs for the back-
end). In each case, the availability requirement is 99.99%. We run the experiment using availability
data over a 3 month period across all 14 AZ’s in the U.S. and report averages and error bars.
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Fig. 7. Availability of a three-tier service when the capacities are equal, and when they are different, assuming
dependent allocations, independent allocations, and in practice.

The graph shows the actual availability, as well as the availability if the transient VM allocations
between tiers had entirely dependent and independent availabilities. Note that the latter results
in a lower service availability of (0.9999)* = 0.9996. However, the graph shows that, as expected,
transient VM allocations for each tier are highly dependent, resulting in the actual availability
being equal to that of the dependent allocation (and near the 99.99% target).

4 IMPLEMENTATION

We implement TR-Kubernetes by minimally extending Kubernetes on AWS [5], and have publicly
released our extensions.!. We also implement a job simulator to evaluate our approach over long
periods of time using traces of transient VM prices and availability.
Prototype. By design, TR-Kubernetes minimally extends Kubernetes on AWS, as it is designed to
be simple and exploit much of Kubernetes’s (and other COPs’) rich set of existing functions. The
prototype uses Python bindings with the Boto3, numpy, and PyYAML python libraries. Kubernetes
on AWS already enables users to create, update, and destroy Kubernetes clusters dynamically on
AWS, either programmatically or using a command-line tool. While Kubernetes includes most of
the functions TR-Kubernetes requires, they must be correctly configured. For example, the software
supports both dynamic acquisition of on-demand VMs and transient spot VMs via Spot Fleet,
specifically the diversified policy used in Figure 6. To create a cluster, the software first generates a
template configuration file, where the user has to fill in certain cluster parameters, such as the EC2
key pair, DNS name, type of VMs to use, and the number in each node pool. Kubernetes on AWS
acquires the cluster from EC2 based on this configuration file. TR-Kubernetes also configures the
load balancer and replication controller for interactive services; in the latter case, it must configure
the replication controller and the per container resource requirements to match the target capacity.
TR-Kubernetes interposes on the allocation process by selecting the transient spot VMs, i.e.,
worker nodes, that the cluster should use by autogenerating the Kubernetes configuration file.
That is, we take the target capacity and availability specified by the user, execute our algorithm
from the previous section, and autogenerate the configuration file that specifies the transient
VM types and quantities that yield the target capacity at the target availability. Since Kubernetes
on AWS supports using Spot Fleet and not requests for individual VMs, we add each transient
spot VM as a separate Spot Fleet request in the configuration file. Users leverage an external
tool offline to generate the configuration file above for each interactive service they submit to
TR-Kubernetes. To illustrate the implementation, Figure 8 depicts a sample configuration file that
TR-Kubernetes generates. For simplicity, we show only the portion of the file corresponding to the
worker node-pool configuration.

https://github.com/sustainablecomputinglab/tr-kubernetes.git
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worker:
nodePools:
- name: nodepool-spot-m5.large
SpotFleet:
iamFleetArn: arn:aws:iam:: XXXXXX:role/aws-ec2-spot-fleet-tagging-role
targetCapacity: 100
launchSpecification: {weightedCapacity: 10, instanceType: m5.large}
- name: nodepool-spot-c5.large
SpotFleet:
iamFleetArn: arn:aws:iam::XXXXXX:role/aws-ec2-spot-fleet-tagging-role
targetCapacity: 110
launchSpecification: {weightedCapacity: 10, instanceType: c5.large}
- name: nodepool-spot-m5.4xlarge
SpotFleet:
iamFleetArn: arn:aws:iam::XXXXXX:role/aws-ec2-spot-fleet-tagging-role
targetCapacity: 183
launchSpecification: {weightedCapacity: 61, instanceType: m5.4xlarge}
- name: nodepool-spot-c5.2xlarge
SpotFleet:
iamFleetArn: arn:aws:iam::XXXXXX:role/aws-ec2-spot-fleet-tagging-role
targetCapacity: 155
launchSpecification: {weightedCapacity: 31, instanceType: c5.2xlarge}

Fig. 8. TR-Kubernetes-generated configuration file.

