
5

Minimizing Transmission Loss in Smart Microgrids by Sharing
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Renewable energy (e.g., solar energy) is an attractive option to provide green energy to homes. Unfortunately,
the intermittent nature of renewable energy results in a mismatch between when these sources generate
energy and when homes demand it. This mismatch reduces the efficiency of using harvested energy by either
(i) requiring batteries to store surplus energy, which typically incurs ∼20% energy conversion losses, or (ii)
using net metering to transmit surplus energy via the electric grid’s AC lines, which severely limits the
maximum percentage of renewable penetration possible. In this article, we propose an alternative structure
where nearby homes explicitly share energy with each other to balance local energy harvesting and demand
in microgrids. We develop a novel energy sharing approach to determine which homes should share energy,
and when to minimize system-wide energy transmission losses in the microgrid. We evaluate our approach
in simulation using real traces of solar energy harvesting and home consumption data from a deployment in
Amherst, MA. We show that our system (i) reduces the energy loss on the AC line by 64% without requiring
large batteries, (ii) performance scales up with larger battery capacities, and (iii) is robust to different energy
consumption patterns and energy prediction accuracy in the microgrid.
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1. INTRODUCTION

To reduce carbon footprint, energy harvesting devices (e.g., solar panels) are becoming
increasingly popular in homes nowadays. With the renewable energy generated by solar
panels and energy storage units (e.g., batteries), homes can be integrated as a small,
independent energy community. The power systems applied in such communities are
referred to as microgrids. If the harvested energy surpasses the consumption, then
microgrids can work independently and autonomously.

However, the amount of renewable energy harvested normally does not match the
amount of energy consumed in individual homes. One solution is to sell the surplus
energy to a utility company and get energy from the utility company during energy
shortages. However, a large amount of energy generated by homes can destabilize the
power system if transmitted through an alternating current (AC) line. Another solution
is to store the energy in local batteries. However, this approach requires extremely large
size batteries to store energy for a whole day’s energy consumption. In this article,
we solve the mismatch of energy harvesting and consumption by introducing energy
sharing among homes. If renewable energy can be shared and consumed among homes,
the traditional power system will not be interrupted by the renewable energy. To realize
the energy sharing, we propose a hybrid design of energy transmission system, which
contains both the traditional AC line and a small community level direct current (DC)
power line. Compared with a traditional AC line, our DC line is significantly shorter.
Therefore, the energy transmission loss over the DC line is much lower than the loss
over the traditional AC line. With energy sharing, the total amount of energy needed
from the AC line is significantly reduced, which, in turn, dramatically reduced the total
energy transmission loss from the AC line.

One of our aims is to keep the system compatible with a traditional AC power grid
and reduce the deployment and maintenance cost. Therefore, homes are connected to a
single DC power line (called DC main bus). This introduces another design challenge—
how to monitor and quantify the amount of energy shared among homes. If homes
provide (or extract) energy to (or from) the DC power line at the same time, we cannot
fully control the amount of energy shared between different pairs of homes. To address
this challenge, we propose a novel energy transmission protocol for controllers to com-
municate with homes to avoid transmission chaos. In our approach, homes will send
out energy information to controllers and controllers then decide energy sharing pairs
and send out control signals to homes. During the transmission process, homes and
controller will react with signals from each other to avoid transmission chaos. More-
over, our approach enables (i) multiple homes to simultaneously provide energy to a
single home, and (ii) a single home to simultaneously provide energy to multiple homes.
In this way, our approach not only allows us to monitor and quantify the amount of
energy shared among homes but also reduces the time required for energy sharing.
However, since only one transmission can be executed at one time in a cluster, it is
important to decide which cluster each home belongs to. Thus, we propose a cluster
selection algorithm to organize clusters with homes that have a complementary energy
consumption pattern to speed up transmissions.

Since transmission loss among homes differs for every pair of homes, an efficient
algorithm is needed to control the energy sharing flow. Generally, the energy loss be-
tween homes includes two parts: (i) energy loss over wires, and (ii) energy conversion
loss during the battery charging and discharging stages. Energy loss over wires is
mainly determined by the distance of homes. To reduce the energy transmission loss,
we propose a greedy energy matching algorithm to reduce the distance of energy trans-
mission and the amount of energy needed to be stored in the battery. Specifically, the
main contributions of the article can be summarized as follows:

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 5, Publication date: December 2016.



Minimizing Transmission Loss in Smart Microgrids by Sharing Renewable Energy 5:3

Fig. 1. Mismatching between energy harvesting and energy consumption.

—To the best of our knowledge, this is the first in-depth work to investigate the co-
existence of a traditional AC power grid and a DC power line for sharing renewable
energy among homes.

