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Reducing peak demands and achieving a high penetration of renewable energy sources are important goals
in achieving a smarter grid. To reduce peak demand, utilities are introducing variable rate electricity prices
to incentivize consumers to manually shift their demand to low-price periods. Consumers may also use
energy storage to automatically shift their demand by storing energy during low-price periods for use during
high-price periods. Unfortunately, variable rate pricing provides only a weak incentive for distributed energy
storage and does not promote its adoption at large scales. In this article, we present the storage adoption
dilemma to capture the problems with incentivizing energy storage using variable rate prices.

To address the problem, we propose a simple pricing scheme, called flat-power pricing, which incentivizes
consumers to shift small amounts of load to flatten their demand rather than shift as much of their power
usage as possible to low-price, off-peak periods. We show that compared to variable rate pricing, flat-power
pricing (i) reduces consumers’ upfront capital costs, as it requires significantly less storage capacity per
consumer; (ii) increases energy storage’s return on investment, as it mitigates free riding and maintains the
incentive to use energy storage at large scales; and (iii) uses aggregate storage capacity within 31% of an
optimal centralized approach. In addition, unlike variable rate pricing, we also show that flat-power pricing
incentivizes the scheduling of elastic background loads, such as air conditioners and heaters, to reduce peak
demand. We evaluate our approach using real smart meter data from 14,000 homes in a small town.

CCS Concepts: � Hardware → Smart grid; Energy generation and storage; Energy distribution;

Additional Key Words and Phrases: Energy storage, load scheduling, smart grid, load shifting

ACM Reference Format:
David Irwin, Srinivasan Iyengar, Stephen Lee, Aditya Mishra, Prashant Shenoy, and Ye Xu. 2017. Enabling
distributed energy storage by incentivizing small load shifts. ACM Trans. Cyber-Phys. Syst. 1, 2, Article 10
(February 2017), 30 pages.
DOI: http://dx.doi.org/10.1145/3015663

1. INTRODUCTION

As is now well known, a significant fraction of the electric grid’s capital and opera-
tional expenses (CapEx and OpEx, respectively) result from satisfying its peak power
demands. For example, recent work estimates that 10% to 18% of North American
CapEx, in terms of energy generation capacity, is idle and wasted over 99% of the
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year [Faruqui et al. 2009]. Similarly, peak demand also influences OpEx by (i) requiring
utilities to operate high-cost and inefficient “peaking” generators to meet demand [EIA
2012]; (ii) contributing to higher transmission charges, which are set based on peak
demand; and (iii) forcing utilities to offset supply shortages by purchasing electricity
in the wholesale market at inopportune times (i.e., when it is most expensive). Thus,
reducing peak demand and its impact on CapEx and OpEx is an important part of
ongoing smart grid research efforts. One way to reduce peak demand that has received
significant attention in the research community is leveraging energy storage to shift
some fraction of demand from peak to off-peak periods. To shift demand, prior work
simply proposes storing energy during off-peak periods, which increases the off-peak de-
mand, for use during peak periods, which then decreases the peak demand [Carpenter
et al. 2012; Daryanian et al. 1989; Govindan et al. 2011; Koutsopoulos et al. 2011;
Urgaonkar et al. 2011; van de Ven et al. 2011; Vytelingum et al. 2010]. The recently in-
troduced Tesla Powerwall home battery now advertises such load shifting as an explicit
feature [Howard 2015].

To implement the approach, utilities may either (i) install large-scale centralized
energy storage systems at strategic points in the grid, such as at power plants and
substations [Koutsopoulos et al. 2011; Mishra et al. 2015], and directly control when
they store and release energy, or (ii) incentivize consumers to install and control their
own small-scale energy storage systems distributed at buildings throughout the grid.
Prior research has focused largely on the latter case, as the increasing adoption of
variable rate pricing plans by utilities [CNT 2011; Ontario Energy Board 2012; Smart
Grid Clearinghouse 2011] provide an incentive to install energy storage [Carpenter
et al. 2012; Daryanian et al. 1989; Govindan et al. 2011; Urgaonkar et al. 2011; van de
Ven et al. 2011; Vytelingum et al. 2010]. Endowing buildings with energy storage also
has additional benefits, including (i) providing power during outages, (ii) conditioning
power to increase its quality, (iii) dampening fluctuations from local renewable sources,
(iv) distributing energy storage’s capital costs across consumers rather than requiring
utilities to bear them, and (v) decreasing transmission losses by storing energy near
its point of consumption.

Since variable rate pricing plans charge higher rates during periods of peak demand
during the day, consumers who store energy during off-peak periods at night (when
prices are low) for use during peak daytime periods (when prices are high) are able to
lower their electricity bill. In addition, consumers with excess local solar generation
may store their own local solar generation for later use, which may be preferable
to net metering excess solar power to the grid if utilities pay less than the retail
rate for net metered solar power. Local energy storage will increasingly be required as
renewable penetrations increase, as the grid generally cannot handle large, e.g., >10%,
renewable penetrations without energy storage [Thomson 2015]. Many energy storage
technologies exist, including pumped water storage, flywheels, and compressed air;
however, batteries remain the most viable option for stationary energy storage systems
in buildings. Figure 1 shows an example of how electricity prices vary over a day with
time-of-use (TOU) [Ontario Energy Board 2012] and real-time pricing (RTP) [Smart
Grid Clearinghouse 2011] plans. With RTP plans, rates change every hour of every day
based on electricity’s real-time price in the wholesale market, whereas with TOU plans,
rates change only a few times each day and each day’s rate profile remains constant
over long periods, e.g., 3 to 6 months.

Prior research analyzes the potential savings for residential [Carpenter et al. 2012;
Daryanian et al. 1989; van de Ven et al. 2011; Vytelingum et al. 2010] and indus-
trial [Govindan et al. 2011; Urgaonkar et al. 2011] consumers to install batteries and
perform energy arbitrage in the presence of variable rate pricing plans. The focus is
largely on cost-benefit analyses of existing pricing plans, which vary electricity’s price
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Fig. 1. Examples of existing TOU (from Ontario) and RTP (from Illinois).

per kilowatt-hour (kWh). Unfortunately, as we discuss, these plans provide a weak
incentive for distributed energy storage and do not promote its large-scale adoption.

Large upfront capital costs. Since today’s pricing plans exhibit low prices during off-
peak nighttime periods and high prices during peak daytime periods, they incentivize
consumers to shift large amounts of load to the off-peak period. Of course, the cost
of batteries limits the amount of storage capacity available to shift demand. In prior
work, Mishra et al. [2012] show that for a residential home with near the average
U.S. electricity usage, nearly 24kWh of capacity1 maximizes the return on investment
(ROI) when taking into account battery costs. Given typical battery lifetimes, the
estimated annual amortized cost to maintain 24kWh of energy storage is then nearly
$1416 [Mishra et al. 2012]. Since the annual electricity bill for an average U.S. home
approximately $1419 [Cauchon 2011], battery costs prevent (at current price levels) a
positive ROI using this much energy storage.

Uncertain benefits. To prevent rebound peaks under large-scale penetrations of en-
ergy storage, utilities must alter electricity rates over time as peak and off-peak demand
changes. Unfortunately, consumers only benefit from energy storage by exploiting the
difference between peak and off-peak prices. With variable rate pricing plans, as peak
demand declines and off-peak demand rises due to the increasing use of energy stor-
age, the difference between the peak and off-peak price will narrow, thereby reducing
energy storage’s benefits [Vytelingum et al. 2010]. In the extreme, if grid demand is
near flat, then the price of electricity will be similar at all times [Carpenter et al. 2012;
Mishra et al. 2012; Vytelingum et al. 2010]. Once the peak/off-peak price differential
is not large enough to compensate for battery conversion losses, there is no benefit
to using energy storage. Our prior work estimates that there would be no difference
between peak and off-peak prices once just 22% of consumers install 24kWh of energy
storage [Mishra et al. 2012], which is consistent with related work [Carpenter et al.
2012]. Vytelingum et al. [2010] also show that a Nash equilibrium—where there is no
longer an incentive to install energy storage—is reached well before battery penetra-
tion levels increase to the point where peak and off-peak prices converge. Thus, even
if energy storage prices decline, consumers will be unlikely to invest in energy storage
en masse with such uncertain future long-term benefits.

Socialized benefits and free riders. For residential consumers, the annual cost to
install and maintain battery-based energy storage is much higher—around 10× for

1Operated at a maximum of 45% depth of discharge.
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average consumers in the United States—than the annual savings on an electric bill
using current battery costs, electricity rates, and pricing plans [Mishra et al. 2012].
However, prior work does not consider the grid-wide reductions in generation costs
from lowering the grid’s aggregate peak demands. Unfortunately, with existing pric-
ing plans, these cost savings are distributed (or socialized) across all consumers, as
they manifest themselves as cheaper electricity rates. Socializing the savings from dis-
tributed energy storage weakens the incentive to adopt it. Strengthening the incentive
requires ensuring that consumers investing in energy storage reap its full benefits,
especially given its large capital costs.

Ideally, energy storage distributed at buildings throughout the grid would behave
like centrally controlled energy storage of equal capacity. In other words, the “right”
fraction of buildings would (i) charge their batteries whenever grid demand is below
average and (ii) discharge their batteries whenever grid demand is above average
such that aggregate grid demand remains largely flat and constant at the average
demand. However, ensuring that the behavior of such a self-organizing distributed
system emulates that of an equivalently sized centralized system is challenging. In
this case, determining when and how many buildings should charge their batteries
requires explicit feedback from the grid and coordination among all buildings, which
does not scale. In addition, determining how to fairly distribute the use of energy
storage across buildings in the grid poses another challenge.

