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The rapid expansion of intermittent grid-tied solar capacity is making the job of balancing electricity’s real-
time supply and demand increasingly challenging. Recent work proposes mechanisms for actively control-
ling solar power in the grid at individual sites by enabling software to cap it as a fraction of its time-varying
maximum output. However, while enforcing an equal fraction of each solar site’s time-varying maximum
output results in “fair” short-term contributions of solar power across all sites, it does not result in “fair”
long-term contributions of solar energy. Enforcing fair long-term energy access is important when control-
ling distributed solar capacity, since limits on solar output impact the compensation users receive for net
metering and the battery capacity required to store excess solar energy. This discrepancy arises from fun-
damental differences in enforcing “fair” access to the grid to contribute solar energy, compared to analogous
fair-sharing in networks and processors. To address the problem, we first present both a centralized and
distributed algorithm to enable control of distributed solar capacity that enforces fair grid energy access.
We then present multiple policies that show how utilities can leverage this new distributed rate-limiting
mechanism to reduce variations in grid demand from intermittent solar generation.
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1. INTRODUCTION
The amount of grid-tied solar power continues to grow at an exponential rate with
capacity increasing by an average of 33% each year over the past six years [Hill 2017].1
This growth is driven by consistent drops in solar module prices, which have fallen 10%
per-year on average over the past three decades, due to both advances in solar module
design and increasing economies of scale in manufacturing. For example, Swanson’s
Law—the solar equivalent of Moore’s Law—observes that the price of solar modules
tends to drop 20% for every doubling in the cumulative shipped volume [Swanson
2006]. In many locations, the average cost of solar energy is now less than from fossil
fuels. Some estimates project that solar could contribute as much as 20% of global
electricity consumption as early as 2030 [Farmer and Lafond 2016].

1This paper is an extended version of a paper previously published at ACM BuildSys [Bashir et al. 2017].

This research is supported by NSF grants CNS-1645952, IIP-1534080, CNS-1405826, CNS-1253063, CNS-
1505422, and the Massachusetts Department of Energy Resources.
Author’s addresses: N. Bashir, University of Massachusetts Amherst; D. Irwin, University of Massachusetts
Amherst; P. Shenoy, University of Massachusetts Amherst; J. Taneja, University of Massachusetts Amherst.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1539-9087/2018/01-
ART1 $15.00
DOI: 0000001.0000001

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1, Publication date: January 2018.



1:2 N. Bashir et al.

Unfortunately, the increasing penetration of solar energy in the grid complicates
utility operations. In particular, utilities are responsible for balancing electricity’s real-
time supply and demand by regulating the power generation of a portfolio of “dispatch-
able” generators. Historically, grid demand, when aggregated over a large number of
customers, has been smooth and highly predictable based on the expected tempera-
ture and the day, e.g., weekend, weekday, or holiday. As a result, utilities have been
able to effectively plan when and what generators to dispatch to satisfy expected de-
mand. However, increasing solar penetration now requires utilities to also compensate
for variations in solar output over multiple time-scales. Solar output, even when ag-
gregated, is much less predictable than grid demand, since it varies primarily based
on cloud cover, which is more localized and stochastic than temperature variations. At
short time-scales, compensating for large solar variations due to clouds using mechan-
ical generators is challenging, since generator ramp rates are less than solar ramp
rates. Further, at longer time-scales, utilities lose revenue from users generating their
own solar power during the day, but must still maintain the generating capacity to pro-
vide these users electricity when the sun is not shining, e.g., during cloudy weather, at
night, and over the winter. This has serious implications to utilities’ business model.

As a result, government regulations generally place limits on the amount of grid-
tied solar capacity that can be installed and feed energy into the grid. These limits are
currently set based on a complex political process that includes multiple stakeholders
with competing interests, including politicians, utilities, environmental groups, and so-
lar installers. In the U.S., these limits vary widely by state, and often restrict both the
percentage of users with grid-tied solar, and their aggregate solar power capacity. The
rapid growth in solar power is now causing states to frequently hit these limits, trig-
gering protracted negotiations (often taking many months) among the stakeholders to
raise them. Since the limits, which are a form of admission control, are hard, once they
are hit, additional users cannot install grid-tied solar until they are raised. For exam-
ple, due to such limits, users in Hawaii were recently barred from installing grid-tied
solar for two years [Cardwell 2015; Mulkern 2013]. Similarly, Massachusetts reached
its cap in summer 2015: it then took 9 months for the state legislature to negotiate and
pass an increase in the cap and for the governor to sign it [Massachusetts 2016]. The
solar cap in Massachusetts was then reached again in October 2017, halting $78M in
solar projects [Analysis 2017], spurring another round of protracted negotiations.

Importantly, the aggregate power limits or caps above are static and based on the
rated installed capacity of each solar installation, and not the amount of power they
actually generate in real time. Standard Test Conditions (STC) for rating solar mod-
ule capacity specifies an irradiance of 1kW/m2 with an air mass of 1.5, no wind speed,
and a cell temperature of 25C. These conditions approximate the generation of a south-
facing solar module (tilted at the same angle as the Sun) at solar noon near the equinox
on a clear sunny day in the U.S. with an ambient air temperature of 0C.2 Of course,
weather conditions are rarely this “ideal:” the ambient air temperature at STC is un-
realistic, roof lines frequently dictate non-ideal orientations and tilts, and solar irradi-
ance is usually much less than 1kW/m2, e.g., during the morning, evening, over much
of winter, and under cloudy skies. Given that STC conditions are unrealistic and es-
sentially never naturally occur in the United States, alternative test conditions, such
as PVUSA Test Conditions (PTC), have been proposed [Durrenberger 2015].

Thus, the actual aggregate solar power generated is rarely, if ever, at (or even near)
the rated capacity, and varies widely each day, over the year, and as the weather
changes. For example, on cloudy days, the aggregate contribution of solar power across

2STC actually specifies that the ambient and solar cell temperature are 25C, which is physically impossible,
as the solar irradiance increases the cell temperature much higher (+25C) than the ambient temperature.
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many distributed sites is much less than on sunny days, but also more variable. As a
result, on a cloudy day, the grid could potentially accept solar power from many sites
that are currently forced off-grid without exceeding its capacity limit, although the
high variance in output may pose operational challenges in balancing supply and de-
mand. To address the problem, recent work proposes mechanisms [Singh et al. 2017]
and policies [Lee et al. 2017; Rongali et al. 2016] for actively controlling solar power
output to the grid. This work enables software to cap the solar power injected to the
grid as a configurable fraction of its time-varying maximum output [Singh et al. 2017],
and then, inspired by similar rate control problems in networking, designs rate alloca-
tion policies to limit the aggregate contribution of distributed solar subject to the solar
capacity the grid is willing to accept [Lee et al. 2017; Rongali et al. 2016].

An important metric when determining how to dynamically limit each solar site’s
power output is preserving fairness between sites. For example, one site should not
have their entire solar output curtailed, while another site has none of its solar output
curtailed. Prior work co-opts the traditional notion of “fairness” from the network-
ing literature, which computes it with respect to the instantaneous sending rates of
flows, and not the cumulative amount of network traffic flows send over time. This
makes sense in networking, as senders can potentially generate an arbitrary amount
of network traffic at any time. Thus, if one idle sender does not generate traffic for
a long period, then i) other senders should be able to increase their sending rate to
consume any resulting excess network bandwidth during this time, and ii) the idle
sender should not be able to accumulate unlimited credit for their idleness, enabling
them to monopolize the link once they resume sending. The former property ensures
bandwidth allocations are work-conserving, while latter property prevents starvation
of senders. Analogously, prior work attempts to maintain “fair” solar rate allocations,
such that each solar site contributes near the same fraction of their time-varying max-
imum instantaneous solar power output. For example, the work always ensures that
all sites contribute X% of their current maximum solar output, for some value of X.

The problem is that this traditional notion of fairness in networks does not map well
to solar energy and the grid. Instead, we argue that the grid should express fairness
in terms of the total fraction of energy users contribute over time (with respect to each
other) rather than in terms of their instantaneous rates of power. Ultimately, users
care about the amount of total solar energy they can feed into the grid (over some
time window), as a fraction of the total solar energy they could possibly feed in, since
this impacts both the cost of their system and the revenue it generates. In particular,
users directly receive compensation for the energy they feed in, which decreases with
the fraction of energy they can contribute. This compensation is used to offset the
initial capital costs of installing solar and affects the time it takes to pay back the
installation of the system, which is a key metric in making the decision as to whether
to install solar. The expected fraction of energy users cannot feed into the grid may
also necessitate additional system costs to store excess energy.