The revocation daemon described in §3.1 is implemented in python, and registers to receive the

revocation warning from a cloud platform via platform-specific APIs. Upon receiving a warning,
the daemon marks the soon-to-be revoked VM as un-schedulable in the Kubernetes master (and
load balancer) to ensure it does not schedule any new containers on the VM. Next, the daemon
uses the Kubernetes master to label the container pods running on the VM as “under maintenance,”
which prevents the load balancer from directing any additional requests to the VM but allows the
current requests and/or jobs to finish. Note that this revocation daemon, like the offline tool above,
operates externally to Kubernetes and requires no changes to its codebase.
Simulator. In addition to our prototype, we also built a job simulator to enable analysis of TR-
Kubernetes cost savings over long periods of time [23]. Our simulator schedules tasks in first-come-
first-serve (FCFS) order. We assume the CPU is the bottleneck for tasks, such that if we cannot meet
the task’s constraints, we allow our simulated scheduler to allocate lower-capacity VMs. However,
due to the CPU bottleneck, this causes the task running time to slow down by a proportionate
factor in comparison to the original running time. We do not permit the scheduler to schedule jobs
on higher-capacity VMs than in the original trace, since we do not know how many additional
resources the jobs can use. The simulator records each job’s submit, start, and finish times on the
simulated cluster, which comprises transient VMs based on our policy from the previous section
with costs corresponding to their spot price traces.

5 EVALUATION

We evaluate TR-Kubernetes at small scale on EC2 using our prototype, and at large scale over a
long period using publicly-available spot price traces and a month-long production job trace from
Google [16]. Our prototype results focus on quantifying the effect of revocations on an interactive
services’s performance and reliability. We also use spot price traces to quantify the ability of
TR-Kubernetes to satisfy different capacity and availability requirements, and the resulting cost
compared to using on-demand VMs. We also quantify the amount of excess resources that these
allocations yield, which TR-Kubernetes automatically uses to satisfy batch jobs at no additional
cost. We then use the job traces to evaluate the performance of batch jobs using TR-Kubernetes
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compared to using i) on-demand VMs for the entire workload or ii) on-demand VMs for interactive
services and transient VMs for batch jobs. The former is the typical setup for COPs currently
deployed on cloud platforms (as EC2’s Kubernetes service requires the use of on-demand VMs),
while the latter is a natural improvement, since it runs batch jobs on transient VMs.

We run all simulation experiments using spot price data from all 14 EC2 AZs in the U.S., and
report error bars that represent the minimum and maximum of each metric. Our spot price data
covers 3 months from September to December 2017, which is after the latest change in EC2’s
spot price algorithm. We consider all spot VM types except for GPUs and FPGAs, which are not
general-purpose and require support from applications. We also only consider the latest (4th)
generation of VM types, as of September 2017.

5.1 Prototype Results

Our prototype results focus on the application performance and reliability impact of revocations.
Since substantial prior work has optimized batch jobs for revocations, e.g., by tuning fault tolerance
mechanisms [11, 12, 18, 21, 25, 26], our evaluation focuses on interactive service performance. Note
that batch jobs run on TR-Kubernetes can leverage this prior work. For these experiments, we use
a distributed web server that serves static content as a representative application. The server uses
Kubernetes’s built-in load balancer to distribute requests across 10 server replicas (running Nginx)
hosted on t2-medium VMs in EC2.

Throughput. We first examine application performance under increasing revocation frequencies.
Since replacements for revoked VMs must re-warm their cache, frequent revocations have the
potential to degrade server throughput and latency. In this case, we seed our replicas with a
number of image files, and use the ApacheBench (ab) web server benchmarking tool, such that
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each benchmark run consists of a total of 2000 image requests from 4 clients, which each run for
an average of 8 minutes. We vary the size of the static content, i.e., image files, in each experiment
such that either i) all the content fits in the VM’s memory, ii) only some of the content fits in the
VM’s memory, requiring some content to be served from disk, or iii) most of the content resides on
and must be accessed from disk. We then vary the revocation frequency from 0 revocations/minute
to as high as 4 revocations/minute.