To address the problem, we propose flat-power pricing to incentivize consumers to
shift small amounts of load to flatten their demand. Flat-power pricing charges a
higher price for electricity that is above a consumer-specific target set a priori by the
utility. Since the approach incentivizes shifting power usage over shorter intervals
than variable rate pricing, it requires less energy storage capacity per home and also
incentivizes scheduling of elastic background loads that can only defer power usage
for short periods. As we discuss, optimal charging behavior under flat-power pricing
differs significantly from existing peak-based pricing plans that impose a surcharge on
consumers based on their absolute peak demand over a billing period, e.g., the peak 15
minutes of energy usage over a month-long billing cycle. In particular, these existing
peak-based pricing models strongly incentivize consumers to focus on reducing their
absolute peak, whereas flat-power pricing equally incentivizes consumers to reduce
any peak above their average. By focusing on the absolute peak, optimal charging
algorithms for existing peak-based pricing models may not use energy storage effec-
tively to reduce other peaks, as there is no incentive to do so. However, reducing the
nonabsolute peaks is important, as a consumer’s absolute peak may not necessarily
align with the time of the grid’s peak demand. Thus, flat-power pricing equally incen-
tivizes consumers to reduce any peak in their demand, enabling them and the grid
to benefit from shifting small amounts of load. Our hypothesis is that by encouraging
small load shifts, flat-power pricing incentivizes the use of distributed energy storage,
as well as the scheduling of elastic background loads, at large scales. In evaluating our
hypothesis, this article makes the following contributions.

Scalable incentives design. We describe the energy storage adoption dilemma that
arises as the use of energy storage scales. We show that existing charging algorithms
and pricing plans cannot simultaneously minimize an electric bill and ensure grid
stability at large scales. In particular, preventing rebound peaks, which reverse the
peak and off-peak periods, requires some (explicit or implicit) feedback from the grid
to signal distributed energy storage to rate-limit charging as demand rises.

Flat-power pricing model. To resolve the dilemma, we introduce flat-power pricing
and outline its benefits relative to existing pricing models, including both variable
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rate and peak-based pricing, with respect to incentivizing distributed energy storage
adoption, as well as the scheduling of elastic background loads. We present simple
scheduling algorithms for battery charging and discharging, along with different types
of elastic background loads, that optimize for flat-power pricing.

Grid- and consumer-scale evaluation. We evaluate both the grid- and consumer-scale
effects of flat-power pricing. For our grid-scale evaluation, we leverage nearly a year’s
worth of smart meter data from 14,000 homes in a small town (at 5-minute granularity)
to demonstrate the impact of distributed energy storage on the grid under flat-power
pricing. For our consumer-scale evaluation, we use extensive data from a real home to
demonstrate the impact of scheduling of background loads under flat-power pricing.
Our analysis shows that when compared to existing pricing plans, flat-power pricing
results in (i) less upfront capital costs, as it requires significantly less energy storage
capacity per consumer; (ii) reduces grid generation costs, as it mitigates free riding
and maintains the incentive to adopt energy storage at large scales; iii) only requires
aggregate storage capacity within 31% of optimal; and iv) encourages the scheduling
of elastic background loads.

2. BACKGROUND

Our work leverages the use of battery-based energy storage and elastic background
load scheduling to reduce electricity costs. We assume a load scheduling system that is
capable of programmatically controlling battery charging and discharging, as well as
the scheduling of background loads, based on electricity rates. Existing pricing plans
vary electricity rates throughout the day based on demand such that rates during
high-demand periods, e.g., during the day, are significantly higher than rates during
low-demand periods, e.g., at night. To be cost effective, these systems must (i) limit
energy storage capacity due to battery costs, which, amortized over their lifetime, are
currently $100 to $200 per year per kilowatt-hour of usable capacity for the VRLA/AGM
lead-acid variety widely used in stationary energy storage systems, and (ii) account for
the nearly 20% conversion loss from storing energy in batteries. Note that since a lead-
acid battery’s lifetime is a function of its depth-of-discharge (DOD), a 24kWh battery
operated at 50% DOD has approximately 12kWh of usable capacity.

2.1. System Architecture

Previously proposed architectures for leveraging energy storage [Mishra et al. 2012] use
a programmatic power transfer switch, which allows them to toggle a building’s power
supply between the grid and a battery. Thus, in addition to a charging algorithm that
decides when and how much to charge batteries, the system also decides when to toggle
the building’s power supply between the grid and the battery based on expectations of
future prices and demand. Of course, when batteries supply power, the building’s load
dictates the rate of discharge based on Kirchhoff ’s laws. Although not programmatic,
such switches are common in commercial standby UPS systems, which automatically
switch to battery power when grid voltage falls below a preset threshold that indicates a
blackout or brownout. The coarse switching architecture works well in prior systems, as
they connect to the grid and charge batteries during lengthy low-price periods at night
before switching to battery power during lengthy high-price periods during the day.

In contrast, we assume a system architecture that is capable of controlling a bat-
tery’s rate of discharge independent of the building’s load. For example, if a building
is consuming 1kW of power, the system is able to control the fraction of the 1kW the
battery supplies, with the grid supplying the remainder. Thus, the system may choose
to satisfy 1kW of demand using 500W via the battery and 500W via the grid, or us-
ing 200W via the battery and 800W via the grid. Controlling the rate of discharge is

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 10, Publication date: February 2017.



10:6 D. Irwin et al.

Fig. 2. Switch-based architectures (a) do not lower an individual building’s peak demand [Mishra et al.
2012]. The model we use (b) in our simulator of the marginal cost to generate electricity as demand increases.
The fitted function we use is based on scaled data from a recent Federal Energy Regulatory Commission
report [Federal Energy Regulatory Commission 2009].

necessary for our approach, which encourages buildings to flatten demand by shift-
ing small amounts of load rather than simply shift large amounts of demand from
daytime to nighttime. As Figure 2(a) demonstrates, for individual buildings, the sim-
ple switching architecture does not significantly reduce an individual building’s peak
demand (in this case, the average demand each hour) [Mishra et al. 2012]. The fig-
ure illustrates how, due to off-peak battery charging, the switch-based SmartCharge
system simply shifts the original peak demand to a lower-price nighttime period to
minimize electricity costs. Importantly, such existing switch-based architectures do not
significantly lower a building’s peak demand—they only move it to the lowest-priced
period.

There are two primary ways to control a battery’s rate of discharge. A simple approach
is to install multiple switches capable of switching separate fractions of a building’s
load between grid and battery power. For example, the system may be able to indi-
vidually switch each circuit. In this case, the system controls the rate of discharge by
monitoring the load on each circuit and simply switching some subset of circuits to
the battery to achieve a specific rate of discharge. An alternative approach is to use
a utility-interactive battery inverter to connect a battery bank in parallel to the grid
and programmatically control its rate of discharge. Currently, controllers capable of
programmatically setting the rate of discharge at fine granularities are available for
testing equipment [Zivan 2012].

However, utility-interactive battery inverters—currently used by photovoltaic (PV)
systems to operate in both grid-tied and off-grid modes—can also be co-opted for con-
trolling the rate of discharge. In grid-tied mode, these inverters typically maintain
the battery at a “set point” voltage such that if the voltage rises above the set point
(indicating a higher state of charge), the inverter draws power from the battery bank,
and if the voltage falls below the set point, the inverter charges the battery bank. In
grid-tied mode, both the PV system and the battery bank connect to the inverter and
then converts their DC power output into AC power at 60Hz synchronized with the
grid’s 60Hz power. The current advantage of utility-interactive battery inverters is
they can operate in off-grid mode during an outage such that the inverter is capable of
charging the battery from the PV system and supplying AC power to loads. A specific
example of a utility-interactive battery inverter that includes the preceding features
is the Conext SW-4024.2 Since utility-interactive inverters are designed for residential

2See http://solar.schneider-electric.com/product/conext-sw-na/.
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Fig. 3. Idealized depiction of the storage adoption dilemma.

PV systems, they are capable of operating at residential-scale loads. For example, the
Conext SW-4024 is rated for 8kW peak load, which is above the peak load for most
homes.

Although current utility-interactive battery inverters are configured to maintain a
set point voltage for backup power, their basic mechanisms can also be configured to
programmatically control the rate of battery discharge by controlling the set point over
time. Such programmatic control is expected to become more widespread, as the Tesla
Powerwall and other energy storage devices are designed for similar peak shaving
features. As a result, the Public Utilities Commission of California recently introduced
regulations and policies for net energy metering from energy storage devices.3 Such
programmatic control also has uses beyond net metering and is a prerequisite for
recent work on privacy-preserving smart grid techniques using batteries [McLaughlin
et al. 2011; Yang et al. 2012]. For our work, we assume the use of a utility-interactive
inverter with the ability to programmatically adjust its set point voltage to control a
battery bank’s charging and discharging rate.

Finally, both this and prior work derive from the fact that the marginal cost for a
utility to generate each additional watt of power increases nonlinearly as utilities acti-
vate additional generators to satisfy increasing demand. Utilities maintain a dispatch
stack of generators: as grid demand rises, utilities activate, or “dispatch,” additional
generators in ascending order of their marginal cost. Figure 2(b) shows the demand-
cost function we use to compute generation costs based on demand and demonstrates
the nonlinear relationship between cost and demand. To derive our function, we scaled
real demand-cost data for the southeastern United States from a 2008 report by the
Federal Energy Regulatory Commission to match the peak demand in our trace data,
discussed in Section 5, while also ensuring a median electricity cost of 10c//kWh, which
is near the average cost of electricity in the United States [Federal Energy Regulatory
Commission 2008]. We then fit an exponential function to this data to estimate the
effect on costs in our evaluation.