As we show, enforcing fair instantaneous rates, as in networking, may result in un-
fair contributions of total energy over time. Unlike in networking, solar sites can only
generate “traffic,” i.e., solar energy, at certain times based the Sun’s irradiance, which
is a function of location, time, local weather, and physical installation characteristics.
Importantly, solar sites cannot control their location, the Sun, the weather, and often
their physical characteristics, and thus have little to no control over when and how
much solar power they can generate. In contrast, network clients that are not generat-
ing traffic are doing so voluntarily, and could generate traffic if desired. However, net-
work clients do not directly receive compensation for sending data. Clearly, if network
clients directly received compensation for the total amount of data they sent, they most
certainly would generate traffic all the time, and the total amount of data they sent
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over time would be critically important. Traditionally, network providers place data
caps on users, such that if they send data beyond a threshold within a billing period,
e.g., a month, they must pay additional fees or receive degraded (or no) service. Again,
this method does not apply to regulating solar energy, as all sites are generating en-
ergy, i.e., “traffic”, at similar times based on the same source—the Sun. The generating
capacity of solar sites also vary widely and is largely outside of user’s control.

This paper identifies this fundamental difference between fair rate allocation in net-
works and fair grid energy access for solar, and discusses how and why it arises. We
then design a suite of rate allocation algorithms to enforce weighted fair grid energy
access and evaluate its tradeoffs. Collectively, these rate allocation algorithms repre-
sent a new mechanism for controlling the output of distributed solar capacity. Finally,
we present multiple policies that show how utilities can leverage this new distributed
rate-limiting mechanism to reduce both the magnitude and variations in grid demand
from intermittent solar generation. In doing so, we make the following contributions.
Solar Fairness Definition. While preserving fairness is a first-class concern when
sharing processors and networks in computer systems, it has generally not been a
metric of interest in sharing the electric grid. We introduce and define the notion of
distributed solar fairness (DSF), and discuss how it differs from similar notions of
fairness in computer systems and networking. We also discuss how unfairness arises
among distributed solar sites with limits on their aggregate solar output.
Mechanism for Controlling Distributed Solar. We propose a simple rate alloca-
tion algorithm to enforce fair grid energy access among distributed solar sites, which
defines a new mechanism for fairly controlling distributed solar capacity. While this
algorithm allocates rates to different solar “flows” over time, as with traditional fair-
sharing algorithms in computer systems and networks, it varies these rates to ensure
users contribute the same fraction of their actual solar energy capacity. The algorithm
exposes tradeoffs in its convergence speed, fidelity to the aggregate limit it enforces,
and robustness, i.e., the interval over which it must exchange data.
Policies for Controlling Distributed Solar. The mechanism above simply enables
utilities to set fixed caps on the amount of aggregate power solar sites contribute to the
grid. However, since aggregate solar output changes over time, utilities must change
these caps over time to effectively control solar output. Thus, we define two distinct
policies that show how utilities can leverage this new distributed rate-limiting mecha-
nism to reduce both the magnitude and variations from intermittent solar generation
in the grid. These policies vary the solar generation based on its fraction of grid de-
mand, and its fraction of the average aggregate solar generation. We discuss the gen-
eral fairness properties of regulating solar capacity based on these different policies.
Implementation and Evaluation. We implement our mechanisms and policies
above and evaluate them on both synthetic data and real data from 50 solar sites.
We show that traditional equal rate allocation results in solar sites contributing up
to 18.9% less energy over a single month than our mechanism that enforces fair grid
energy access. Finally, we show that our policies that vary solar capacity over time
reduce the variations in aggregate solar power compared to a fixed limit, resulting in
a more stable grid demand, while also preserving fairness.

2. SOLAR FAIRNESS IN THE ELECTRIC GRID
In this paper, we consider grid-tied solar arrays with “net metering” capabilities, which
enable solar arrays to synchronize with and feed their energy into the electric grid. The
current grid allows a net metered grid-tied solar array to feed any amount of power
into the grid, up to its maximum installed capacity, with no restrictions. Thus, the “ad-
mission control” decision of whether to allow a solar array to net meter at all must be
made at installation time. Once a solar array is installed and tied to the grid, there
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are no restrictions on the amount of power it can net meter. As discussed earlier, this
severely limits the number of solar installations the grid can permit, since admission
control policies must plan for the worst-case scenario, i.e., where all solar arrays con-
currently feed in their maximum capacity, even though this scenario is highly unlikely
(if not impossible), and by definition can only occur one time per year, i.e., at solar
noon on the summer solstice under clear skies at an ambient temperature of 0C. This
type of static admission control is both imprecise and inefficient. By comparison, if
admission control in the Internet worked this way, ISPs would decide whether users
could obtain an Internet connection based on whether they could accommodate all
users concurrently operating at maximum bandwidth, i.e., all simultaneously watch-
ing a high-definition movie. Such an admission control policy would result in only a
small fraction of users being able to access the Internet. Of course, the Internet relies
on statistical multiplexing, under the assumption that users are not frequently, if ever,
using the network at the same time, and, if they do, it relies on network protocols, such
as TCP, to fairly share the available bandwidth and prevent congestion collapse.

Thus, enforcing such limits at “run time,” rather than at install time, has the poten-
tial to enable a much larger number of grid-tied solar arrays, while still limiting the
total net metered power to a pre-specified capacity. In the future, we expect the grid to
have the capability to rate control the amount of power that can be injected by a grid-
tied solar array at any instant. These rate control capabilities are increasingly being
included in so-called “smart” solar inverters. While smart inverters are currently be-
ing tested in small-scale demonstration projects, we expect them to gain broader adop-
tion as solar penetration increases and the technology becomes more proven [Kroposki
2016]. Since the allowed rate may vary over time, each solar array will need to control
the setting of its smart inverter to enforce the assigned rate. The ability to rate control
solar arrays at the time-scale of minutes or hours has many benefits. For example, it
can simplify the creation of generator dispatch schedules in the presence of high re-
newable penetration, since it places an upper bound on solar generation. It can also
allow the installation of a much larger number of solar arrays, while limiting their
stochasticity. Finally, it can incentivize the use of local energy storage to store any sur-
plus solar power that cannot be net metered into the grid due to capacity limitations.

Given such a scenario, we examine the problem of how the grid should assign rates to
different solar arrays, while maintaining both an aggregate limit on solar output and
fairness across users. Prior work has used an analogy to the rate allocation problem
in computer networks and applied the notion of fairness from networking to address
this problem. Specifically, prior work uses analytical models of TCP’s rate control al-
gorithm, which achieve network fairness, and weighted versions of this rate allocation
problem to model the problem [Lee et al. 2017; Ardakanian et al. 2013; Rongali et al.
2016]. However, with solar, owners directly receive compensation for the solar energy
they contribute and thus are incentivized to always produce as much power as possible.

2.1. Defining Solar Fairness
As a result, rather than using a notion of fairness from networking, we instead propose
a new fairness metric for rate-controlled solar arrays called distributed solar fairness
(DSF) that is based on the cumulative net metered energy. Let Eactual

i (t2 − t1) denote
the actual energy net metered by a solar array i over a duration [t1, t2) in the presence
of rate control, and Emax

i (t2 − t1) denote the maximum amount of energy it could have
produced in this time period with no rate control, e.g., using standard techniques such
as maximum power point tracking (MPPT). Note that a site’s maximum generation
potential varies over time based on a site’s unique location, weather, and physical
characteristics. Since rate control reduces the total energy that can be produced, the
reduction in net metered revenues over the interval [t1, t2), which we term as lossi(t2−
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t1), is 1− Eactual
i (t2−t1)
Emax

i
(t2−t1)

. This can be viewed as a direct monetary loss incurred by solar
array i over the specified time interval due to rate control.

To be fair across users, we require that the percentage loss in energy, and thus com-
pensation, is the same for all arrays over any time interval [t1, t2). Thus our notion of
fairness requires that for any two arrays i and j,

|lossi(t2 − t1)− lossj(t2 − t1)| < ε (1)

While our ideal definition of fairness requires that this condition be true over any
arbitrary time interval, in practice, achieving fairness over very short time scales may
be infeasible. For example, if the sun has risen at the location of array i, but it has yet to
rise at the location of array j, it is not possible to guarantee fairness over a small time
scale, since array j is unable to produce any power. In the next section, we describe a
number of factors that complicate enforcing fairness at short time scales. However, it
is both acceptable and feasible to enforce fairness over the much longer time scale of
hours, days, or even at the time scale of a monthly billing cycle. In general, consumers’
primary concern is whether their monetary percentage loss based on the energy they
feed in is fairly distributed across all arrays over these longer time scales. Thus, in
practice, the grid only needs to ensure fairness over these longer intervals [t1, t2).