Figure 9 presents the results, which show that the larger the size of the static content relative
to memory, the lower the effect of revocations on throughput. When the content fits in memory,
all content is served from the memory cache, such that when a revocation occurs and flushes
this cache, there is a significant decrease in throughput as the cache re-warms. This effect is less
pronounced as the size of the content increases, as larger fractions of requests must be served
from disk instead of the cache. Even in the worst case, significant throughput degradation requires
much higher revocation frequencies, e.g., a revocation every minute or less, than on current cloud
platforms where revocations occur at the scale of tens of minutes [26] to hours [17, 18]. In the
spot price data (from all 14 EC2 AZs) we studied, the average mean time to revocation (MTTR)
for the VM types we considered was around 150 hours across all the 14 AZs with the maximum
and minimum around 200 and 80 hours respectively. Of course, dynamic content would not be
subject to these caching penalties due to revocations. Here, we assume revocations occur when spot
price exceeds on-demand price. Of course, dynamic content would not be subject to these caching
penalties due to revocations. Thus, the performance impact of even high revocation frequencies on
interactive server-based applications is likely to be low.

We also execute this experiment in a multi-tier configuration, where a second backend tier stores
the content. In this case, revocations in each tier can degrade performance. As a result, the multi-tier
throughput is slightly lower than the equivalent single tier case. However, as before the revocation
penalty is low, resulting in only a small difference even under extreme revocation rates.
Latency. We next examine the effect of revocations on service latency. As noted above, frequent
revocations result in churn that can degrade performance. To illustrate, we use the same distributed
web server configuration as above, and plot mean latency, tail latency (99%), and latency distribution
for the requests in Figures 10, 11, and 12 respectively. Figures 10 and 11 show that the revocation
rate and working set size have similar effect on both mean latency and tail latency (99%) of the
interactive service. Interestingly, the mean latency is slightly higher than the 99% tail latency due to
the small number (~0.002%) of failed requests, as we discuss below, that experience long timeouts
on each revocation that have a disproportionate impact on the mean. Figure 12 shows that increases
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in the revocation rate slightly increase the latency distribution by shifting it to the right. Even
so, the difference between no revocations, and 1 revocation/minute, which is an excessively high
revocation rate on current cloud platforms, is small. Since revocation rates this high are unlikely in
practice, revocations are unlikely to have a significant effect on average or tail latency. For brevity,
we omit results from similar experiments using multiple tiers that yield the same result.
Reliability. For interactive services with high throughput, simply treating VM revocations as
failures can cause outstanding requests on the VM to fail. As discussed in §3, TR-Kubernetes’s
revocation daemon uses an advance warning of the revocation to gracefully coordinate VM removal
to minimize the number of failed requests. To demonstrate, we use the same distributed web
server setup as above with 10 server replicas, but serving out a simple static html page. We again
use ApacheBench (ab) to benchmark the server by configuring 20 clients to send 450,000 request
over a 5 minute period (or 1500 requests/second across all clients). We then vary the rate of VM
revocation, and measure the number of failed requests both with and without TR-Kubernetes’s
revocation daemon. A failure indicates an HTTP 200 status code, which returns when the response
length is less than expected. Revocations cause this HTTP failure when the VM shuts down before
completing a response.

Figure 13 shows the results. We see that when vanilla Kubernetes treats revocations as failures, the
number of failed requests increases linearly with the revocation rate. In contrast, TR-Kubernetes’s
revocation daemon decreases the number of failed requests by >5X. These few failed requests occur
when the revocation daemon interacts with the Kubernetes master to make the VM un-schedulable,
as this action is likely not atomic and must coordinate with both the Kubernetes scheduler and
the load balancer. If we do not mark the VM as unschedulable, it results in no failed requests (as
long as the VM is not revoked). In either case, the number of failed requests is small compared
with the overall number of requests, even at high revocation rates. For example, in this case three
revocations per minute translates to replacing 30% of the server replicas each minute, which for
TR-Kubernetes results in only 9 of the 450,000 requests failing (or 0.002%) when using a single tier.

As before, the same trends are evident when we evaluate using multiple tiers. However, since a
failed request at any tier fails the entire request, the number of failed requests in the multi-tier case
is slightly higher (increasing the total number of failed requests by only 5-10). This demonstrates
that even high revocation rates have a small impact on interactive service reliability.

5.2 Cost and Availability Analysis

We next analyze the potential cost and availability of an interactive service using TR-Kubernetes
over 3 months using traces of EC2 spot prices to infer realistic cost and availability characteristics.
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Our cost analysis also includes the excess resources an interactive service must acquire to maintain
its target capacity availability requirement.