2.2. The Storage Adoption Dilemma

Figure 3 depicts the storage adoption dilemma, a variant of the classic prisoner’s
dilemma, that arises from the use of distributed energy storage at large scales to
minimize electricity costs in the presence of variable rate electricity prices. At the
top of the figure, variable demand for power first causes the price of electricity over
time to change based on the demand-cost function from Figure 2(b). Variable pricing,

3See http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M091/K247/91247687.pdf.
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in turn, incentivizes consumers to adopt energy storage to reduce their costs by
shifting demand to low-price periods. However, as more consumers shift demand using
energy storage, the difference between the grid’s peak and off-peak demand narrows,
resulting in a flatter grid demand profile. As a result, the difference between the peak
and off-peak electricity prices narrows to reflect the new demand distribution. Unfor-
tunately, such flatter prices eliminate the incentive to adopt and use energy storage,
which causes demand to vary again and the cycle to repeat. Of course, our depiction
is idealistic. In practice, the cycle may stall due to weak incentives for energy storage,
as outlined in Section 1, and completing each step would take a long time, potentially
requiring significant regulatory changes and large capital investments by consumers.
Prior work [Vytelingum et al. 2010] has also shown (under certain assumptions) that
a Nash equilibrium would be reached that would eliminate the incentive for additional
consumers to install energy storage (under their assumptions, once 38% of consumers
installed 4kWh of energy storage), thereby breaking the cycle. This equilibrium is well
below both the optimal amount of storage required by a centralized system and 100%
consumer adoption, and it exhibits all of the problems cited in Section 1: large upfront
capital costs, uncertain returns, socialized benefits, and free riders. Thus, although
the equilibrium may be acceptable to a utility, it does not preserve the incentive for
consumers to install and maintain energy storage. In addition, compared to prior work,
our flat-power pricing model avoids the game-theoretic aspects of current variable
rate pricing models, as under flat-power pricing the amount consumers pay is based
only on their own usage and is independent of other consumers’ usage.

2.3. A Centralized Approach

Before examining a distributed approach to energy storage, we first define and consider
an optimal centralized battery charging scheme. Ideally, to minimize generation costs
based on the demand-cost function from Figure 2(b), the optimal approach would shift
aggregate grid demand such that it was the same—equal to average demand—at all
times. If we assume a centrally controlled battery array, then a simple algorithm for
controlling a centralized system would simply charge and discharge batteries whenever
grid demand is below or above the average demand, respectively, such that demand
is always equal to the average. With this algorithm, the minimum energy capacity
necessary to optimally flatten demand is equal to the maximum capacity ever required
to charge or discharge the batteries to sustain the average. Of course, as mentioned in
Section 1, a centralized system has drawbacks compared to the distributed approach,
which provides several benefits.

As an example, Figure 4 depicts a grid demand profile with average power every 5
minutes from one day across nearly 14,000 homes, as well as the day’s average daytime
and nighttime demand. In this case, the maximum capacity required to charge or dis-
charge the battery occurs between 12am and 6:30am (equivalent to the area between
the instantaneous demand and the average demand over that time period). The optimal
approach requires 43.3MWh of energy storage capacity to charge batteries during this
nighttime period and would reduce generation costs by 24.2% based on the demand-
cost function in Figure 2(b). If this storage capacity were distributed evenly among
all homes, then each home would need only 3.09kWh of usable energy storage. This
capacity is nearly 4× less than the 12kWh of usable (or 24kW of rated) capacity that
each home requires to maximize energy storage’s ROI estimated by prior work [Mishra
et al. 2012], which uses existing variable rate pricing plans with an optimal charging
algorithm that assumes future knowledge of demand and prices. Since battery costs
scale linearly with capacity, maintaining 4× less capacity decreases costs by 4× (from
$1416 amortized per year to maintain 12kWh to $354 per year to maintain 3.09kWh).
The example demonstrates how minimizing the aggregate battery capacity and
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Fig. 4. Instantaneous day and night average grid demand for 14,000 homes in our town smart meter data
over a single day.

distributing it as widely as possible among consumers reduces the cost per consumer
of energy storage.

3. FLAT-POWER PRICING

The storage adoption dilemma discourages consumers from adopting distributed en-
ergy storage at large scales (>20% of consumers). Unfortunately, variable rate electric-
ity prices incentivize consumers with energy storage to use battery charging algorithms
that incentivize charging batteries during the lowest-price periods to minimize elec-
tricity costs. At large scales, the use of these variable rate charging algorithms by
distributed consumers may exhibit one of multiple possible outcomes. In particular,
these algorithms will result in either (i) large rebound peaks (if prices do not react to
changing demand), (ii) grid instability (if consumers react quickly to changing demand
causing price oscillations), or (iii) no benefit to the consumer (if consumers react slowly
to changing demand causing prices to slowly equalize over time). None of these out-
comes is desirable. Variable rate pricing is effective at reducing peak demand today
only because electricity’s price elasticity of demand is typically low, i.e., consumers do
not react strongly to changes in electricity’s price. As a result, only a small fraction of
consumer demand shifts to low-price periods. In contrast, large-scale distributed en-
ergy storage makes electricity’s price completely elastic with demand, causing a large
fraction of demand to shift to the lowest-price period.

Properly incentivizing distributed energy storage at scale requires rethinking elec-
tricity pricing plans. Our premise is that utilities should encourage consumers to min-
imize their peak demand by incentivizing them to flatten their demand rather than
simply shift as much demand to the lowest-price period. Of course, the more consumers
attempt to flatten their own demand, the more the grid’s aggregate demand will flatten.
To this end, we propose a new type of electricity pricing plan for residential consumers,
which we call flat-power pricing. Note that although electricity’s price is set by supply
and demand in the wholesale market, utilities have the freedom to offer consumers dif-
ferent pricing models. For instance, neither flat-rate pricing, which charges the same
price per kilowatt-hour at all times, nor TOU pricing conform to wholesale prices. These
pricing plans, instead, simplify consumer pricing relative to the wholesale market.

Our flat-power pricing model charges consumers $β per kilowatt-hour for power
usage less than a consumer-specific target and then charges $(1 + α)β for any usage
above that target. Figure 5 depicts how flat-power pricing works, where the consumer-
specific target is near 1kW, the energy usage in blue costs $β per kilowatt-hour, and
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Fig. 5. Flat-power pricing charges consumers $β per kilowatt-hour for power usage less than a consumer-
specific target (in blue) and $(1 + α)β for usage above the target (in red). The magnitude of α determines the
incentive to flatten demand.

Fig. 6. Although 12kWh of energy storage is capable of shifting only a fraction of demand to the low-price
period, it is more than enough to completely flatten the demand from Figure 2.

the energy usage in red costs $(1 +α)β. Unlike variable rate pricing, flat-power pricing
directly incentivizes consumers to flatten their own demand, where the α parameter
controls the magnitude of the incentive, rather than shift as much demand as possible
to low-price nighttime periods. Importantly, the approach aligns consumer incentives
with the grid’s incentive to reduce its peak and flatten demand without requiring
the grid to actively coordinate distributed battery charging and discharging, e.g., by
explicitly what fraction of homes are charging and discharging over time. In addition,
flattening a consumer’s demand takes significantly less energy storage capacity than
shifting all of it to the lowest-price period. For example, Figure 6 shows that although
12kWh of usable energy storage is only capable of shifting a fraction of demand to the
low-price period, it is more than enough to completely flatten the original demand from
Figure 2.

Thus, flat-power pricing encourages distributing aggregate storage capacity widely
across consumers, requires less storage capacity per consumer, and results in lower
upfront capital costs. In effect, to flatten grid demand, the approach incentivizes a
large number of consumers to install a small amount of energy storage (and make a
small investment) rather than incentivizing a small number of consumers to install
a large amount of energy storage (and make a large investment). The approach also
prevents rebound peaks and grid instability, as consumers are flattening, rather than
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shifting, their demand, and maintains the incentive to use energy storage as capacity
scales, as consumers always benefit from not incurring a penalty, based on α, regardless
of other consumers’ behavior. Finally, utilities can mitigate free riding by altering α’s
value, in addition to β, as generation costs change, as only the set of consumers with
energy storage are able to automatically optimize for peak demand. A higher α and
lower β penalizes consumers with energy storage less than consumers without it. We
elaborate on these advantages in the following.

3.1. Advantages

Scalability. Flat-power pricing increases the incentive for consumers to install and use
small amounts of local energy storage. Although prior research has demonstrated the
benefits of energy storage to the grid, i.e., to reduce its generation costs and carbon
footprint, handle intermittent renewable energy sources, and increase reliability, it
has not addressed how to incentivize consumers to adopt it. As we show in Section 5,
flat-power pricing (for suitable values of α) provides consumers a strong monetary
incentive to use small amounts of energy storage (or scheduling of elastic background
loads) to flatten their grid demand. In contrast, existing variable rate pricing plans
only incentivize shifting large amounts of load from low-price nighttime periods to
high-price daytime periods, which necessitates large amounts of energy storage. In
addition, unlike with variable rate plans, flat-power pricing requires only limited co-
ordination with a utility, as we expect α and the consumer-specific target to rarely
change. In contrast, consumers who opt to use variable rate plans must react appro-
priately to constantly changing prices and price forecasts, often daily via the Web, e.g.,
https://www.powersmartpricing.org/prices/.