In the case of networks, fairness guarantees are provided only when the network
flows are backlogged, which requires that the flows can continuously send data when
network capacity is available. In our case, providing fairness over very short time
scales also requires that the solar arrays be capable of producing enough power to
use their allocated rates. However, over longer time scales, it is possible for an array
to not use its instantaneous allocation, since it is unable to produce sufficient power,
and yet “catch” up later by injecting power at higher rates than other arrays.

Even when enforcing fairness over longer time scales, the problem of allocating rates
to each array is complicated by many factors. For instance, a simple approach that allo-
cates identical rates to two arrays of identical size can yield unfair results. This occurs
because arrays of identical size can still produce vastly different power output at any
instant due to local differences in weather, as well as differences in physical instal-
lation factors, such as tilt, orientation, and location. Ignoring these differences can
cause the fairness measure to diverge for various arrays. Thus, a fair rate allocation
algorithm must consider several factors: assuming identical weather conditions, two
arrays at two different locations will have slightly different sunrise, sunset and solar
noon times, yielding solar output curves that are time-shifted with respect to one an-
other. In the networking case, this is analogous to enforcing fairness for time-shifted
flows, where to two identical flows are time-shifted and start transmitting data with
different start times. Similarly, two solar arrays that are in proximity to one another
may also produce different output due to micro climates, different shading effects, etc.
Finally, different arrays may have vastly different capacities and thus rates must be
computed to equalize the percentage loss for such heterogeneous size arrays.

2.2. Causes of Solar Unfairness: Solar Shape Diversity
Having discussed the notion of solar fairness, we now examine how unfairness arises
from the differences in the shape of solar output across multiple sites. We specifically
discuss how the different types of effects that cause the “shape” of a solar curve to
differ even across sites that are near to each other.

Unfairness in solar energy access to the grid derives from the difference in output
between solar sites, even when they are near each other. There are many reasons why
solar output between solar sites can differ. We outline some reasons below.
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Fig. 1. Illustrative examples of non-ideal solar sites.

Solar Potential. The Sun’s position in the sky is unique at each location on Earth at
each instant of time. The Sun’s position in the sky, in turn, affects the air mass light
must travel through to reach the Earth, which reduces the amount of irradiance that
reaches the ground. The solar potential is also a function of elevation, such that higher
elevations have more potential than lower elevations at the same location. As a result,
even with clear skies, the maximum solar generating potential is different at every
solar site at any moment. It is even possible for one site to generate solar power at the
same time that another site is physically unable to generate any power.
Weather Effects. The weather also affects solar generation potential. In particular,
solar power correlates with cloud cover, which is much more stochastic and localized
than other weather metrics, such as temperature. For example, a cloud can cover one
solar site, while a neighboring solar site is uncovered. As scattered clouds pass by,
they can repeatedly cover and uncover solar sites at different times. In addition, solar
cell temperature also affects generation and is a complex function of solar irradiance
and ambient air temperature. Thus, microclimates where temperature and cloud cover
vary significantly over small distances, such as those near large bodies water, can
cause weather, and thus solar potential, to significantly differ at two nearby locations.
Solar Degradation. While solar modules are passive devices with no moving parts,
they do degrade over time and experience faults, which affects the efficiency at which
they convert solar irradiance into solar energy. For example, repeated exposure to ex-
treme temperature changes can cause modules to discolor, increasing the cell temper-
atures, or even crack, causing small amounts of moisture to seep into the cells. The
increased cell temperatures can degrade the materials that separate the P-N junction
that electrons move through. Solar modules typically have a 25 year estimated lifetime
with an expected degradation of 1-2% in efficiency per year. Thus, the output of older
solar modules may differ significantly from the output of newer ones.
Physical Characteristics. Finally, the physical characteristics of a solar site also
affect its solar output. These include the solar module’s tilt and orientation, as well
as any occlusions from surrounding buildings, trees, or mountains that may shade
them. For example, an east-facing solar module will both start and stop generating
power well before a west-facing one in the morning and evening, respectively. In gen-
eral, rooftop solar deployments are complex and not ideal. Figure 1 illustrates typical
rooftop solar deployments with multiple modules at different non-ideal tilts and orien-
tations with significant shading from trees and other surroundings. In addition, soiling
from debris, e.g., dust, mud, snow, leaves, etc., can also cause solar generation to differ
between two nearby sites with identical solar modules. The differences above manifest
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Fig. 2. Profile of solar output for two homes 80km apart.

themselves as differences in the shape of solar output at each site. We characterize
these differences below, which are the root of unfairness in solar allocation.

Shifts. Shifts occur when a solar curve is shifted with respect to another solar curve,
such that the first curve starts before or ends after another curve. Shifts occur either
due to differences in the orientation of modules or differences in location. For example,
east- and west-facing modules at the same location will be shifted with respect to each
other. Similarly, a difference in longitude between two locations also results in a shift,
since the sun rises and sets at different times (for the same daylength).

Squeeze. Squeezes occur when a solar curve is narrower with respect to another solar
curve, such that the first curve starts before and ends after another curve. Squeezes
occur either due to differences in the tilt of modules or differences in location. For
example, a south-facing vertically tilted module will be squeezed with respect to a
horizontally flat tilted one. Similarly, a difference in latitude between two locations
also results in a squeeze, since the length of a day changes with latitude.

Dips and Cuts. Dips occur when the solar output drops below the power level seen
when the sky is clear. Dips may be caused by clouds, shade from trees, or nearby build-
ings and reduce the amount of sunlight seen by an array. The amount of the power
dip depends on the magnitude of the reduction in the sunlight incident on the array.
Similarly, cuts occur when a solar curve’s power is cut-off (or blocked) with respect to
another solar curve, such that the first curve generates power normally while the sec-
ond curve generates nothing. Cuts typically occur in the morning and evening, since
these blockages are more prevalent when the Sun is low in the sky. A cut is a special
case of a dip where the output drops to zero.

Each solar site can exhibit an arbitrary combination of the three characteristics
above. These characteristics are also static, since they are purely a function of a site’s
location, physical characteristics, and surroundings. As a result, if a solar site experi-
ences a shift, squeeze, or dip relative to another solar site one day, it will often experi-
ence it every day, although the extent of it may change over the year, e.g., due to the
Sun’s position or changes in foliage. In addition, different weather conditions between
sites also create differences in the solar curves. Figure 2 illustrates how two nearby
homes can exhibit different solar output over a day. In this case, Home 2, is more east-
facing, as in Figure 1 (right), than Home 1, and thus its power generation is shifted
with respect to Home 1 on this day. However, Home 2 has a cut near the end of the
day, indicating a blockage in solar output that causes its output to drop to zero, as in
Figure 1 (left), which has trees on its west-side that block sunlight near the end of the
day. In this case, imposing a limit on the aggregate power from the two homes, and
then satisfying this limit by allocating equal rates of solar power output between the
two homes results in an unequal solar energy contribution at the end of the day.
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This occurs because at the beginning of the day Home 2 is generating no power, and
thus Home 1 is able to contribute a high fraction of its generation up to the limit.
Due to the cut in power, once Home 2 starts generating power it must share the grid
with Home 1 by contributing an equal fraction of its time-varying maximum power
potential up to the limit, even though Home 1 has already contributed a significant
amount of energy to the grid. Thus, even though Home 2 contributes the same fraction
of power as Home 1 at all times, its fraction of energy always remains less than Home
1, since it is never able to catch up from its lack of output at the beginning of the day.

Next, we present our mechanism for allocating solar rates that limits their aggregate
output in real-time and achieves solar fairness, while accounting for these factors.