Cost Analysis. Figure 14 quantifies both the cost (a) and excess resources (b) on the y-axis for
different availability targets on the x-axis for a capacity requirement of 5000 ECUs. For context,
this capacity is equal to ~333 m5.xlarges or ~167 m5.2x1larges. We normalize our cost to the
cost of satisfying the target 5000 ECU capacity using the on-demand VM with the lowest cost per
ECU-hour. The figure shows that, as expected, the cost increases as we increase the availability
target (a), although the increase in cost is not substantial when going from 2 nines availability (at
38% the on-demand price) to 6 nines availability (at 53% of the on-demand price). While there is
some variance across AZs, as indicated by the error bars, in all cases, the cost for even 6 nines
availability, which translates to 31.5 seconds of capacity below the requirement per year, is less
than the cost of the equivalent on-demand VMs.

Since EC2’s SLA for on-demand VMs only requires refunds if availability is less than 99.99% due
to failures, if we assume 99.99% as the on-demand and transient availability due to failures, i.e.,
where external users cannot connect to the VM, then TR-Kubernetes’s redundancy can actually
enable it to achieve higher availabilities, assuming hardware failures are independent, i.e., there is
not a data center-wide outage. We can modify our provisioning policy to consider unavailability
due to failures by simply reducing the availability by a factor of 0.01%. We could also include
on-demand VMs at this availability in our policy.

To summarize, Figure 14(a) shows that TR-Kubernetes can achieve higher availabilities than
using on-demand VMs at a lower cost, ranging from 20% to 80% of the on-demand price depending
on the availability requirement. Figure 14(b) then shows the amount of excess unreliable transient
VM capacity we must purchase to enforce our availability requirement. As expected, the higher the
availability requirement, the more excess unreliable capacity we must purchase to enforce it. This
excess capacity is the reason for the cost increase in Figure 14(a). At 5 nines availability, we must
purchase 30% more capacity than necessary, and for 6 nines availability, we must purchase 50%
more capacity. As discussed below, TR-Kubernetes leverages this excess capacity to execute low-
priority batch jobs. If we are able to utilize this excess capacity instead of purchasing on-demand (or
transient) VMs to execute these batch jobs, then the cost to execute our mixed interactive and batch
workload would decrease further relative to Figure 14(a), as we increase the availability target.

Note that 99% availability yields very little excess capacity, which indicates that many transient
VMs are mostly available (with near 99% availability). One second-order effect of adopting TR-
Kubernetes’s optimizations, and other similar transient VM optimizations, is an increase in transient
VM value and potentially price (due to increases in demand). Such increases may reduce transient
VM availability, increase its cost, and require more excess capacity. However, while the magnitude
of these metrics may change, the tradeoff between them will remain the same. Transient VMs
with lower availability will require more excess transient capacity to enforce the same availability
requirement. If that excess capacity can be productively used to run batch jobs that would otherwise
run on on-demand or transient VMs, then we can amortize the cost of these excess resources across
the on-demand VMs required to execute both the interactive and batch workloads.

Availability Analysis. The analysis above uses the actual availability of the transient VMs based
on their price data over the 3 month trace period. As a result, our provisioning algorithm always
satisfies the capacity availability requirement. However, in practice, spot prices and availability are
not known a priori, requiring us to first estimate spot prices and availability based on recent history.
To understand how these estimates affect our accuracy at satisfying the availability target, we
experimented with different prediction window durations in Figure 15. The window specifies the
interval length over which we estimate VM availability, such that a window of seven days estimates
availability over the previous seven days. We again use a capacity of 5000 ECUs and an availability
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target of 99.99%. The graph then compares the realized availability based on the predicted estimates
with the target availability. We run the experiment for every window duration within the 3 month
period across all 14 AZ’s in the U.S. and report averages and error bars (representing the minimum
and maximum availability).

Figure 15 shows that the realized availability across prediction windows remains relatively
stable, but tends to be one 9 less than the target. The error derives from changes in VM prices and
availability over time. In contrast, the oracle that assumes future knowledge of availability and
prices always yields an availability strictly greater than the target (since it continues adding VMs
until it reaches the target). One way to account for this error is to leverage prior work on spot price
prediction to attempt to better predict future prices, rather than use simple historical estimates.
Another way to address this problem is to simply set the target higher than required, which we show
in the figure by also including the availability for a target for 5 nines. The 5 nines target achieves
at or near the 4 nines availability for all window durations. Note that, Figure 14(a), which plots
normalized cost versus availability, quantifies the cost of inaccurate predictions when combined
with Figure 15. In that graph, specifying a higher target by 1 nine (to account for inaccurate
predictions) reduces savings by ~5% relative to on-demand prices.