Stability. One issue with existing variable rate plans is that, as we discuss, if con-
sumers were to adopt load scheduling algorithms at scale, all consumers would chase
low prices in tandem, potentially resulting in grid instability. In the extreme, if all con-
sumers shift all of their power usage to the lowest-price period, the result would be a
rebound peak much greater than the original peak. In some sense, variable rate pricing
plans implicitly rely on the assumption that the price elasticity of electricity demand
is low: only a small fraction of consumers are likely willing to change their behavior to
lower their electricity bill. Oddly, this assumption actually relies directly on there being
a weak incentive to install energy storage. However, the presence of distributed energy
storage at scale would invalidate the assumption by making demand highly elastic
with price. Thus, even slight price variations could have dramatic effects on the grid,
akin to flash crashes. In contrast, flat-power pricing is more conducive to algorithmic
optimization, as consumers focus on flattening their own demand rather than reacting
(potentially in tandem) to changing grid conditions. If all consumers flatten their own
demand, it achieves the same goal as variable rate plans: a flatter grid demand with a
lower peak.

Utilities already use a variety of pricing plans that incorporate a peak-based compo-
nent, typically for large industrial consumers [Braithwait et al. 2007]. We discuss less
common pricing models that incorporate a peak-based component in Section 6, many
of which attempt to address similar problems as flat-power pricing. In the following,
we compare the incentives from the most common variant of peak-based pricing with
flat-power pricing, which charges consumers a demand charge based on their absolute
peak usage in kilowatts over a small time window, e.g., 30 minutes, in the billing period.
This is similar to flat-power pricing in that it encourages consumers to reduce their
absolute peak demand. As a specific example, our local utility includes a demand com-
ponent that charges $12.52/kW of peak power based on the maximum average power
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consumed over a 30-minute interval within the billing period.4 Note that this peak
demand charge differs from the variable energy usage charge, which is on the order of
$0.10/kWh of energy used over the billing period.

Although this peak-based component strongly incentivizes consumers to reduce their
absolute peak, it does not incentivize consumers to reduce their nonabsolute peaks. In
the extreme, if a consumer incurs a large peak usage on the first day (or hour) of the
billing cycle, he or she has no incentive to reduce their peaks for the remainder of the
cycle. Thus, optimal charging algorithms for peak-based pricing focus on predicting
when the peak demand will occur, as well as saving energy to ensure that it is avail-
able to reduce demand during these peak periods. However, since the focus is on the
absolute peak, charging algorithms may not use energy storage effectively to reduce
other peaks. Yet reducing the nonabsolute peaks is also important, as the absolute
peak may not align with the grid’s peak demand. In addition, charging algorithms
for peak-based pricing are highly sensitive to predictions of when the absolute peak
will occur each billing period. In prior work, we found that accurately predicting when
a 30-minute peak energy usage period will occur over a month-long billing period is
challenging [Mishra et al. 2013b], hindering any algorithm that must optimize for the
absolute peak. Accurate predictions are challenging because consumers often cannot
control their absolute peak, especially if caused by a single appliance, such as an electric
dryer.

Our flat-power pricing model does not suffer from these drawbacks, as consumers
need only optimize for the short-term goal of maintaining power usage at or below
the target level α rather than precisely planning their usage over a month-long billing
period. As a result, optimizing for flat-power pricing does not require accurately pre-
dicting demand over long time horizons and does not penalize as much as peak-based
pricing if short-term predictions of future demand are inaccurate. For example, if an
incorrect prediction causes a battery charging algorithm to generate a power peak that
exceeds the target level α for a brief period, the consumer is only charged for the period
their power usage was over the peak, whereas with peak-based pricing the power peak
could dictate the consumer’s peak demand surcharge for the entire month-long billing
period. In addition, predicting a home’s average demand over a long period, e.g., an
entire day, which is necessary to optimize for flat-power pricing, is generally more ac-
curate than predicting it over shorter time periods, e.g., every 15 minutes throughout
the day, which is necessary to optimize for the absolute peak demand.

Renewable integration. Flat-power pricing also better accommodates high penetra-
tions of local intermittent renewable energy sources, such as wind and solar, compared
to variable rate plans. Today, consumers who leverage local renewables use “net meter-
ing” to release any excess energy into the grid. However, net metering is not feasible
at large scales, as the intermittent and uncontrollable nature of renewable generation
would make it difficult (or impossible) for utilities to balance the grid’s supply and
demand. This is one reason most states place strict caps on the aggregate number of
consumers who may net meter. For example, in Georgia, only 0.2% of subscribers may
net meter; additional subscribers must either waste excess renewable energy or store
it in a battery. Of course, these caps are currently not an issue, as renewable adoption
is still in its infancy.

However, rising long-term electricity prices combined with the increase in efficiency
of solar panels and dropping solar panel prices has led to a dramatic rise in the number
of local renewable installations. To scale renewable generation, consumers will need to

4See http://www.hged.com/customers/payment-billing-rates/rates/electric-rates/183E%20-%20Large%20
General%20Service.pdf.
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dampen the renewable variations that they expose to the grid. By incentivizing con-
sumers to flatten their grid demand, flat-power pricing encourages this dampening.
Thus, in addition to encouraging consumers to shift their usage, it also encourages con-
sumers to control battery charging and discharging to absorb renewable fluctuations,
as it penalizes consumers for these variations.

Simplicity. Finally, in addition to being insensitive to predictions, flat-power pricing
is also simple for consumers to understand. The primary objective of variable rate
pricing plans is to incentivize consumers to manually alter their behavior by varying
electricity prices. In practice, however, consumers may find it difficult to determine
how to appropriately alter their behavior, given that prices may rise and fall each
hour or day based on electricity’s real-time balance of supply and demand. Existing
peak-based pricing plans that include an additional surcharge based on a consumer’s
peak demand add yet another layer of complexity. In contrast, flat-power pricing only
requires consumers to know and respond to their consumer-specific target. In this case,
a simple energy monitor displayed in a prominent place would indicate whether or not
consumers are above their target and thus are incurring higher prices. Therefore,
flat-power pricing is more conducive to manual optimization by consumers compared
to variable-rate and peak-based pricing models.

3.2. Drawbacks

Whereas flat-power pricing has the numerous advantages described earlier, it also has
some potential drawbacks. For example, encouraging consumers to flatten their own
demand, in aggregate, may require consumers to install more energy storage capacity
than necessary to flatten grid demand.

To understand why, consider a simple grid with only two homes, where each day the
first home uses 1kW from 12am to 12pm and 2kW from 12pm to 12am, whereas the
second home uses 2kW from 12am to 12pm and 1kW from 12pm to 12am. In this case,
to flatten their own demand, each home requires 6kWh of energy storage for a total of
12kWh of capacity, which the homes would charge at a rate of 500W/hour when usage is
1kW and discharge at a rate of 500W/hour when usage is 2kW. However, in aggregate,
the two homes’ demand is already flat—using exactly 3kW all the time—without any
energy storage. Thus, in this case, energy storage is not necessary. The waste occurs
because the peak periods of the two homes are not aligned with each other; if their peak
periods were exactly aligned, then they would each require 6kWh to flatten demand
(and 12kWh would be the minimum capacity necessary to flatten aggregate demand).
In general, the aggregate energy storage capacity necessary to flatten grid demand by
flattening each home’s demand will diverge more from the optimal amount the more
the peak and off-peak periods of the homes become less aligned. Of course, in practice,
homes in the grid exhibit peak demand at similar times, which naturally reduces the
divergence from optimal. We quantify this divergence using our smart meter data from
14,000 homes in Section 5.

Another potential drawback is that flat-power pricing alters battery charging pat-
terns, which affect lifetime. Battery cycle lifetime is typically rated for a fixed number of
charge-discharge cycles to specified DOD, e.g., where each cycle starts at 100% charged
and then goes to a fixed DOD, e.g., 50% DOD. Whereas prior switch-based architectures
only charge and discharge batteries once per day and conform to these ratings, flat-
power pricing requires variable charging and discharging throughout the day to differ-
ent, often shallower, DODs. Thus, we evaluate battery lifetime under flat-power pricing
in Section 5 based on a fixed amp-hour throughput model of battery lifetime, which
is a standard model for evaluating battery cycle lifetime under dynamic charging and
discharging patterns [Bindner et al. 2005]. The amp-hour throughput lifetime model
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assumes the total amount of energy charged/discharged to a battery over its lifetime is
fixed. Thus, the model handles dynamic and nonuniform charging and discharging pat-
terns by deducting the total amount of energy charged/discharged on a cycle from the
battery’s fixed lifetime amount of energy charge/discharge. The amp-hour throughput
model of battery lifetime is conservative in our evaluation, as it weights any battery
charge or discharge equally regardless of the current DOD. However, in reality, charg-
ing and discharging at higher DODs have a much larger effect on battery lifetime than
at smaller DODs. With flat-power pricing, there tend to be many small charging cycles
to small DODs compared to existing variable rate pricing that necessitates a small
number of charge/discharge cycles to high DODs.