—We have (i) designed an efficient energy sharing system to share energy among
homes, (ii) developed a lightweight energy matching algorithm and cluster selection
algorithm to minimize the total energy transmission loss based on the predicted en-
ergy consumption and energy harvesting, and (iii) proposed an energy transmission
protocol to monitor and quantify the amount of energy shared among homes.

—We set up a series of experiments with empirical data to verify the effectiveness
of our system. The results indicate that our system can reduce 64% of energy loss
from an AC line by efficiently sharing energy among homes and reduce battery size
significantly. We also investigate the robustness of the system and verify that our
system can work with different energy consumption patterns and energy prediction
accuracy higher than 65% in the microgrid.

The article is organized as follows. In Section 2, we discuss the need for energy
sharing. Section 3 gives an overview of the system architecture. Models, detailed system
design, and evaluations are presented in Sections 4, 5, and 6, respectively. Practical
issues and related work are discussed in Sections 7 and 8, respectively. We conclude
our article in Section 9.

2. MOTIVATION

This work is motivated by the mismatch between energy harvesting and energy con-
sumption in a single home, as shown in Figure 1. The mismatch occurs mainly due to
the differences between the time when renewable energy is harvested and each home’s
peak demand time. As a result, today’s Distributed Generation (DG) deployments rely
heavily on net metering, where consumers sell the unused energy they produce back
to the utility company. DG is a much less attractive option if net metering is not avail-
able. Net metering laws and regulations vary widely across states; it is not available
in at least 4 of the United States and the regulations are weak in many others [State
Environmental Resource Center 2011]. Unfortunately, even where available, states
typically place caps on both the total number of participating customers and/or the
total amount of energy contributed per customer [Rose and Chapman 2009]. After ex-
ceeding these caps, utilities are no longer obligated to accept excess power from DG
deployments. For example, the state of Washington caps the total number of partic-
ipating customers at 0.25% of all customers. One reason for the strict laws limiting
DG’s contribution is that injecting significant quantities of power into the grid from
unpredictable energy sources at large scales has the potential to destabilize the grid
by making it difficult, or impossible, for utilities to balance supply and demand.

Today’s energy prices do not make DG financially attractive enough for consumers
to reach even these low state caps. However, more widespread adoption of environ-
mentally friendly renewable energy sources is critical to meet existing goals. For ex-
ample, the Renewables Portfolio Standard targets 25% of electricity generation from
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Fig. 2. Tree topology of homes.

intermittent renewables [DSIRE 2010], while California’s Executive Order S-21-09
calls for 33% of generation from renewables by 2020 [State of California 2009]. Given
current laws, if DG becomes more widespread, residential consumers will have to look
beyond net metering to reduce costs and balance on-site energy production and con-
sumption. One alternative approach is to use on-site energy storage (such as batteries).
However, batteries are expensive. For example, Nissan Leaf ’s battery price is $18,000
for 24KWh [DOE 2014]. In T. Zhu et al. [2011], we have demonstrated that a 12KWh
battery cannot buffer sufficient renewable energy for a regular home’s daily energy con-
sumption. Moreover, charging and discharging batteries introduce significant energy
conversion loss. Therefore, we propose to share harvested energy among small-scale
networked homes to balance the energy harvesting and consumption in a larger group
(i.e., a microgrid). Since the distances between homes are typically way shorter than
from homes to the utility company, energy sharing can significantly reduce energy
transmission loss.

3. SYSTEM OVERVIEW

In this section, we briefly overview the system architecture and introduce the hardware
architecture to achieve energy sharing among multiple homes.

Our energy sharing system uses a cluster controller to control the energy sharing
among homes. The cluster controller collects information from homes and then ar-
ranges the transmission among homes. To guarantee backward compatibility with a
traditional power system, we adopt the tree topology in Figure 2, which is similar to
the one used in a traditional power grid, to connect homes for energy sharing. Homes
are connected to the cluster controller with both a power meter and a switch. The
power meter is used to measure energy harvesting and consumption information while
the switch is used to control how to share energy with other homes. Since cluster con-
trollers do not need to measure energy information, they are connected to higher layer
controllers only through switches. In our system, energy is first shared among homes
within a cluster and then shared among homes in different clusters in a higher layer
repeatedly until all possible energy transmissions are finished.

To realize energy sharing, we propose a three-layer design, as shown in Figure 3.

—The hardware layer uses a power meter to measure (i) the energy harvesting rate
from renewable energy devices such as solar panels; (ii) the energy consumption rate
from appliances such as heating devices. This energy information will be transferred
to local control layer for prediction of future energy harvesting and consumption
rate periodically. The hardware layer will then execute energy transmission with the
control signal transferred from power control. The proposed hardware architecture is
shown in Figure 4. The harvesting devices (solar panel in our article) are directionally
connected to a power meter and a switch, since the energy cannot be transmitted to
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Fig. 3. Overview of system architecture.