5.3 Job Performance

We also compare TR-Kubernetes with two other approaches for provisioning cloud-backed COPs
to satisfy mixed-use workloads: i) dynamically allocate on-demand VMs for all interactive and
batch jobs and ii) dynamically allocate on-demand VMs for interactive services and transient VMs
for batch jobs. While the previous section only examined availability, cost, and excess resources
based on price data, we also quantify performance, in terms of completion time, for batch jobs in
this section. For our workload, we use a Google cluster trace that provides data for a 12.5k machine
cluster over a month-long period [16]. Each job in the trace comprises one or more tasks, each of
which includes a set of resource requirements for scheduling (packing) the tasks onto machines.
The tasks can be high-priority production tasks or low-priority non-production tasks. The resource
requirements of each task are normalized in the trace to the highest capacity of the resource on
any machine. Since the highest capacity resource is not listed in the trace, we assumed it was
a state-of-the-art machine at the time of the trace (in 2011), e.g., an 8-core 8-socket Intel Xeon
processor (64 core machine).

Since we use ECUs to quantify capacity, we equate this 8-core machine to 26 ECUs based on

EC2’s VM listings in 2011, and translate the normalized values in the job trace to ECUs. Based on
this, our job trace analysis shows that all non-production batch jobs collectively require ~76k ECUs
to complete in 29 days. In addition, the vast majority of the batch jobs in the trace are relatively
short. To illustrate, Figure 16 shows the cumulative distribution of job lengths showing the high
fraction of short jobs versus long jobs.
Job Performance Analysis. We examine job performance in the trace when run on the excess
resources after satisfying the capacity availability requirements of the interactive services. Of course,
the amount of excess resources directly affects job performance, so we measure performance for
different ratios of required service capacity to required batch capacity in our workload. For example,
a 1:1 ratio for the cluster trace dictates that the interactive services require the same number of
ECUs as the batch jobs on average. The larger the ratio, the more excess resources are available
to run batch jobs, and the better their performance. We quantify performance in terms of job
completion time normalized to its completion time, i.e., the time from job submission to completion,
in the original job trace. As before, we run experiments for all 14 EC2 AZs in the U.S. over 3 months
of price data, and report the average with error bars indicating the maximum and minimum AZ.
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Fig. 17. The excess capacity as a function of the service-to-batch capacity ratio for the Google trace for a
99.999% availability target (a). The job performance, both with (b) and without checkpointing(CP) (c), as a
function of the service-to-batch capacity ratio, normalized to the completion time in the original trace.

Figure 17 shows the job performance results from our simulator as a function of the ratio of
the average ECUs required by the interactive service workloads versus the batch workloads. In
this case, we set our target availability equal to 5 nines. Figure 17(a) plots the excess capacity as a
function of the percentage of the batch workload that we can execute without acquiring additional
resources (plotted on a log scale). The figure shows that as the fraction of our interactive service
workload increases linearly, we get a super-linear increase in the batch workload we can execute
using the excess capacity. At roughly a ratio of 3, we can execute 100% of our batch workload for
free, and with a ratio of 1, we can execute roughly one-third of the batch workload for free.

Figure 17(b) and (c) then plot the job performance in terms of completion time if we only use
the excess capacity to execute batch jobs, rather than always request additional on-demand or
transient VMs to execute queued jobs. In this case, we normalize completion time to the completion
time of the original trace. The only difference in the figures is whether or not the batch jobs are
checkpointed using the spot hibernation mechanism mentioned in §2.2. The results show that, at
least for the Google trace, such checkpointing does not significantly improve job performance due
to the large number of short jobs, as shown in Figure 16, with few jobs exceeding 100 minutes. Of
course, a different trace with longer jobs would yield a different result. However, this result may
motivate why such checkpointing is not built into (or natively supported by) Kubernetes, as it is
complex to implement and does not improve performance for workloads dominated by short jobs.