3.3. Discussion

Flat-power pricing requires setting an appropriate β, α, and consumer-specific target.
We expect β to be set similarly to flat-rate pricing plans, which charge the same rate for
electricity at all times. For the consumer-specific target, one way to choose it is based
on each home’s historical average per-day power usage. Using each home’s average
power is effective, as an optimal load scheduling algorithm would result in the home
consuming its average power at all times. Of course, average power changes over the
course of the year and week, e.g., weekends versus weekdays, so the target would also
need to change. However, using the average power to set the target raises concerns
about fairness and manipulation. For example, inefficient homes that have historically
consumed more energy overall would pay lower prices for higher levels of use than effi-
cient homes. In addition, homes might attempt to manipulate their target by artificially
increasing their consumption to increase their target. Once their target increases, they
could then resume a normal level of consumption at a lower price. As a result, we advo-
cate setting targets based on the average power usage of homes with similar size and
heating systems, e.g., electric versus gas, both of which are available in public records.
To promote energy efficiency, many utilities already maintain such records to provide
consumers a ranking of their electricity usage compared to their peers.

One other potential point of concern is that flat-power pricing encourages overop-
timizing the use of energy storage. Since the grid aggregates electricity demand over
large numbers of consumers, shifting demand over short time periods should not af-
fect the aggregate load profile, as this demand is already highly multiplexed across
homes within the grid. Although true today, the introduction of a high penetrations of
intermittent solar and wind energy sources into the grid is likely to significantly alter
this dynamic and increase the benefits of shifting load over shorter time intervals. We
evaluate the impact under increasing levels of renewable penetration in Section 5. In
addition, future microgrids, which promise to increase grid reliability by leveraging
local energy sources, will benefit much less from aggregation effects [Zhu et al. 2013].
Finally, the potential benefits of incentivizing all consumers to adopt small amounts of
energy storage, rather than none of them (which is effectively the case today), likely
outweighs the cost of overoptimization.

4. SCHEDULING ALGORITHMS

In this section, we outline algorithms for battery charging and discharging, as well
as scheduling of elastic background loads, to optimize electricity costs for flat-power
pricing. In both cases, we discuss how these algorithms compare to those that optimize
for variable rate pricing.

4.1. Battery Charging and Discharging

To control battery-based energy storage under variable electricity prices, prior work
runs a linear programming (LP) at the beginning of each day and takes as input
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predictions of the next day’s demand and electricity price profiles [Mishra et al. 2012;
Carpenter et al. 2012]. Assuming that the predictions of next-day demand and electric-
ity price profiles are accurate, the LP-based solution is optimal. The LP-based solution
under variable rate pricing is not highly sensitive to prediction accuracy and is gener-
ally near the optimal even when predictions are not accurate. In contrast, as discussed
earlier, an LP-based solution that incorporates an additional surcharge based on the
absolute peak is highly sensitive to the prediction of when the peak will occur and gen-
erates highly nonoptimal results even for peaks predictions that are slightly shifted in
time, e.g., by an hour.

In general, all battery control strategies that exploit arbitrage under existing variable
rate pricing models follow a greedy approach that charges batteries during lower-price
periods and discharges them during higher-price periods. Note that the particular
control strategy determines how much to charge and discharge the battery based on
its assumptions of battery characteristics and predictions of future demand and prices.
In contrast, under flat-power pricing, rather than charge the battery to full capacity
during the lowest-price period at night, our charging/discharging algorithm attempts
to flatten a building’s demand to prevent paying the penalty based on α. In particular,
we select a target average power for flattening and then simply charge and discharge
batteries whenever demand is below or above the target, respectively, to ensure that
demand is near the target. Note that rather than run our algorithm once per day
using predictions of next-day demand, as with the variable rate algorithms earlier,
the algorithm naturally operates in an online manner, adjusting the charging and
discharging of the battery in real time based on changing demand in relation to the
chosen target. This algorithm works well as long as (i) the target flattening threshold
is near the actual average power and (ii) the storage capacity is large enough to flatten
demand.

If the target average is too small, then the approach will not store enough energy to
reduce the peak demands when necessary; if the target is too large, then it will store
more energy than necessary throughout the day. However, importantly, although the
algorithm is sensitive to a prediction of average power, it does not require shorter
time-scale predictions of future demand, e.g., hourly day-ahead predictions, as in the
LP approach presented previously. Average power predictions over long time periods
tend to be much more accurate than demand predictions over short time scales far
into the future. In fact, when predicting average power, the longer the time scale,
generally the more accurate the prediction [Sharma et al. 2010], e.g., the average
power of a home each day varies less than its average power every 10 minutes. As a
result, accurate predictions of average power over long periods, e.g., a day or month,
do not require sophisticated methods [Sharma et al. 2010, 2011]. Thus, we simply use
the average demand over the previous interval.

4.2. Elastic Background Load Scheduling

Flat-power pricing enables consumers to benefit from small, rather than large, shifts
in their load. In addition to using a battery to shift load to flatten demand, consumers
may also schedule elastic background loads, such as refrigerators, freezers, heaters,
dehumidifiers, humidifiers, dryers, and dishwashers. As with a battery, each of these
loads expose different degrees and types of scheduling freedom. However, this freedom
is limited, as generally these loads cannot be deferred for long periods of time. For
example, a refrigerator’s cycle may have enough slack to delay it for a half hour, but it
cannot be delayed for multiple hours without causing its temperature to rise too high.
As a result, scheduling elastic background loads is not beneficial under variable rate
pricing plans. However, flat-power pricing introduces an incentive to schedule these
loads to flatten demand by shifting small amounts of power.
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Whereas prior research focuses on optimizing different dimensions of load scheduling
freedom in isolation, we examine the performance of jointly optimizing scheduling for
all types of loads to quantify the maximum benefits from scheduling loads under flat-
power pricing. As in prior work, we formulate a combined scheduling problem as a
mixed integer linear program (MILP). In particular, we extend the MILP used in
Parasol [Goiri et al. 2013]: a solar-powered microdata center that schedules batch
computing jobs with well-known running times and deadlines. Similar to our MILP,
Parasol’s objective is to minimize electricity costs under variable rate pricing plans and
maximize the use of solar power, albeit for a data center instead of a residential home.
Of course, our work differs from Parasol, as a building is different from a data center
in terms of its users, workloads, loads, and scheduling freedom.

4.2.1. Degrees of Freedom. The primary degrees of scheduling freedom for loads we
identify are the ability to transparently shift, slide, stretch, or sell power. Note that
some loads may exhibit multiple degrees of scheduling freedom.

Shifting power refers to scheduling on-off loads that operate over one or more duty
cycles such that within each duty cycle the load is on for some period of time and off
for some period of time. The length of the duty cycle and the amount of time a load is
on within each cycle may be either static, e.g., if driven by a timer, or dynamic, e.g., if
driven by a thermostat. In either case, the load must be on for a fixed amount of time
during a cycle to satisfy its objective, such as keeping the temperature of an enclosed
space within a specified range or guardband. However, as long as the scheduler ensures
that the load is on for this time each cycle, it is free to determine when the load is on
during the cycle without violating its objective. This freedom is often referred to as
slack [Barker et al. 2012b; Taneja et al. 2010].

Prior work focuses on scheduling these shiftable on-off loads either to (i) align as
much load as possible with renewables [Taneja et al. 2010], (ii) defer loads during times
of grid constraint [Ganu et al. 2012], or (iii) flatten a building’s demand profile [Barker
et al. 2012b; Karmakar et al. 2013]. However, prior work does not address the lack of
monetary incentive for consumers to shift loads. Since the duty cycle length for common
shiftable loads, such as an air conditioner or refrigerator, are at most a couple of hours,
and often much less, schedulers are only able to shift these loads within narrow time
periods without violating their objectives. As a result, shiftable loads cannot generally
exploit variable rate pricing models, which require consumers to shift load to off-peak
periods that may be many hours from the peak periods.

Sliding power refers to deferring the start time of a batched load, such as a dish-
washer, washing machine, or dryer, that performs a usually nonpreemptible batch task
for a fixed, well-known period of time [Taneja et al. 2010]. These loads are first ini-
tialized by a user and then are run for a predetermined amount of time without user
intervention before being emptied and reset by the user. In some cases, these loads
are pipelined. For example, clothes are usually washed and then dried in sequence. In
addition, some loads may also be preemptible, in which case, once started, they also act
as shiftable loads that operate over a single duty cycle. As long as a user has initialized
a load, e.g., filled it with clothes or dishes, a scheduler has the freedom to indefinitely
delay its start time. Of course, delaying the start time also delays the end time, which
may in turn cause delays in the pipeline. The primary constraint for transparently
scheduling slide loads is the amount of inconvenience a user is willing to tolerate.
Since users directly control when to initialize and start slide loads, incentivizing them
to change when they operate these loads is an important goal of existing variable rate
pricing plans. Unfortunately, as earlier, users are often unwilling to delay start times
many hours into the future, e.g., from daytime to nighttime, which limits scheduling
freedom.
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Table I. Parameter Definitions for Linear Program

Stretching power refers to extending an elastic load’s running time while lowering
its average power usage to keep its energy consumption constant for a particular
task [Srikantha et al. 2012]. Typically, elastic loads utilize resistive heating elements or
variable drive motors, which enable a scheduler to precisely adjust their temperature
or speed, respectively, to dictate a specified running time. Examples of elastic loads
include washing machines, dryers, dishwashers, ovens, stoves, refrigerators, freezers,
air conditioners, electric water heaters, and electric space heaters. Of course, schedulers
cannot arbitrarily stretch a load, as the average power usage and duration of a task
affects its operation. For example, running dryers at high heat for a short duration
works well for heavy fabrics, whereas low heat for a long duration is better for delicate
fabrics. Thus, prior work [Srikantha et al. 2012] places a low upper limit (approximately
10%) on stretching a load’s running time.