3. MECHANISM: FAIR SOLAR ENERGY ALLOCATION ALGORITHMS
We assume a mechanism exists to remotely control the time-varying fraction of max-
imum power an individual solar site contributes to the grid, as described in recent
work [Singh et al. 2017]. We expect such a mechanism to be included in future smart
inverters, which are already remotely accessible via the Internet [Kroposki 2016]. We
also assume that a grid balancing authority exists, and sets limits on the aggregate
solar energy output across all solar sites by controlling this mechanism at each indi-
vidual site. This control is similar, in effect, to current demand response programs that
enable utilities to remotely control HVAC systems and thermostats to regulate grid de-
mand. The primary difference is that solar modules provide more precise, fine-grained
control that is transparent to users. We assume that the grid’s transmission and distri-
bution infrastructure, e.g., its transformers and feeders, are well-provisioned to handle
the maximum solar generation, such that the transformers never exceed their capac-
ity and feeders do not reverse their power flow. These assumptions are likely true for
the foreseeable future, as transformers and feeders are generally over-provisioned for
energy consumption, and grid-tied solar power actually reduces the energy consump-
tion. As a result, we need not consider the impact of the grid’s network topology or the
capacity of its distribution infrastructure in determining solar rate allocations.

Instead, the grid balancing authority sets aggregate limits on the distributed solar
output based solely on net metering regulations, and their operational constraints, e.g.,
based on the characteristics of their generators. However, we assume the net metering
regulations and operational constraints are dynamic and based on actual solar gener-
ation, rather than static and based on the rated capacity of solar sites as is the case
today. That is, the limits are defined based on the actual aggregate solar power that
may feed into the grid at any time, rather than on the number of installations that may
connect to it. The balancing authority may also alter the limit to improve operations,
such as increasing it during times of peak demand to allow more solar energy to flow
into the grid. In this case, the curtailed solar power operates like high-quality reserve
capacity or a demand response resource that a utility can use to balance the grid.

Our problem is to allocate the fraction of maximum power contributed by each site
such that all sites contribute the same fraction of energy over each time window T . In
general, we assume T is a long period, such as a week or a month, since, as discussed
earlier, it may be difficult or infeasible to ensure fairness over shorter time periods.
The analogous rate allocation problem in networking, if we assume the grid’s trans-
formers and feeders are well-provisioned, is to simply enable all sites to contribute the
same fraction (or rate) of their time-varying maximum power at all times. Thus, to en-
force an aggregate limit, the balancing authority might enforce that all sites contribute
only 50% of their maximum power. Note that, we assume the grid balancing author-
ity specifies the aggregate limit in terms of absolute power (as in current net metering
policies), and thus it will have to adjust the equal fraction of power contributed by each
site over time as it varies to maintain the limit. In this case, we can compute this equal

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1, Publication date: January 2018.



1:10 N. Bashir et al.

9 10 11 12 13 14 15 16
Time (Hour)

30
40
50
60
70
80
90

100

En
er

gy
 F

ra
ct

io
n 

(%
)

30
40
50
60
70
80
90

100

Po
we

r F
ra

ct
io

n 
(%

) Home1 Home2

Fig. 3. Divergence in the fraction of energy contributed by Homes 1 and 2 from Figure 2, even when the
fraction of power they contribute is equal, assuming a 5kW limit.

rate across all sites as simply the aggregate limit (L) divided by the sum of the current
power output (P) of each of the n sites at any time t. We can augment this approach to
include a weight, as in weighted fairness [Demers et al. 1989], such that the allocated
rates are in proportion to each site’s weights, rather than being equal.

Rate(t) = min(
L(t)∑n

i=1 Pi(t)
, 1) (2)

However, as discussed above, this does not result in an equal (or weighted) contri-
bution of energy over time. Figure 3 illustrates this behavior for Homes 1 and 2 in
Figure 2. When the rate, expressed as a fraction of each site’s maximum generation
potential, is always equal (top), the fraction of energy each contributes diverges (bot-
tom). In this case, the aggregate limit is static and set to 5kW throughout the day.
Since Home 2 does not generate any power early in the day, Home 1 is able to feed a
disproportionate amount of energy into the grid. Then, once Home 1 starts generating
power, Home 1 and Home 2 each feed power in with equal rates. However, as the bot-
tom graph indicates, the initial generation early in the day enabled Home 1 to feed in
more energy (as a fraction of its total energy generation potential) relative to Home 2.
In this case, Home 1 fed in 10% more energy than Home 2 in only a single day. Since
this behavior is the result of a fixed object, e.g., trees, shading Home 2 early in the day,
the unfairness will manifest itself every day of the year.

To address this problem, we design a rate allocation algorithm that enforces fair en-
ergy access to the grid. We first discuss a centralized version of this algorithm, assum-
ing a tightly-coupled system, and then present a distributed version. In both cases, the
algorithms first start by computing the equal rates above, and then determine which
and how much sites can deviate from this equal rate based on their current cumulative
fraction of energy. We use the equal rate allocation as a starting point, since we require
some basis for assigning initial rates to users. Equal rate allocation represents a good
starting point, since under ideal conditions, i.e., where sites have exactly the same so-
lar profile at all times, setting equal rates above will result in equal long-term energy
contributions. Only when the solar profiles diverge does the equal rate allocation also
diverge from a fair long-term solar energy allocation.

3.1. Centralized Algorithms
Algorithm 1 shows the pseudocode for our centralized algorithm, which we label as
fast centralized allocation. Table I defines the algorithm’s variables. In the centralized
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Table I. Variable definitions for Algorithms 1-3

Variable Description
n Number of solar sites
i Index of sorted homes
T Duration over which the fairness is

enforced
Pi(t) Maximum power that a site i can

generate at time t
Di(t) Power demand of a site i at time t

Passigned
i (t) Fraction of maximum power as-

signed to site i at time t.
Energy Fraction (EF) Fraction of solar energy fed into

the grid over interval T for a given
site i.

Fair Energy Fraction (FEF) Fair fraction of solar energy over
interval T .

F (t) Fractional limit on solar capacity
with respect to either grid demand
or solar power at time t.

L(t) Aggregate limit on solar capacity
at time t.

Pavail(t) Difference between aggregate
limit and assigned power at sites
at time t.

Pagg
est (t) Estimated aggregate power

K Correction gain

case, we assume that each solar site knows the fraction of solar energy each other site
has fed into the grid over the current time window T , e.g., a month, which we call the
Energy Fraction (EF). The algorithm then simply sorts each solar site by their EF, and
assigns rates based on a solar site’s position in the list. In particular, lower-ranked
solar sites get allocated higher rates than higher-ranked solar sites to allow them to
“catch up.” The algorithm enables sites to catch up fast, since it allocates rates to 100%
of solar power in sorted order, starting with the lowest-ranked site, until it reaches the
aggregate power limit or it reaches a site that has an energy fraction equal to the
mean across all sites, which we call the Fair Energy Fraction (FEF). At this point, the
algorithm sets the rates of sites with energy fractions above the FEF based on the
fair rate allocation algorithm above, but where the limit L(t) is the remaining power
after setting rates for the low-ranked sites. Thus, the algorithm is work-conserving in
that it does not penalize sites that have contributed more than their fair energy by
not allowing them to feed solar into the grid. As above, we can also apply a weight to
each site, such that the fraction of energy they feed in should be in proportion to their
weight. Since this algorithm enables sites that are behind to catch up fast, we refer to
it as the “fast” centralized allocation algorithm.

One problem with the algorithm above is that it has the potential to starve out solar
sites if other sites are not able to feed in solar for a long period. For example, after
a snowstorm, the snow may melt off solar modules at different rates, enabling large
differences in their maximum power. As a result, some solar site may not be able to
feed power into the grid, and will thus “get behind” in terms of its energy contribution.
Once the snow melts from this solar site, the algorithm above would set its rate to 100%
until it catches up, which would reduce the rates of the other solar sites. To mitigate
the starvation problem, we can limit the catch-up rates for sites that are behind. In
this case, rather than set these sites to 100% of their maximum power, we can set a
limit between the equal rates computed in Equation 2 and 100%. In our algorithm, we
apply proportional control to set these rates, such that the more behind a solar site, the
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Algorithm 1 Centralized Energy Allocation (Fast)

Require: Pi(t) and P
assigned
i (t) for all homes over time T, L(t)

1: Compute EFi =

∑T

t=0
Passigned

i
(t)∑T

t=0
Pi(t)

, ∀ i

2: Compute FEF =

∑n

i=0

∑T

t=0
Passigned

i
(t)∑n

i=1

∑T

t=0
Pi(t)

3: Sort & index homes in ascending order of EF (↑ni=1)

4: P avail(t) = L(t)−
∑n

i=1 P
assigned
i (t)

5: while (P avail(t) > 0) do
6: if (EFi < FEF ) then
7: P assigned

i (t) = Pi(t)
8: Update P avail(t), i++
9: else

10: break
11: Rate(t) = Pavail(t)∑n

i=1
Pi(t)

for homes above FEF

12: Update EF for all homes

Algorithm 2 Centralized Energy Allocation (Slow)

Require: Pi(t) and P
assigned
i (t) for all homes over time T, L(t)

1: Compute EFi as in Algorithm 1
2: Compute FEF as in Algorithm 1
3: Sort & index homes in ascending order of EF (↑ni=1)

4: Compute fair rate Rate(t) = L(t)∑n

i=1
Pi(t)

5: P avail(t) = L(t)−
∑n

i=1 P
assigned
i (t)

6: while (P avail(t) > 0) do
7: if (EFi < FEF ) then
8: P assigned

i (t) = (1 + (FEF − EFi))×Rate(t)
9: Update P avail(t), i++

10: else
11: break
12: Rate(t) = Pavail(t)∑n

i=1
Pi(t)

for homes above FEF

13: Update EF for all homes

faster it catches up. Specifically, we increase Equation 2’s rate by the same proportion
the site is behind in energy. Thus, if a solar site has 20% less than their “fair” fraction
of aggregate energy, we allow it to increase its rate in Equation 2 by 20%. Algorithm
2 shows the pseudocode for this algorithm, which we label as the “slow” centralized
allocation, where line 7 applies the proportional adjustment to the rate.