As expected, a service-to-batch ratio of 3 results in the same completion time as in the original
trace with increasingly longer completion times for lower ratios (due to the decrease in available
excess resources). The log scale here works in reverse, with job times becoming substantially longer
as the ratio lowers, with roughly 10X slowdown with a ratio of 1. While this relative slowdown is
high, we emphasize that these experiments restrict us to only using the excess resources acquired
from maintaining interactive service availabiliy, and due to the many short jobs, the absolute
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Fig. 18. Comparison of TR-Kubernetes with a policy that uses transient VMs and on-demand VMs to execute
the batch workload. We plot the completion time (left) and the cost (right) where we set the service-to-batch
ratio equal to 1 and the availability target to 99.999%. We assume TR-Kubernetes only executes batch jobs on
excess resource capacity. Results are the average across all 14 AZs in the U.S. with error bars to indicate the
minimum and maximum.

slowdown may not be as unreasonable as it appears, i.e., as delaying a 1 minute job to 10 minutes
may not be too onerous. In contrast, beyond a ratio of 3, we have more resources than in the
original trace. Since the original trace had to queue some jobs, we are able to make productive use
of these resources by reducing queue times and our normalized completion time. Of course, we
will eventually reach a point where we cannot make productive use of these excess resources by
running batch jobs, i.e., once queue times are at 0 then we can no longer improve performance. At
this point, the additional excess resources will no longer improve cost-efficiency.

Cost Comparison. Finally, we compare our job performance and cost with i) using on-demand
VMs to satisfy the interactive service requirement (with no redundancy) and to execute the batch
jobs on demand and ii) using on-demand VMs to satisfy the interactive service requirement (with
no redundancy) and transient VMs to execute the batch jobs on demand. Figure 18 shows the result.

Again, the experiment setup is the same as above (with a 99.999% availability target), and where
we have set the service-to-batch ratio equal to 1. As in the previous experiments, Figure 18(left)
shows that restricting ourselves to excess resources results in a slowdown for batch jobs. However,
Figure 18(right) shows estimates of the absolute cost to execute the batch workload based on
our assumptions above (of 76k batch ECUs over the month). By comparison, using on-demand
VMs and transient VMs both yield performance near that of the original trace. However, using
TR-Kubernetes’s excess capacity to run batch jobs is essentially free, as it incurs no additional cost,
while we estimate using on-demand VMs would cost near $1M.

Using the cheapest available transient VMs directly to execute the batch workload would decrease
the cost by 90% to roughly $100Kk, as it reflects the average discount offered by transient VMs. While
90% is a significant relative reduction, $100k is still a substantial sum that is much greater than $0.
Given TR-Kubernetes’s simplicity, and assuming users can quantify their capacity and availability
requirements for interactive services, the potential cost savings TR-Kubernetes offers is worth
the overhead of deploying/configuring it. While these results indicate that significant savings are
possible, the exact savings and job performance are a function of the workload.

6 RELATED WORK

There has been a significant amount of work on optimizing transient VMs recently. Most of
this work has focused on optimizing batch applications, as transient VMs arose from the desire
to revoke resources from low-priority, delay tolerant batch jobs and give them to high-priority,
latency sensitive services. However, even though batch applications are delay-tolerant, high rates
of revocation incur high performance penalties, especially for distributed big data frameworks
that maintain intermediate data in volatile memory, which is lost on each revocation, e.g., as in
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Spark [27], Naiad [15], Tensorflow [7], etc. Thus, prior work primarily focuses on optimizing the
selection of transient VMs and configuring of fault-tolerance mechanisms, such as checkpointing,
replication, and migration, to minimize the performance impact of revocations [14, 17-19, 21, 24,
26, 28]. In general, TR-Kubernetes differs from this work in its focus on supporting the availability
requirements of interactive workloads on transient VMs, and using the excess resources from doing
so to execute delay-tolerant batch jobs.

In particular, Flint modifies Spark [27] to support latency-sensitive batch jobs on transient
VMs [17]. Flint’s policy selects the transient VM type that minimizes the expected cost to run
a Spark job when considering its resource usage, price, revocation rate, and the overhead of
checkpointing. However, Flint observes that, while using a single transient VM type results in
the minimum expected cost, it yields a wide variance in job running time (or latency), since any
revocation event concurrently triggers the revocation of all VMs. Flint reduces this latency variance
by extending its selection policy to diversify across different transient VM types (by selecting
some non-cost-optimal transient VMs). Importantly, our work is orthogonal to Flint (and similar
prior work cited above) that focuses solely on optimizing batch jobs, as this work could be directly
applied to batch jobs submitted to TR-Kubernetes. Unlike TR-Kubernetes, this prior work does not
address interactive applications or support high availability requirements.