Selling power, e.g., via net metering, is an attractive option for homes that generate
their own power using on-site renewables, such as solar power. However, in many
cases, the price utilities pay consumers for power is less than the price they charge
them for it. In addition, current laws often place strict caps on the amount of power a
utility must buy back from a consumer. These dynamics alter the scheduling problem
by incentivizing consumers to not only transfer load to low-price periods but also to
align as much of it as possible with renewable generation [Mishra et al. 2013a; Taneja
et al. 2010; Zhu et al. 2011]. Aligning a home’s load with renewable generation also
decreases grid transmission losses, as it increases the amount of power consumed at
the point of generation. The preceding scheduling limitations also impact the freedom
to align load with renewable generation.

4.2.2. Joint Optimization. We define an MILP that jointly optimizes the degrees of
scheduling freedom above using the parameters listed in Table I. We model both

�Lshi f t[power] and �Lslide[power] as vectors of three-tuples that specify each load’s start
time, running time, and power usage. We assume that slide loads also have a comple-
tion deadline. We then divide each day into T discrete intervals of length l from 1 to T
with the objective of minimizing

∑T
i=0(mi ∗ Pi

grid − α ∗ mi ∗ Ni
green) each day, i.e., the net

bill after any net metering, given the following constraints.

∀i ∈ T , Bgreen + Bgrid ≤ C
4

(1)
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T∑
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Bi
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e
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∀i ∈ T |Li
battery > 0, Ngreen = 0 (4)

∀i ∈ {T |Li
battery > 0}, Bi

green + Bi
grid = 0 (5)

∀i ∈ T , Li
green + Bi

green + Ni
green ≤ gi (6)

∀i ∈ T , Li
grid + Bi

grid = Pi
grid (7)

∀i ∈ {T |Li
grid > 0}, Ni

green = 0 (8)

∀i ∈ T , Li
battery + Li

grid + Lgreen

= Li − �Li
slide[power] − �Li

shi f t[power]
(9)

∀ �Li
shi f t,∀i ∈ T

Li
shi f t[period]

,
∑

Li
shi f t[power]

= Lshi f t[power]
(10)

Briefly, the constraints ensure the following invariants. Constraint (1) dictates that
the battery’s charging rate is not more than its capacity divided by 4, i.e., a C/4 charge
rate. We use a maximum charging rate of C/4, as recommendations for maximum
charging rates for sealed lead-acid batteries range between C/5 and C/3 charging rates
[Bullock and Salkind 2011]. However, we note that maximum charging rates are gener-
ally not required for either flat-power pricing or existing variable rate pricing models.
Since flat-power pricing incentivizes consumers to operate at their average demand, it
naturally reduces the amount a battery must discharge over a small time window. In
addition, maximum charging rates are generally not necessary in variable rate pricing
models, as they typically offer long low-rate periods for charging at night. Constraint
(2) ensures that the energy charged to the battery never exceeds the energy discharged
from it. Similarly, constraint (3) is a condition to ensure that the energy stored in the
battery never exceeds its capacity, i.e., the maximum amount of energy it is capable of
storing. Finally, constraint (4) dictates that net metering and battery charging do not
occur simultaneously, (5) battery charging and discharging do not occur simultaneously,
(6) renewables can charge the battery, (7) renewables can be net metered, (8) consum-
ing grid power and net metering cannot occur simultaneously, (9) every load is powered
by only one energy source, and (10) the amount of power shiftable loads consume per
period is constant.

Constraints (4), (5), and (8) are nonlinear mutual exclusion constraints. We convert
these to linear constraints by introducing a binary variable b ∈ {0, 1} and replacing
each nonlinear mutual exclusion constraint with five linear constraints that enforce the
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Fig. 7. (a) The coefficient of variation of grid power usage over 11 months as a fraction of centralized battery
capacity under flat-power pricing. (b) Aggregate demand without energy storage and with centralized energy
storage using ideal and exponential capacity under flat-power pricing. (c) Aggregate demand without energy
storage and with each home using the ideal amount under flat-power pricing. Note that aggregate demand
(ideal) and aggregate demand (exponential) nearly precisely overlap each such that it is difficult to distinguish
them.

same invariant. In this case, we replace any constraint of the form ∀i ∈ {T |x > 0}, y = 0
with x − ∞ ∗ b ≤ 0, −∞ ∗ x + b ≤ 0, y + ∞ ∗ b ≤ ∞, x ≥ 0, and y ≥ 0. In addition,
since neither slidable loads nor stretchable loads map well to linear constraints, we
use brute-force methods to determine an optimal schedule. For each slide load each
day, we simply run the MILP multiple times for each possible start time of the slide
load and then use the minimum cost schedule. Of course, as the number of slide loads
increases, we must run the MILP for each possible combination of start times, which
increases exponentially as the number of slide loads increases. However, the approach
is computationally tractable in practice, as the number of slide loads is typically small,
e.g., usually three or less, and they do not run everyday. Likewise, for each stretchable
load, we run the MILP for each possible stretched duration.

5. EVALUATION

We evaluate the ability of flat-power pricing to incentivize both distributed energy
storage and elastic load scheduling. We examine both grid- and consumer-scale effects.
For our grid-scale experiments, we use smart meter data from 14,000 homes in a small
town over 11 months, whereas for our consumer-scale experiments, we use fine-grain
per-load energy data from Home-A in the Smart* dataset [Barker et al. 2012a].5 To
estimate the effect of flat-power pricing on generation costs, we use the demand-cost
function in Figure 2(b), which has been scaled based on the maximum generation
capacity in our traces.

5.1. Distributed Energy Storage

We first evaluate the aggregate battery capacity necessary with flat-power pricing, both
when it is centralized and when it is distributed across all homes. For this experiment,
we assume that we set a new target threshold per home every 12 hours such that
the home attempts to flatten demand over the 12-hour period. Figure 7(a) plots the
coefficient of variation—the ratio of the standard deviation σ to the mean μ—of the
grid’s power usage over the 11-month period with different battery capacities when
operated in a centralized manner. The coefficient of variation is a normalized measure
of variation in data such that the lower the coefficient of variation, the flatter the grid’s
demand profile. We label with a square the point on the x-axis where an increasing
battery capacity does not change the grid’s demand profile as ideal, as this is the flattest
possible profile with any battery size. The graph shows that as the battery capacity
decreases on the x-axis, the coefficient of variation remains steady until a knee point

5From July 1, 2012, to August 30, 2012.
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Fig. 8. (a) Comparison in generation savings when the fraction of homes on the x-axis use energy storage
under a variable rate versus flat-power pricing. (b) A zoomed-in view of (a) that focuses on the savings under
flat-power pricing.

where it begins to increase. We label this knee point with a circle as exponential, since
this is the point where the coefficient of variation begins to increase exponentially
with decreasing battery size. The graph demonstrates that a significant fraction of the
possible flattening can be achieved with significantly less than the ideal-sized battery
capacity.

In our city-scale dataset, over the course of the 11-month period, the ideal centralized
battery capacity is 43.3MWh, whereas the distributed capacity necessary to maintain
the knee point above is only 62.9MWh, which is within 31% of the ideal centralized
capacity. In addition, in the distributed case, the median battery size is only 3.44kWh
per consumer on average, which is significantly less than the 12kWh necessary to max-
imize the benefits under variable rate pricing plans [Mishra et al. 2012]. Figure 7(b)
and (c) illustrate the effect on demand of centralized versus distributed use of energy
storage over a single day. The figures show that the centralized and distributed use of
energy storage yields essentially the same demand pattern, as the profile in Figure 7(b)
and (c) is nearly the same. However, in the distributed case, the demand pattern stems
from thousands of consumers independently charging and discharging their batteries
based on the incentives introduced by flat-power pricing without any centralized co-
ordination. In both cases, note that aggregate demand (ideal) and aggregate demand
(exponential) nearly precisely overlap each such that it is difficult to distinguish them.
This demonstrates the diminishing returns of increasing aggregate battery capacity
(whether centralized or decentralized) beyond the knee point. The graph also shows
that distributed energy storage under flat-power pricing is similar to that of a central-
ized energy storage system.

We next examine the effect of rebound peaks when consumers use energy storage at
large scales. Figure 8(a) shows the savings in generation costs across the entire grid
compared to no energy storage, as the percentage of homes using energy storage scales
up with both flat-power pricing and variable rate prices. For these experiments, we set
the battery capacity equal to both its ideal value, i.e., where a greater capacity will have
no effect on the experiment, and a lesser value that performs similarly, e.g., equivalent
to the “knee” of the battery-cost curve. The figure shows that as the number of homes
using energy storage scales up, using the ideal charging algorithm (the SmartCharge
algorithm from prior work [Mishra et al. 2012]), increases generation costs, i.e., the
savings are negative, due to simultaneous battery charging and large rebound peaks
after roughly 20% of homes use energy storage with variable rate pricing. In contrast,
flat-power pricing steadily decreases the grid’s generation costs as more homes use
energy storage, signaling that homes and the grid are successfully flattening demand.
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Fig. 9. Histogram of battery lifetime based on an amp-hour throughput model under flat-power pricing.