3.2. Distributed Algorithm
The centralized algorithms above assume accurate generation information is available
from all solar sites in real-time, and that they are able to instantaneously set the rates
of all solar sites without any delay. This implies that solar sites form a tightly-coupled
system with utilities, where they stream generation data to utilities in real-time and
utilities are able to instantaneously control their rates. Implementing such a tightly-
coupled system is not realistic today. Most smart meters communicate wirelessly over
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Algorithm 3 Distributed Energy Allocation
Require: L(t), P est

agg(t), and Rate(t) over time T

1: Estimate aggregate power P est
agg(t) using gossip protocol

2: Compute EFi as in Algorithm 1

3: Estimate FEF =

∑T

t=0
(P est

agg(t)×Rate(t))∑T

t=0
P est

agg(t)

4: Compute fair rate Rate(t) = L(t)
Pagg

est (t)

5: P assigned
i (t) = (1 +K(FEF − EFi))×Rate(t)

cellular networks and thus have limited bandwidth and connectivity issues. A central-
ized approach also represents a single point of failure and is not robust to network
failures. Thus, we present a distributed approach that uses incomplete information
propagated at lower rates, e.g., minutes to hours.

Our distributed approach assumes that individual sites do not have reliable network
connectivity, and thus must set their own allocations based only on an estimate of
the globally fair energy fraction. Individual sites do not know the specific power and
energy generation of other sites, and thus cannot compute precise rates that satisfy
the aggregate limit and correctly apportion fair rates across sites. Instead, individual
sites can only increase or decrease their rate relative to the equal rates in Equation 2
and based on the difference between the globally fair energy fraction and their local
fraction of energy. In this distributed approach, sites that are both above and below the
globally fair energy fraction decrease and increase, respectively, the rate in Equation 2
by the same proportion that the site is ahead or behind in energy.

Algorithm 3 shows the pseudocode for this algorithm, which we label as distributed
energy allocation. Each solar site independently runs the distributed algorithm at a
specified interval to determine their solar rate. The length of this interval represents
the expected time between disseminating new generation information to other solar
sites. While each solar site can broadcast to all other solar sites, full mesh communica-
tion has the same issues as the tightly-coupled centralized approach. Instead, inspired
by distributed rate limiting in networks [Raghavan et al. 2007], our approach uses a
more robust push-sum gossip protocol that periodically disseminates recent generation
information to a random set of N other sites each interval [Kempe et al. 2003]. This
push-sum gossip protocol takes a few intervals to converge, such that each site has an
accurate estimate of the “fair” fraction of global energy and the global equal rate from
Equation 2. We also add a multiplicative gain factor, K, as a configurable parameter
to adjust how fast sites catch up in the distributed algorithm, similar to Algorithm 2.

3.3. Fidelity of Control
Both the centralized and distributed algorithms must make decisions based on stale
information, as solar power changes continuously in real time. In the centralized case,
even though this time period may be small, e.g., one minute, solar output can fluctuate
significantly even over these short time periods. Since large fluctuations can have a
negative impact on electronics, the fidelity of the control, i.e., how close the algorithm
is able to maintain the aggregate limit that is set, is an important performance metric.
In addition, large fluctuations in the rates from the algorithm can also have a negative
impact on the electronics that control solar output, and thus are also undesirable. As
we show, the centralized algorithm with a fast catch-up suffers from increased fluc-
tuations as it periodically focuses solar allocation on a few sites by increasing their
rates to 100% of maximum output, and thus causes large changes in allocated rates.
Of course, the distributed algorithm may also take more time to propagate informa-
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Algorithm 4 Demand-based Policy
Require: Di(t) for all homes over time T, F (t)

1: L(t) = F (t)×
∑n

i=1Di(t)
2: Call Algorithm 1

tion, causing it to diverge more from the aggregate limit. We evaluate the fidelity of
control and fairness of this algorithm under different conditions in §6.

4. POLICIES: CONTROLLING DISTRIBUTED SOLAR CAPACITY
The previous section’s algorithms define a new mechanism that enables utilities to
set a configurable absolute cap on distributed solar capacity, such that the aggregate
generation never exceeds the cap and it maintains distributed solar fairness across
sites, i.e., the energy contributed by each solar site converges to the same percentage
of each site’s maximum possible energy generation. This mechanism provides utilities
a new tool in managing and integrating increasing penetrations of solar energy with
their conventional generation resources. To effectively leverage this new tool, utilities
must define policies that configure the mechanism and alter the caps over time to
effectively control both the magnitude and variation of distributed solar output. There
are a wide range of policies utilities could use in controlling the cap. We define two
different types of policies below, and discuss their tradeoffs in regulating solar power.

4.1. Demand-based Policy
Our first class of policy sets the cap on solar as some fraction of the grid’s demand.
Thus, every interval T , the utility will set the limit on aggregate solar power equal to a
fraction of the average grid demand expected over T . Utilities already have models that
accurately predict grid demand based on weather conditions and the day, which they
can leverage to estimate near-term grid demand. This policy is inspired by the current
regulatory structure in most states, which seeks to indirectly limit the magnitude of
solar penetration in the grid as a function of the grid’s demand. The policy enables
solar sites to contribute more solar power as grid demand increases within the day,
and over time. The idea behind this policy, and current regulations, is that limiting
the magnitude solar power fed into the grid i) ensures that utilities are kept solvent
by requiring their customer base to purchase a specified fraction of energy from them
and ii) indirectly limits the relative magnitude of the variations in net demand that
utilities must balance with conventional generators. In effect, this policy “shapes” the
solar curve to match the shape of the demand curve, but with a smaller magnitude. As
a result, the policy limits the additional variance caused by high penetrations of solar.
Algorithm 4 shows the policy’s pseudocode, which we label as the demand-based policy.

As with the current static first-come-first-serve policies, this policy benefits utilities,
enabling them to maintain a fixed percentage of solar penetration. However, since
the policy changes the limit based on real-time demand, it enables more sites to feed
solar into the grid at non-ideal times, e.g., cloudy days, relative to current regulations,
which prevent many sites from ever connecting to the grid. In addition, the policy
enables more solar to feed into the grid in the middle of the day, when demand and
solar are both high. Of course, grid demand is the lowest over night, when solar is not
producing any power. Regulators can also leverage this policy to gradually increase
solar penetration by increasing the fraction of grid demand that sets the limit, rather
than preventing or halting connecting solar installations to the grid.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1, Publication date: January 2018.



Mechanisms and Policies for Controlling Distributed Solar Capacity 1:15

Algorithm 5 Solar-based Policy
Require: Pi(t) for all homes over time T, F (t)

1: L(t) = F (t)×
∑n

i=1 Pi(t)
2: Call Algorithm 1

4.2. Solar-based Policy
The policy above ties the aggregate limit on solar generation to grid demand, and only
indirectly reduces the magnitude of variations for high penetrations of solar power.
Instead, we can define another policy that directly regulates solar output, independent
of demand, to directly reduce the magnitude of variations in solar power. In this policy,
we set the cap on solar as some fraction of the grid’s current aggregate solar generation.
Thus, every interval T , the utility will set the limit on aggregate solar power equal to
a fraction of the average aggregate solar generation expected in the grid over interval
T . This policy enables utilities to improve operations by smoothing the aggregate solar
profile over the entire day to enable a more predictable net demand. Since the policy
adjusts to set the limit below the maximum possible output, it is able to precisely
control the amount of solar fed into the grid. In contrast, a fixed cap (as in the previous
section) or a demand-based cap (as discussed above) may periodically impose a cap
that is much greater than the current maximum generation. As a result, there will be
no limit on the solar generation, enabling it to vary uncontrollably, as in today’s grid.
Algorithm 5 shows the pseudocode for this policy, which we label as solar-based policy.