There has also been some research that focuses on running interactive workloads on transient
VMs. For example, SpotCheck [19] operates at the virtualization layer and maintains a synchronized
in-memory backup of the transient VM memory state, such that if a revocation occurs, the backup
VM can seamlessly take over [20], similar to VM-based primary-backup systems, as in Remus [10].
As a result, a key advantage of SpotCheck is that it never loses an application’s in-memory state,
and thus can support stateful interactive services that maintain session state. SpotCheck keeps costs
low by highly multiplexing the backup server among many transient VMs and thus amortizing
their cost. While effective at entirely masking the effect of revocations from interactive services,
SpotCheck is complex to implement, requiring the use of nested virtualization and the propagation
of individual memory writes to the backup server. By contrast, TR-Kubernetes is simple, and
leverages much of the functionality already present in COPs, which makes it more likely to be
adopted in practice. However, unlike SpotCheck, TR-Kubernetes only supports stateless interactive
services using Kubernetes’s built-in load balancer. Since SpotCheck is a virtualization mechanism,
TR-Kubernetes could re-implement it at the container layer to support stateful interactive services.

Similarly, Tributary [6] applies an approach called “spot dancing,” which leverages spot VMs to
support latency SLOs for interactive services at low cost, by intentionally selecting and bidding on
spot VMs to cause revocations. Tributary exploits a rule in the EC2 billing model that does not
charge users if revocations occur within their first hour. Thus, the approach attempts to maximize its
number of free cycles. Tributary does have similar dynamics as TR-Kubernetes in that it provisions
many more resources than necessary, which provides headroom for interactive services to absorb
demand spikes. However, Tributary does not ensure availability requirements or leverage additional
resources to execute batch jobs. Tributary also does not build on existing COPs to simplify its use or
adoption. More generally, our approach is not specific to spot VMs or EC2’s billing model, as we only
use the spot price traces to derive transient VM availability estimates. As a result, TR-Kubernetes
is applicable to any variant of transient VMs with such a characterization of availability.

7 CONCLUSION

This paper presents TR-Kubernetes, a minimal extension of Kubernetes that executes mixed interac-
tive and batch workloads on unreliable transient VMs dynamically acquired from cloud platforms.
To do so, we design a greedy provisioning algorithm that satisfies a capacity availability requirement
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at low cost. We implement TR-Kubernetes on EC2’s variant of transient VMs, and evaluate its per-
formance, reliability, cost, and availability using publicly available benchmarking tools, availability
and cost data, and workload traces. We show that, when compared to running interactive services
on on-demand VMs, TR-Kubernetes is capable of lowering costs (by 53%) and providing higher
availability (99.999%).

Acknowledgements. We would like to thank our shepherd Shaolei Ren and the anonymous
reviewers for their thoughtful feedback, which improved the quality of this paper. This work is
supported by NSF grant #1802523 and the Amazon AWS Cloud Credits for Research program.

REFERENCES

1] 2017. Azure Kubernetes Service. https://azure.microsoft.com/en-us/services/container-service/.
] 2017. Google Kubernetes Engine. https://cloud.google.com/kubernetes-engine/.
] 2018. Amazon Elastic Container Service for Kubernetes. https://aws.amazon.com/eks/.
4] 2018. Docker Swarm. https://docs.docker.com/engine/swarm/.
] 2018. Kubernetes on AWS. https://kubernetes-incubator.github.io/kube-aws/.
] 2018. Tributary: spot-dancing for elastic services with latency SLOs. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18). USENIX Association, Boston, MA. https://www.usenix.org/conference/atc18/presentation/harlap

[7] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J.
Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. 2016. TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). 265-283.

[8] C.Babcock. 2015. Amazon’s ‘Virtual CPU’? You Figure it Out, In Information Week.

[9] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. 2016. Borg, Omega, and Kubernetes. ACM Queue -
Containers 14, 1 (January-February 2016).