Notice that the maximum savings from both the variable rate pricing and flat-power
pricing are similar: this reflects that in both cases, the aggregate energy storage is suf-
ficient to flatten demand. The difference with flat-power pricing is that it distributes
this capacity across 100% of consumers, whereas variable rate pricing distributes it
across a much smaller set. Figure 8(b) zooms into the grid’s generation savings under
flat-power pricing from Figure 8(a) and shows that flat-power pricing reduces genera-
tion costs over the course of the year by up to 13%. Note that at high adoption rates
under flat-power pricing, the ideal battery capacity that results in the flattest possible
profile has less savings than the nonideal exponential battery capacity based on the
knee of the capacity-variation trade-off. This occurs because the ideal battery capacity
is significantly larger than the exponential capacity. The increased battery capacity
at high adoption rates results in more energy conversion losses, which increases the
overall demand on the grid and reduces the savings from using batteries.

We next evaluate the lifetime of batteries under our charging algorithm for flat-power
pricing. We evaluate battery lifetime under an amp-hour throughput model, which is
the standard model for evaluating battery lifetime under dynamic and nonuniform
charging and discharging patterns [Bindner et al. 2005]. Recall from Section 3.2 that
the amp-hour throughput lifetime model assumes that the total amount of energy
charged/discharged to a battery over its lifetime is fixed and simply deducts the amount
of energy stored/released by a battery on each cycle (based on the depth of the cycle’s
discharge or charge). Thus, since large charges and discharges cause more current to
pass through the battery, they also have a larger negative affect on its lifetime. Figure 9
shows that most batteries last more than 8 years under flat-power pricing when using
our charging algorithm to flatten demand. If we assume that the maximum battery
lifetime is 8 years, independent of the charging cycles, then the average lifetime under
flat power pricing is 7.47 years. By comparison, under the same lifetime model, using
an existing variable rate charging algorithm [Mishra et al. 2012] that typically charges
and discharges batteries once per day (to a 50% DOD), as with a variable rate pricing
plan, the average battery lifetime would be 6.8 years. Thus, flat-power pricing increase
battery lifetimes compared to existing variable rate pricing models. The increase is due
to the much shallower discharge depths required by flat-power pricing.

Finally, Figure 10 shows the effect of flat-power pricing on grid demand with in-
creasing levels of intermittent solar energy. Supporting high levels of solar penetration
requires energy storage to absorb large fluctuations in renewable output. For example,
Figure 10(a) shows that even on a relatively sunny day, the energy generated by this
10kW home solar installation rises and falls dramatically based on passing clouds.
Mechanical generators cannot offset such large fluctuations to balance supply and de-
mand. Figure 10(b) then shows the ideal battery capacity under flat-power pricing as
the percentage of consumers with 10kW solar systems scales up. As is seen in the
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Fig. 10. Example of how power generation from a 10kW rooftop home solar installation can vary widely
minute to minute (a). Ideal battery capacity with flat-power pricing for increasing levels of solar penetration
(b) and associated load curves under increasing levels of solar penetration (c).

figure, this capacity drops initially, as increased solar energy decreases the difference
in daytime and nighttime consumption but then climbs steadily as more solar energy
introduces a more stochastic grid profile. The increase in required energy storage
capacity under increasing levels of solar penetration increases the importance of
incentivizing users to install distributed energy storage. Finally, Figure 10(c) shows
how the grid’s demand profile still remains nearly flat despite increasing levels of solar
penetration. Note that this graph only shows the grid’s demand profile and does not
include the additional solar generation.

5.2. Elastic Load Scheduling

The purpose of our MILP from Section 4.2.2 is to quantify the cost savings from optimiz-
ing each dimension of scheduling freedom, both in isolation and in combination over a
60-day period in a representative home for TOU, RTP, and flat-power pricing plans. The
TOU and RTP plans are depicted in Figure 1. Since we use the same RTP prices from
Figure 1 each day, our RTP plan has significantly more opportunity to lower costs by
scheduling loads than a real RTP plan. Thus, our RTP plan represents a conservative
upper bound on the size of the price differential between the lowest- and highest-cost
periods: a real RTP plan would result in much less savings. In our experiments, we
run our MILP at the beginning of each day with T = 24, assuming that we know the
home’s power demand pi, renewable generation gi, and electricity cost each interval. In
practice, the scheduler would require predictions for these parameters [Mishra et al.
2012; Sharma et al. 2010]. Therefore, our results also represent an upper bound on the
cost savings due to scheduling.

5.2.1. Variable Rate Pricing Plans. Figure 11(a) and (c) and Figure 12(a) and (c) show
the extent to which optimizing each degree of scheduling freedom lowers Home-A’s
electricity bill under existing variable rate pricing plans. In this case, the primary
shiftable load in the home is an air conditioner that on average consumes 13kWh per
day such that it is on for 33% of its duty cycle. The primary slidable and stretchable
loads include a dryer, washing machine, and dishwasher. For each graph, the y-axis
shows the percentage cost savings from scheduling each type of load in isolation, and
the x-axis represents the degree of scheduling freedom for each load—in this case,
the duty cycle length for shiftable loads, the maximum delay for slidable loads, the
stretch factor (as a multiple of the original running time) for stretchable loads, and the
amount of renewable energy available to sell through net metering. For renewables,
the x-axis represents a multiplicative factor applied to a real solar trace sized such that
it provides 50% of the home’s energy. For example, the two on the x-axis represents a
trace that provides 100% of the home’s energy.

As expected, as the scheduling freedom increases, so do the savings. Unfortunately,
practical values in each case are generally low, with each offering less than a 10%
reduction in costs even with our extreme RTP pricing model and generous assumptions,
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Fig. 11. Cost savings from optimizing each degree of scheduling freedom (shifting and sliding) for electric
loads using variable rate pricing and flat-power pricing within reasonable limits.

e.g., future knowledge of demand and prices, and a high price differential. For example,
as the length of the duty cycle for shiftable loads increases, the scheduler has more
freedom to shift power usage for long periods of time without violating the constraint
that energy usage within a duty cycle must be constant. In practice, however, common
shiftable loads, such as refrigerators, freezers, heaters, and air conditioners, have duty
cycles of only a few hours or less, which results in savings of less than 10%. This low
savings is due to the fact that RTP and TOU plans require loads to shift their usage
over long periods (from high-price daytime periods to low-price nighttime periods).

Significantly increasing the duty cycle for these loads is not possible without re-
designing them to incorporate some form of energy storage, e.g., such as thermal stor-
age [Taneja et al. 2013]. Similarly, although slide loads significantly reduce costs if
deferred multiple hours into the future (to low cost nighttime periods), such long de-
lays impose a significant burden on users. Likewise, stretching loads only provides
significant savings for unrealistically large stretch factors, e.g., > 3x, that are much
greater than the 10% assumed in prior work [Srikantha et al. 2012]. Although energy
storage and renewable energy are capable of lowering electric bills, they both require
a large capital investment that generally negates any savings on an electric bill. For
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Fig. 12. Cost savings from optimizing each degree of scheduling freedom (stretching and selling) under
variable rate pricing and flat-power pricing within reasonable limits.

example, prior work estimates that each kilowatt-hour of usable energy storage costs
$118 per year to maintain [Mishra et al. 2012].

Finally, Figure 13(a) shows the combined benefits from jointly optimizing the schedul-
ing for each type of load for “reasonable” values of the scheduling freedom and then
compares it to the sum of benefits from optimizing each load in isolation. In this case,
we chose a 2-hour duty cycle for the shiftable loads, 4 hours for the delay time of slid-
able loads, and 2× for the stretch factor of stretchable loads, with no battery capacity
or renewable energy. We believe that these represent a reasonable upper limit on the
scheduling constraints for a large class of today’s homes. Higher limits would impose
additional requirements on the loads or pose an excessive inconvenience to users. We do
not include any battery capacity or renewable energy due to their high upfront capital
costs, as we evaluated them independently in the previous section.

Our results in Figure 13(a) shows that the benefit from jointly scheduling based on
the preceding constraints is actually less than the sum of the benefits from scheduling
each dimension independently, as optimizing one degree of freedom often prevents
optimizations from another. Overall, the results show that advanced load scheduling
offers at most 20% savings in the extreme RTP case and 11% in the more common
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Fig. 13. (a) Cost savings when optimizing the scheduling of shift, stretch, and slide loads both independently
and jointly under TOU and RTP pricing models without energy storage or renewable energy. (b) Cost savings
when optimizing the same loads under a flat-power pricing model for different values of α both with and
without energy storage and renewable energy.

TOU case. Since many of our assumptions are conservative, the benefits are likely to
be much less in practice.

5.2.2. Flat-Power Pricing. By contrast, Figure 11(b) and (d) and Figure 12(b) and (d)
show the savings from scheduling each type of load in isolation under our flat-power
pricing plan for increasing values of α. For these experiments, we chose the consumer-
specific target to be equal to the home’s average power. In this case, for each load, we
evaluate it using the “reasonable” values from Figure 13(a): a 2-hour duty cycle for the
shiftable loads, 4 hours for the delay time, and 2× for the stretch factor. For storage
and selling, we use a 10kWh battery capacity and our solar energy harvesting trace
scaled at 1×. Our results show that in each case, the cost savings for modest values of
α, such as 3, are higher than for the TOU/RTP plans.

For example, Figure 11(b) shows that the savings from shifting loads is 18% for
α = 3, whereas in Figure 11(a) it is 4% to 7%. Likewise, Figure 12(b) shows that the
savings from sliding loads is 13% for α = 3, whereas in Figure 12(a) it is approximately
6%. Stretching power also show greater benefits. Interestingly, solar harvesting offers
roughly the same benefit as with the TOU/RTP plans (nearly 50%) at 1× scale (from
Figure 11(b)). The reason is that with TOU/RTP, solar panels produce energy near the
optimal time to minimize costs, i.e., during peak periods. In addition, for increasing
values of α, solar energy actually sees decreasing relative savings with flat-power pric-
ing. Since we choose the target to be equal to the home’s average power, the increasing
amount of solar energy lowers the consumer-specific target, resulting in higher prices
due to more electricity usage being above the target. The dynamic demonstrates that
the consumer-specific target should be independent of a home’s renewable generation.