5. IMPLEMENTATION
We evaluate our centralized and distributed algorithms from Section 3, and our
demand- and solar-based policies from Section 4, in simulation using both real and
synthetic solar traces. We derive our synthetic solar traces from clear sky solar irra-
diance models implemented in the Pysolar Python library [pys 2017]. The resolution
of this synthetic solar data is one minute, and we convert the irradiance into power
assuming a typical solar module efficiency of 18%. We then vary the maximum solar
capacity of different sites from 1-20kW, and also vary the orientation and tilt angles
of the simulated modules. For our real solar sites, we use data from 50 solar sites
in the Western part of the U.S. We implement our simulator in Python and vary the
simulated interval by which each site propagates its generation information.

6. EVALUATION
We first evaluate our mechanism for fairly allocated distributed solar capacity from
Section 3 under different fixed caps, and then evaluate our policies from Section 4 for
using this mechanism by changing the cap over time to control the net grid demand.

6.1. Mechanism Evaluation
We evaluate both the impact of diversity in solar output on fairness using the equal
rate allocation algorithm, as well using the different variants of our fair solar energy
allocation algorithm. In addition, we also evaluate the tradeoff between fairness and
the fidelity of the algorithm to maintain an aggregate limit. We quantify the fidelity
using Mean Absolute Percentage Error (MAPE) between the limit and the actual ag-
gregate generation, as shown below. For these experiments, we use a set of 18 homes
over a month-long period.

MAPE =
100

T

T∑
t=0

|
L(t)−

∑n
i=0 P

assigned
i (t)

L(t)
| (3)
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Fig. 4. Fairness as a function of the magnitude of shifts (a), cuts (b), and squeezes (c) for two solar sites.

Note that, in this section, we only compute the MAPE for all t where we enforce the
aggregate limit, i.e.,

∑n
i=0 Pi(t) > L(t). The fidelity is not relevant when the mecha-

nism is not used to enforce the limit, similar to how fair queuing results in networks
is only relevant when all flows are backlogged. Quantifying fairness is more challeng-
ing than accuracy, since average fairness metrics, such as Jain’s fairness index, can
obscure highly unfair behavior between any two sites by averaging over many sites.
For example, if there are many flows, Jain’s fairness index can be close to 1 (indicating
a fair allocation) even though some set of solar sites (or solar “flows”) may experience
highly unfair allocations. Since energy fed into the grid directly correlates with money,
unfairness even among a few users is problematic. Thus, we avoid aggregate measures
of fairness across many sites, and instead quantify fairness by examining the distribu-
tion of energy allocations across sites.

6.1.1. Microbenchmarks: Shape Diversity. Figure 4 first looks at the impact on fairness
between two solar sites for different magnitude shifts, dips and cuts, and squeezes.
We use the equal rate allocation algorithm, which always satisfies the aggregate limit
by setting rates equal to each other. For this experiment, we use synthetic data based
on clear sky generation for two sites at the same location, and then alter one site’s
generation to shift it, cut it, or squeeze it by a certain amount of time. Thus, these
results do not include other effects that could impact energy fairness, such as weather,
location, or tilts. The results are also a function of the aggregate limit, which we set
to 14kW in this case, where the maximum power of the sites is 10kW (or 20kW total).
These experiments quantify the effects over an entire year, and include two scenarios:
one where the weights are equal (where each site should contribute the same fraction
of their maximum solar energy potential) and one where the weights are in a 1:2 ratio.

Figure 4(a) shows the effect of a shift, where the x-axis indicates the duration of
the shift, the right y-axis is the percentage of energy lost due to unfairness in the
allocation, and the left y-axis is the mean fraction of energy the solar site should have
fed into the grid. The figure shows that the energy loss is only modestly impacted
by shifts (1%-2%), in large part because they cancel each other out, such that a shift
increases one site’s allocation at the beginning of each day, but decreases it at the end
of each day. As also illustrated in Figure 2, cuts (in Figure 4(b)) have a much larger
impact on the energy loss, causing one site to lose nearly 10% of its energy relative
to a fair allocation in the case of equal weights, and nearly 20% when weights are in
a 1:2 ratio. The unequal weights increase the relative loss, since it exacerbates the
amount of solar power one site is able to feed into the grid when another site is unable
to generate power. This effect is similar for squeeze with losses near 10% and 20%,
respectively, with equal and weighted rates.

6.1.2. Fair Solar Energy Allocation. The previous subsection demonstrated the relative
difference in fairness between two ideal synthetic homes with different shifts, cuts,
and squeezes. We also experiment with controlling a small group of 18 homes in the
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Fig. 5. Aggregate power of the 18 homes over 30 days.
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Fig. 6. Distribution of solar energy allocation under a limit of 60kW for the equal rate (a), centralized fair
energy (fast) (b), centralized fair energy (slow) (c), and distributed fair energy algorithms (d).

western U.S. to get a sense of the differences in energy allocation across many homes
with real solar power. In this case, we experiment with the equal rate allocation algo-
rithm, as well as the three different variants of our fair energy allocation algorithm,
including the centralized algorithm with fast catchup, the centralized algorithm with
slow (proportional) catchup, and our distributed algorithm. For these experiments, we
assume all the rates are equal, and set the limit to 60kW. Figure 5 shows the aggre-
gate power across all the homes over a month-long period, and the 60kW limit. Here,
we maintain a fixed limit: our policies in the next subsection present results with a
variable limit.

Figure 6 then shows the distribution of the energy gain/loss relative to the fair en-
ergy in each case over a one month period, which corresponds to a typical billing cycle.
Note that this percentage directly translates into the fraction of money gained and lost
from net metering. In the equal rate allocation case (a), the largest difference is over
27%, such that one home gets 27.8% less than another home and 18.9% less than their
fair energy allocation. For each of the other algorithms, the percentage drops to near
0%, since they explicitly attempt to maintain a fair energy allocation over time. Fig-
ure 7 then shows a sample sunny day for both the most advantaged and disadvantaged
solar site with equal rate allocation; we can see from this graph the impact of shifts,
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Fig. 8. Fidelity of each algorithm at enforcing a limit with a one-minute communication interval.

cuts, and squeezes on fairness, as these two homes have significantly different solar
curves. As the figure shows, these sites have significantly different capacities, with one
site having a capacity near 50kW and the other having a capacity of only 7kW. Note
that a goal of our fair solar energy access algorithm is to enable both of these sites to
contribute the same fraction of their maximum generation potential, which is relative
to their capacity. In contrast, despite these differences, in all variants of the fair energy
allocation algorithms, we see this difference narrowing significantly, with all having a
difference of less than 1% in terms of grid energy access over the month.

In all of the algorithms above, we assume a one-minute update interval, such that
the solar rate is updated once every minute based on data from the previous minute.
Figure 8 shows the fidelity of each algorithm in maintaining the limit with this update
interval. We see that the equal rate allocation has the highest fidelity (correspond-
ing to the lowest MAPE), since it adjusts rates instantaneously. The small divergence
here is due to the minute-to-minute changes in solar power, as the algorithm can only
adjust rates after it senses that solar output has changed (which takes 1 minute in
this experiment). The centralized algorithm with the fast catchup has a lower fidelity,
which is also exacerbated due to the stochasticity in solar output at the minute-level.
This algorithm results in highly imbalanced rates during its catch-up phase, where
some solar sites are contributing 100% of their energy generation. As a result, if these
sites change their output significantly within a minute (before the rates are updated),
the aggregate solar power will diverge from the limit. In the equal rate allocation case,
the likelihood of such aggregate changes is low because it requires all sites to suddenly
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Fig. 9. Energy difference between H1 and H18 in Figure 6(a), as a function of the aggregate limit.
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Fig. 10. Fidelity of maintaining the aggregate limit as a function of its magnitude for the different variants.

change their output in unison. However, when a small number of sites are catching up
and have a disproportionate share of grid energy, it increases the likelihood that these
sites will alter their generation within a minute. The centralized algorithm that uses
a slower proportional catch-up mitigates this effect and has a MAPE near that of the
equal rate algorithm. Finally, the distributed algorithm has significantly lower fidelity
than the others due to its long propagation delays.