[10] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. 2008. Remus: High Availability via
Asynchronous Virtual Machine Replication. In NSDL

[11] B. Ghit and D. Epema. 2017. Better Safe than Sorry: Grappling with Failures of In-Memory Data Analytics Frameworks.
In HPDC.

[12] A. Harlap, A. Tumanov, A. Chung, G. Ganger, and P. Gibbons. 2017. Proteus: Agile ML Elasticity through Tiered
Reliability in Dynamic Resource Markets. In European Conference on Computer Systems (EuroSys).

[13] B.Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz, S. Shenker, and I. Stoica. 2011. Mesos: A Platform
for Fine-grained Resource Sharing in the Data Center. In NSDL

[14] B.Huang, N. Jarrett, S. Babu, S. Mukherjee, and J. Yang. 2015. Cumulon: Matrix-Based Data Analytics in the Cloud
with Spot Instances. Proceedings of the VLDB Endowment (PVLDB) 9, 3 (November 2015).

[15] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. 2013. Naiad: A Timely Dataflow System. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13). ACM, New York, NY,
USA, 439-455. https://doi.org/10.1145/2517349.2522738

[16] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google cluster-usage traces: format + schema. Technical
Report. Google Inc., Mountain View, CA, USA. Revised 2014-11-17 for version 2.1. Posted at https://github.com/google/
cluster-data.

[17] P.Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy. 2016. Flint: Batch-Interactive Data-Intensive Processing on Transient
Servers. In European Conference on Computer Systems (EuroSys).

[18] P. Sharma, D. Irwin, and P. Shenoy. 2017. Portfolio-driven Resource Management for Transient Cloud Servers. In
International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS).

[19] P.Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy. 2015. SpotCheck: Designing a Derivative IaaS Cloud on the Spot
Market. In European Conference on Computer Systems (EuroSys).

[20] R. Singh, D. Irwin, P. Shenoy, and K.K. Ramakrishnan. 2013. Yank: Enabling Green Data Centers to Pull the Plug. In
Symposium on Networked Systems Design and Implementation (NSDI).

[21] S.Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy. 2015. SpotOn: A Batch Computing Service for the Spot
Market. In Symposium on Cloud Computing (SoCC).

[22] A.Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. 2015. Large-scale Cluster Management at
Google with Borg. In European Conference on Computer Systems (EuroSys).

[23] John Wilkes. 2011. More Google cluster data. Google research blog. Posted at http://googleresearch.blogspot.com/

2011/11/more-google-cluster-data.html.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 28. Publication date: June 2019.


https://docs.docker.com/engine/swarm/
https://www.usenix.org/conference/atc18/presentation/harlap
https://doi.org/10.1145/2517349.2522738
https://github.com/google/cluster-data
https://github.com/google/cluster-data
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

28:24 Pradeep Ambati and David Irwin

[24] Z.Xu, C. Stewart, N. Deng, and X. Wang. 2016. Blending On-Demand and Spot Instances to Lower Costs for In-Memory
Storage. In International Conference on Computer Communications (Infocom).

[25] Y. Yan, Y. Gao, Z. Guo, B. Chen, and T. Moscibroda. 2016. TR-Spark: Transient Computing for Big Data Analytics. In
Symposium on Cloud Computing (SoCC).

[26] Y. Yang, G. Kim, W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho, and B. Chun. 2017. Pado: A Data Processing Engine for
Harnessing Transient Resources in Datacenters. In European Conference on Computer Systems (EuroSys).

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker, and I. Stoica. 2012. Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In NSDL

[28] L. Zheng, C. Joe-Wong, C. Tan, M. Chiang, and X. Wang. 2015. How to Bid the Cloud. In ACM SIGCOMM Conference
(SIGCOMM,).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 28. Publication date: June 2019.



	Abstract
	1 Introduction
	2 Background
	2.1 Container Orchestration Platforms
	2.2 Transient Cloud VMs

	3 Design
	3.1 TR-Kubernetes Design
	3.2 Provisioning Algorithm
	3.3 Greedy Algorithm
	3.4 Supporting Multi-Tier Services

	4 Implementation
	5 Evaluation
	5.1 Prototype Results
	5.2 Cost and Availability Analysis
	5.3 Job Performance

	6 Related Work
	7 Conclusion
	References