Finally, Figure 13 shows the savings for combined load scheduling under both vari-
able rate TOU/RTP pricing models (Figure 13(a)) and our flat-power pricing model
(Figure 13(b)). As discussed earlier, Figure 13(a) shows the savings under existing
pricing models for both independently optimizing each scheduling degree of freedom
and from jointly optimizing them under representative TOU and RTP pricing models.
Figure 13(b) then shows the savings from optimizing the same degrees of schedul-
ing freedom under flat-power pricing for different values of α. As in Figure 13(a),
we do not consider energy storage or renewable energy, as we evaluate their effects
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independently in the previous section. Without any energy storage or renewable en-
ergy, in Figure 13(b) the savings are 30% for an α = 3 and up to 40% with higher α
values compared to the 11% and 20% savings in the TOU and RTP cases, respectively,
in Figure 13(a). In addition, if we add in 10kWh of energy storage and 1× of solar gen-
eration, the savings are 77% for α = 3 compared to 40% and 25% when adding energy
storage and 1× of solar generation in the TOU and RTP cases. The results show that
flat-power pricing offers consumers a greater incentive in all cases to schedule loads
than existing TOU/RTP plans, enabling utilities to control the incentive by raising or
lowering the α parameter.

6. RELATED WORK

This article focuses on combining a pricing model, charging algorithm, and load
scheduling to incentivize small load shifts. There is a large body of prior work on
each of these aspects. However, prior work generally focuses on only a single aspect.
For example, as we discuss in the following, prior work investigates battery charging
algorithms in the context of existing variable-rate pricing models. In contrast, this ar-
ticle’s primary contribution lies in its combination of these aspects to incentivize small
load shifts. We discuss prior work on each aspect in turn.

Pricing models. Section 3.1 compares flat-power pricing to a common hybrid pricing
model for industrial consumers that incorporates a peak-based demand charge; how-
ever, utilities are experimenting with a variety of other less common hybrid pricing
models, as outlined by Braithwait et al. [2007] and Faruqui and Eakin [2002] in sur-
veys on pricing models. For example, Liu et al. [2013] analyze workload scheduling
algorithms data centers under coincident peak pricing; this type of pricing is similar
to a peak-based demand charge except the charge in dollars per kilowatt-hour is based
on power usage when the grid’s demand peaks rather than when the consumer’s own
demand peaks. Optimizing battery charging and load scheduling for coincident peak
pricing has problems similar to the peak-based demand charges detailed in Section 3.1.
In other words, the scheduling is sensitive to accurate predictions of when grid demand
will peak, and the pricing model does not incentivize reducing the nonabsolute peak.
Flat-power pricing is most similar to existing consumer baseline load (CBL) pricing
models, which charge consumers a fixed price for conforming to a baseline load and pe-
nalize them from deviating from the baseline [Faruqui and Eakin 2002]. However, with
CBL pricing, the baseline load may follow any profile set by the utility and generally
follows a typical profile with high power usage during the day and low power usage at
night. In contrast, flat-power pricing incentivizes a flat demand profile by penalizing
usage above a target.

Energy storage. As mentioned in Section 1, numerous researchers have studied the
use of energy storage at homes and buildings to shift demand and cut electricity bills
under emerging variable rate electricity pricing plans. Daryanian et al. [1989] was
the first to propose this form of energy arbitrage. This work and work by van de Ven
[2011] study the problem from a theoretical standpoint, e.g., assuming certain demand
distributions without evaluating their solutions on real data. More recently, work by
Mishra et al. on SmartCharge [Mishra et al. 2012] and Carpenter et al. [2012] study a
similar problem in a realistic setting when taking into account battery inefficiencies,
stochastic demand in residential settings, and existing variable rate pricing plans
in Ontario and Illinois. Both works highlight the problems with scaling distributed
energy storage to many consumers, but neither (i) explores the full implications of
large-scale energy storage adoption, including the decreasing costs for consumers with
storage as adoption scales up, nor (ii) proposes or evaluates a solution to the problem.
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Johnson et al. [2011] formulate the peak shaving problem based on a pricing plan
where customers are billed for their peak usage. The authors present an optimal offline
algorithm and a competitive online algorithm for solving the problem. However, they
do not focus on or evaluate the proposed algorithms at large scales, as the use of energy
storage increases beyond a significant fraction of usage.

Koutsopoulos et al. [2011] explore the problem of managing large-scale energy stor-
age from the perspective of a utility operator. In this case, the utility controls when
to charge and discharge battery-based storage to minimize generation costs, assum-
ing that the marginal cost to dispatch generators is similar to Figure 2(b). However,
this approach focuses on large centralized energy storage facilities, whereas we target
decentralized control of distributed energy storage.

Although the datasets in the preceding works are different, they both show that
nearly 20% of homes using energy storage maximize the grid’s peak reduction. After
this point, rebound peaks and simultaneous battery charging begin to reduce energy
storage’s benefits, ultimately leading to a higher peak usage than without energy
storage if prices do not react to demand. In prior work, Vytelingum et al. [2010] show
formally that, under variable electricity rate pricing plans, there is a Nash equilibrium
that maximizes social welfare, e.g., cost savings, once only 38% of UK households
employ energy storage (based on a UK dataset). Although slightly higher than the
nearly 20% of homes found earlier, the work by Vytelingum et al. shows the same trend
as prior work: beyond a certain point with existing variable rate electricity prices, the
benefits of consumers installing energy storage begin to decrease. We argue that due to
the high cost of batteries, when designing incentivizes for distributed energy storage,
the goal should be to encourage the distribution of aggregate capacity as widely as
possible among consumers. In addition, prior work also examines a similar problem
when homes also have distributed solar generation, as energy storage is useful in
such systems [Mishra et al. 2013a]. Our experiments show that flat-power pricing
also incentivizes consumers to use energy storage to flatten demand as the renewable
penetration levels increase.

Whereas the preceding work focuses on residential settings, prior work has also
looked at similar problems from the perspective of industrial consumers, particularly
data centers [Govindan et al. 2011] but has not examined the effects from the use of
energy storage at large scales. Prior work also highlights the effect of variable rate
pricing on grid stability [Roozbehani et al. 2010], showing that RTP has the potential
to create an unstable closed feedback loop. Finally, we know of no work that proposes
and evaluates using a pricing plan to maintain a stable grid and prevent rebound peaks
by incentivizing consumers to flatten their own demand. Further, as discussed in Sec-
tion 4.2.1, numerous researchers have studied load scheduling algorithms for different
types of loads with different degrees of freedom. However, there is no incentive under
variable rate electricity plans to use these load scheduling algorithms, as most elastic
loads generally cannot shift their power usage over the long time periods necessary
to decrease electricity costs. Our work shows how to jointly optimize for scheduling
multiple loads with different degrees of scheduling freedom and quantifies the benefit
of scheduling such loads under flat-power pricing.

Load scheduling. As we discuss in Section 4.2.1, there is a large body of work on
scheduling elastic background loads in lieu of using energy storage. In general, this
work focuses on device-specific algorithms that differ based on the degrees of scheduling
freedom available to the device. For example, devices may be able to shift [Barker
et al. 2012b; Ganu et al. 2012; Karmakar et al. 2013], slide [Taneja et al. 2010], or
stretch [Srikantha et al. 2012] power. However, prior work develops load scheduling
algorithms for existing variable rate pricing models. In this article, we quantify the

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 10, Publication date: February 2017.



10:28 D. Irwin et al.

benefits of optimizing these degrees of freedom under flat-power pricing. We show that
many devices only have the freedom to perform small load shifts, which, even though
they benefit the grid, are not incentivized under existing variable rate pricing models.
In contrast, flat-power pricing introduces an incentive for devices to perform such small
load shifts.

Summary. In summary, our primary contribution is a flat-power pricing model that
encourages small load shifts by consumers, which better incentivizes distributed en-
ergy storage and scheduling of elastic background loads compared to existing pricing
models. Although Xu et al. [2013] explore the flat-power pricing model, the work does
examine the model at grid scale in the context of distributed energy storage and in-
creasing levels of solar penetration. In particular, this work evaluates the pricing model
on 5-minute interval data from 14,000 utility smart meters deployed in a real town.
Although Mishra et al. [2013b] also focus on improving the incentives for distributed
energy storage, they apply existing peak-based pricing that is sensitive to the accuracy
of predictions of peak energy usage and evaluate the approach on a small-scale syn-
thetic dataset. Since accurately predicting the time of peak energy is challenging, the
approach does not work well in practice.

7. CONCLUSION

This article proposes a simple pricing scheme called flat-power pricing to incentivize
consumers to shift small amounts of load to flatten their demand rather than shift
as much of their power usage as possible to low-price, off-peak periods. We show that
compared to variable rate pricing, flat-power pricing better incentivizes distributed
energy storage and the use of advanced load scheduling algorithms. For example,
our results show that the use of distributed energy storage under flat-power pricing
requires aggregate storage capacity within 31% of an optimal centralized system. We
also show that advanced load scheduling algorithms under flat-power pricing are able
to save consumers up to 40% on their electric bill compared to 11% using an existing
TOU rate plan.
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