The deviation above changes with the limit as shown in Figure 9. For the equal rate
algorithm, the unfairness decreases as the limit increases, since it mitigates the effect
of differences in the solar curve between sites. However, the difference between the
different variants of our fair energy algorithms remain largely constant and generally
under 5%. However, Figure 10 shows that the equal rate algorithm has the highest
fidelity across all aggregate limits. For the fair energy algorithms, the lower the limit,
the worse the fidelity at maintaining the aggregate limit. This impact of low limits is
particularly severe for the centralized algorithm with fast catch-up, since at low limits
it is subject to increasingly more extreme versions of the effects described above.

6.1.3. Distributed Algorithm. Finally, we explore the impact of information propagation
delay in the distributed algorithm. Figure 11 shows this delay on the x-axis, while the
y-axis shows the resulting MAPE relative to the limit. The graph demonstrates that,
as expected, the fidelity of the control decreases (yielding a higher MAPE), as the prop-
agation delay increases. This increase is faster for the distributed algorithm, since it
takes some time for the rates to converge. However, in contrast, fairness actually im-
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Fig. 11. As the propagation delay increases the fidelity of control for the distributed algorithm decreases.
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Fig. 12. As the propagation delay increases, the fairness for the distributed algorithm also increases.

proves as the delay increases. Figure 12 shows the percentage maximum difference
in the percentage of energy gain/loss between any two homes (in this case, H1 and
H18 from Figure 6(a)). The graph shows that as the propagation delay increases this
percentage trends towards 0%. Of course, the equal rate algorithm is unfair and thus
takes longer to converge. With longer propagation delays, solar sites operate at the
same fraction of power for longer windows of time. As a result, the amount of energy
they contribute to the grid relative to each other converges. Thus, our fair energy ac-
cess algorithms enable a tradeoff between propagation delay, fidelity, and fairness.

Figure 13 illustrates the fidelity of maintaining an aggregate 60kW limit for the dis-
tributed algorithm over a representative sunny day with a communication interval of
one-minute. The graph shows that the centralized equal rate algorithm is able to main-
tain the 60kW limit precisely, while the distributed algorithm maintains a limit that
is slightly above the 60kW threshold. Finally, Figure 14 shows how we mind the gap
between fidelity and fairness by accelerating the catch-up amount in the distributed
algorithm. In this case, we specify a gain value, which is a multiplicative factor applied
to the typical rate computed by the distributed algorithm (which enables sites to in-
crease their rate in proportion to the amount of energy they are behind). Here, a gain
of 0 indicates no additional increase, while a gain of 10 increases the rate by a factor of
10. The graph illustrates the tradeoff between fairness and fidelity: as we increase the
gain value (to accelerate catching up sites that are behind in their energy allocation),
the MAPE of the aggregate limit increases (reducing the fidelity of control), while the
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Fig. 13. Maintaining the limit at a 1-minute interval.
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Fig. 14. Impact of accelerating the “catch up” of sites that are behind in their fair energy allocation by a
multiplicative gain factor in the distributed algorithm.

fairness increases (as specified by the decrease in the largest difference in energy allo-
cation between two sites). For comparison, we also plot the fair energy fraction for the
distributed algorithm, which increases slightly, as more power is fed into the grid (as
a result of overshooting the limit as seen in Figure 13).

6.2. Policy Evaluation
The previous subsection evaluated the fidelity and fairness of our rate allocation mech-
anism using a fixed limit over time on aggregate solar power across many sites, as
illustrated in Figure 13. However, fixing the limit is not ideal as the aggregate solar
generation across sites is highly variable throughout the day, e.g., rising in the morn-
ing and decreasing in the evening, while also changing due to weather. Thus, a fixed
limit may be well below the aggregate solar generation at some times and well above
it at other times. In the latter case, when the limit is well above the solar generation,
our mechanism imposes no limitations on solar generation, leaving it uncontrollable
with the potential for high variations that can complicate grid operations. In addition,
a high limit does not restrict the magnitude of solar energy net metered in the grid.
Likewise, in the former case, if the limit is well below the possible solar generation,
then a utility may curtail more solar power than necessary.

Thus, our policies from Section 4 alter the limit over time, as the grid demand and
solar capacity changes. Note that, in the previous section, we compute the fidelity of
our mechanism in satisfying the limit using the MAPE only over the time period when
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Fig. 15. Illustration of varying the solar limit based on grid demand (a). In this case, we set the limit to
50% of grid demand, resulting in only a short period where solar generation exceeds the limit. As a result,
the net demand does not change significantly after setting the limit (b).
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Fig. 16. Illustration of varying the solar limit based on grid demand (a). In this case, we set the limit to
25% of grid demand, resulting in solar generation exceeding the limit for over half the day. As a result, the
net demand increases significantly after setting the limit (b).

the limit is enforced. However, since our policies attempt to limit solar power at all
times, by setting an appropriate limit, in this section, we compute fidelity, i.e., MAPE,
and fairness over the entire time period. We run these experiments across a set of 50
homes in the western U.S. We describe two classes of approaches: one that sets the
limit as a fraction of grid demand and one that sets the limit as a fraction of solar
generation. We evaluate each case below. We also compare with a policy that sets a
fixed cap, as described in the previous section. In this case, we set the fixed limit for
a given day to be x% of maximum predicted power generation for that day for some
value of x. For example, if the maximum power generation is predicted to be 1000kW,
the 80% limit would mean that the fixed limit is set at 800kW. Note that, with the
exception of the fixed cap, the limits for both the demand- and solar-based policies are
dynamic, and set relative to different values, e.g., grid demand versus aggregate solar.
Thus, setting the same limit for different policies may result in a different fraction of
solar energy being net metered.

6.2.1. Demand-based Policy. Figures 15 and 16 illustrate the impact of imposing a limit
on solar generation across 50 homes based on the grid demand. In this case, our policy
sets the limit at 50% and 25%, respectively, of average grid demand during the next
control interval, which is one hour in these experiments. Figure 15(a) shows that so-
lar generation only exceeds 50% of the grid demand for a brief window between 4pm
and 7pm. As a result, the difference between the un-altered net demand before im-
posing the limit is similar to the net demand after imposing the limit, as shown in
Figure 15(b). However, Figure 16(a) shows that setting the limit at 25% of grid de-
mand results in a more significant change in generation, since the limit is enforced for
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Fig. 17. Illustration of varying the limit based on the solar generation (a). In this case, we set the limit to
90% of solar generation. As a result, the net demand does not change significantly after setting the limit (b).
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Fig. 18. Illustration of varying the limit based on the solar generation (a). In this case, we set the limit to
60% of solar generation. As a result, the net demand does changes significantly after setting the limit due
to the reduced solar output (b).

over half the day. Figure 16(b) shows a significant increase in the net demand after
imposing the limit, demonstrating that a demand-based policy is an effective tool for
limiting the magnitude of solar in the grid. In this case, that increase in net demand
would need to be satisfied by the utility using conventional mechanical generators.
While not environmentally-friendly, this scenario is preferable to utilities that must
recoup their long-term investment in these generation resources to remain solvent.

6.2.2. Solar-based Policy. Figures 17 and 18 illustrates the impact of imposing a limit
on solar generation based on the average aggregate solar generation. In this case, we
set the limit to 90% and 60% of the expected average solar generation during the next
control interval, which is one hour for these experiments. Although we set the limit
each hour, solar generation changes continuously over time. Figure 17(a) shows the
grid demand, solar generation, and limit for 50 homes over a day. We can see that
the limit serves to smooth the solar generation by reducing its variability. This occurs
because the limit voluntarily restricts solar generation to 90% of the expected average
generation over the hour. As a result, during each hour, the aggregate solar generation
in the grid is near constant. Since 90% is a high cap, it only reduces the aggregate solar
generation by a small amount, which keeps the net demand similar to the demand
before imposing the limit, as shown in Figure 17(b). Figure 18 then shows the same
scenario, but with a limit set to 60% of the solar generation. The lower limit smooths
the solar generation even more (a), which in turn has a larger negative effect on the
net grid demand (b). Compared to the demand-based policy, which is able to control the
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Fig. 19. The graph shows the variance index as a function of the limit for fixed, demand-based, and solar-
based policies. The variance index is the ratio of variance in the net demand before the limit is imposed to
the variance of the net demand after limit.

magnitude of solar in the grid as a fraction of demand, the solar-based policy is better
able to control the variability in solar and the net demand profile.

6.2.3. Comparing the Grid- and Solar-based Policies. The experiments above show the ef-
fect of our policies on solar generation and the net demand over one day. Below, we
compare the variance, fidelity, and fairness of these policies over a month of data.
Variance. Figure 19 shows how the policies above are able to reduce the variability in
the grid’s net demand profile, which enables utilities to more effectively balance sup-
ply and demand. In the figure, the variance index on the y-axis is the ratio of variance
in the net demand after the limit is imposed to the variance of the net demand before
the limit. Thus, values less than one demonstrate that after imposing the limit, the
variance decreases—so lower numbers are better. We see that imposing a limit at a
very low value (10%) manages to reduce the variations by almost half (index ≈ 0.5).
The fixed-cap has the highest variance index, especially at high limits, since it rarely
enforces a cap at these limits. As the limit increases, the variance index decreases
to 70-80% for the demand-based policy and 40-50% for solar-based policy. The high
value of the variance index at the lower limits is due to solar being capped well below
its capacity, causing it to have little effect on the net demand. However, as the limit
increases, the fraction of solar energy also increases, but the limit still caps the gen-
eration most of the time, which reduces the variance. As the limit increases further,
the cap frequently exceeds solar generation, such that solar power is not capped. As a
result, the limit is rarely imposed and the variance increases.
Fidelity. Figure 20 shows the fidelity of each of the policies in maintaining the limit
with a one-minute update interval. Since the limit for each policy is set in a different
way, we list the fraction of solar energy generated relative to the maximum solar en-
ergy atop each datapoint. As before, we quantify fidelity using MAPE with respect to
the ideal limit, but over the entire time period In this case, we see that the fixed limit
case (a) has the lowest fidelity, which corresponds to the highest MAPE, since it is un-
able to alter the limit to match solar generation as it changes. As the limit increases
on the x-axis, the MAPE increases, since less of the day is subject to the high fixed
limit. The demand-based capping (b) does a better job of enforcing the limit simply be-
cause grid demand roughly approximates solar generation, i.e., it rises during the day
and falls off at night. As a result, the limit is enforced for a longer period of time than
in the fixed limit case. Of course, capping based on solar generation has the highest
fidelity (or the lowest MAPE) because the policy alters the limit to closely match the
solar generation profile. As a result, the solar generation is nearly always less than
the limit, such that the limit is always enforced.
Fairness. Figure 21 shows fairness, as a function of the difference in energy of the top
and bottom homes in the distribution, among all 50 homes for each of the policies as the
limit changes. We see that the demand-based capping policy (b) has the worst fairness
properties. This occurs because altering the limit based on the grid’s demand has a
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Fig. 20. The relationship between the fidelity of control for each of the different policies. The fixed cap has
the worse fidelity since it does not alter the limit as solar generation changes over time.
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Fig. 21. For the fixed limit policy and the demand-based capping, fairness decreases as the limit decreases.
The solar-based capping policy exhibits the highest fairness as quantified by a low difference between the
fraction of solar contributed by the highest site versus the lowest site.
greater likelihood of setting a low limit when there is a difference in the generation
of solar sites. Recall from Section 3 that unfairness arises when the solar generation
profiles of sites differ significantly when the limit is enforced. The fixed limit case (a)
also demonstrates poor fairness due to the same reason. Thus, the fairness decreases
as the limit decreases for both of these policies. In contrast, the solar-based capping
policy (c) has the highest fairness, since it attempts to track the aggregate solar output
more closely, i.e., by setting the cap as a fraction of the solar output. Thus, there are
fewer time periods where a limit is enforced and sites’ solar output differs significantly.
Summary. Our comparison above illustrates differences in the choice of policy for
utilities. Ultimately, the choice of policy is subjective and dependent on a utility’s goals.
As we show, setting a fixed cap is undesirable, since the magnitude of solar capacity
varies throughout the day and with the weather. Thus, a fixed cap is unlikely to be
satisfactory at all times, requiring utilities to vary the cap. Demand-based capping is
effective at directly limiting the magnitude of solar generation to a fraction of demand,
which is similar to what current admission control policies attempt to do. However,
the policy has poor fidelity and fairness properties because it only indirectly regulates
solar generation. In contrast, the solar-based capping has better fidelity and fairness
properties because it directly limits solar generation.

7. RELATED WORK
There is a large body of work in the systems and networking literature on fair rate
allocation and scheduling. This work differs from our work in that it focuses on main-
taining instantaneous bandwidth fairness when flows are backlogged, and not fairness
in the amount of data transmitted over long periods of time. Recently, there have been
adaptations of this work to the electric grid to dynamically manage increasing pene-
trations of solar energy [Lee et al. 2017] and electric vehicles [Ardakanian et al. 2013].
However, as we show, direct adaptations of instantaneous rate allocation from net-
works can result in unfair energy access. Similarly, iPlug [Rongali et al. 2016] proposes
a policy for decentralized dispatch of solar power based on congestion-aware network
protocols. iPlug differs from this work in that solar sites backoff based on sensing grid
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congestion, e.g., due to a deviation in nominal values for voltage and frequency. One
issue with this approach is that it requires degrading the power quality of the grid to
send feedback signals. Balancing authorities are unlikely to allow such degradation
in power quality. In addition, in modern countries, the grid’s infrastructure is highly
over-provisioned, requiring massive penetrations of distributed solar generation be-
fore iPlug would be able sense any grid congestion, i.e., deviations in nominal voltage
or frequency, that would act as a feedback signal. Thus, we adopt an approach that
directly communicates generation via the network to maintain a fair energy alloca-
tion over time. Finally, iPlug’s approach is not fair, since different users sense different
voltages and frequencies depending on their position in the grid. For example, a user
at the end of the distribution line will have lower voltages, and thus backoff more than
a user further up the line.

Enforcing fair energy access is important in the grid, since users directly receive
compensation for the amount of energy that they net meter into the grid. Another key
difference with prior work is that it generally assumes the key constraints are in the
network: the capacity of the transformers and feeders that are analogous to network
switches and routers. However, we assume the network is unconstrained, and that
unfairness can arise simply from the differences in the generating potential (or “work-
load”) between solar sites independent of network constraints. Importantly, sites are
unable to control this generating potential in the same way that network clients can
control when they send traffic. Prior work also does not explore the fidelity of control
based on the time to propagate generation information in a distributed system. Prior
work in the power systems community also explores different strategies for curtailing
solar power. However, these approaches have largely focused on preserving the relia-
bility of the grid, and responding to over-voltage situations [Tonkoski and Lopes 2011;
Lew et al. 2013; Tonkoski et al. 2009; Tonkoski et al. 2010; 2011]. Instead, our work fo-
cuses on enabling fair control of distributed solar capacity, which has not been a metric
of interest in prior work.

Finally, much of the work above conflates mechanism and policy in controlling solar
generation. For example, iPlug only requires that solar deployments back-off when it
senses grid congestion [Rongali et al. 2016]. This is only one of many possible policies
for controlling solar generation. In fact, most current policies for limiting solar gen-
eration are business-oriented and not technically-oriented in that their purpose is to
encourage solar adoption, while enabling utilities to effectively manage the grid. In
contrast, our work clearly separates policy from mechanism. Our fair rate allocation
algorithms collectively define a mechanism that utilities can use to control the output
of distributed solar capacity, and our proposed policies leverage mechanism in different
ways to achieve different goals.

8. CONCLUSIONS
This paper highlights an important difference between fair rate allocation in network-
ing and enforcing “fairness” in the grid. In particular, enforcing fairness based on the
relative amount of energy injected into the grid over time is more important than en-
forcing instantaneous rates. This discrepancy arises from fundamental differences in
enforcing “fair” access to the grid to contribute solar energy, compared to analogous
fair-sharing in networks and processors. To address the problem, we present fair rate
allocation algorithms to enable control of distributed solar capacity, while enforcing
fair grid energy access. Collectively, these algorithms represent a new mechanism for
controlling the output of distributed solar capacity. We then present multiple policies
that show how utilities can leverage this new distributed rate-limiting mechanism to
reduce variations in grid demand from intermittent solar generation. We implement
our algorithm and evaluate it on both synthetic data and real data from up to 50 solar
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sites. We show that traditional rate allocation, which enforces equal rates, results in
solar sites contributing up to 18.9% less energy than an algorithm that enforces fair
grid energy access over a single month. Finally, we show that our policies that vary
solar capacity over time reduce the variations in aggregate solar power compared to a
fixed limit, resulting in a more stable grid demand, while also preserving fairness.
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