Fig. 4. Hardware architecture for energy sharing among multiple homes.

solar panels. Meanwhile, home appliances and batteries are bidirectionally connected
to a power meter and a switch to measure and control the energy flow. The power
meter and switch will be connected to the DC main bus for energy sharing with other
homes.

—The local control layer will predict (i) renewable energy that a home expects to harvest
based on weather forecast; (ii) expected energy consumption based on historical usage
data. Then energy harvesting is compared against energy consumption for dividing
homes into two categories. A home with energy surplus is called an energy supplier
while a home with energy shortage is called an energy demander.

—The global control layer gathers information from homes to recommend home match-
ings which are most suited for energy sharing. Besides, it also determines the amount
of energy for a home to share with other homes and to store in its local battery based
on the current battery level and the expected available energy. Then, an energy
transmission scheduling component will decide the order (schedule) of energy trans-
mission based on matching results. The energy sharing algorithm used in our article
is referred to as Global Energy Sharing (GES). Homes’ information of energy shar-
ing is transferred to a power controller in the local control layer, and finally, control
signals are delivered to hardware for physical energy transmission.

4. MODEL

In this section, we describe the model used in our article. Let X = {1, 2, . . . , x} be the
set of homes. Time is divided into time slots. The size of a slot is referred to as window
size w. Let �Ei(nw) be the difference between harvested energy EHi(nw) and consumed
energy ECi(nw) for home i in the time interval [nw, (n + 1)w]. Homes are divided into
energy suppliers, set S, and energy demanders, set D, according to whether �Ei(nw) is
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Table I. Notation of Parameters

EHi(nw) Harvested energy of i in [nw, (n + 1)w]
ECi(nw) Consumption energy of i in [nw, (n + 1)w]
�Ei(nw) EHi(nw) − ECi(nw)
Bi(nw) Energy level of battery deployed in i at nw

Ei→ j (nw) Energy transferred from i to j in [nw, (n + 1)w]
ηi→ j Energy transmission efficiency from i to j

Ei(nw) Energy lack of i after sharing in [nw, (n + 1)w]
ηi Energy transmission efficiency of i from AC line
ri Maximum transmission efficiency of i

positive or negative. Note that it is possible that home i has �Ei(nw) = 0. To simplify
the notation, we also assign such homes into set S. Then, S and D partition X, i.e.,
X = S ∪ D and S ∩ D = ∅.

When i transmits Ei→ j(nw) units of energy to j via DC lines in time interval [nw, (n +
1)w], j only receives a fraction of Ei→ j(nw) due to energy loss. The energy loss during
transmission contains both energy transmission loss over wires and battery conversion
loss. Energy transmission loss over wires is mainly determined by the amount of energy
transmitted, the length and type of power lines, and the transmission voltage. During
the energy transmission, since renewable energy may not be consumed by a home
immediately, extra energy might be stored in a local battery. The portion of energy
stored in a battery during transmission introduces not only energy transmission loss
but also battery conversion loss during battery charging. Thus, we should store a
minimum amount of energy in a battery to reduce the energy loss.

Since the energy transmission takes time, the energy sharing should be based on
the future energy information. For example, at time w, we make use of the energy
information in time interval [2w, 3w] to do energy sharing instead of energy information
in time interval [w, 2w].

When a home still lacks energy after sharing, it fetches energy from the power grid
via an AC line. This situation mainly occurs either at night when harvested energy
is not sufficient or the transmission efficiency ηi→ j between two homes is lower than
transmission efficiency η j over the AC line.

Given supplier set S and demander set D over time, the purpose of energy sharing
is to generate the ordered pair set Q = {(S1, D1), . . . , (Sm, Dm), . . . , (S|Q|, D|Q|)} at time
nw, where Sm ⊂ S, Dm ⊂ D and |Q| is the cardinality of Q. Our goal is to minimize the
total amount of energy loss from battery, DC and AC lines:

∑
n

⎛
⎝∑

i, j

(Ei→ j(nw) · ηi→ j) +
∑

i

Ei(nw) · ηi

⎞
⎠ (1)

with the following constraint:

|Sm| = 1 or |Dm| = 1, m ∈ {1, . . . , |Q|}, (2)

where i ∈ S; j ∈ D; Ri is the energy transmission efficiency of home i from the AC line
and Ei(t) is the amount of energy shortage after the energy sharing. The constraint in
Equation (2) ensures that there can be more than one supplier if they are providing
energy to the same demander and more than one demanders if they are fetching energy
from the same supplier.

An example of energy sharing is shown in Figure 5. With the bipartite graph of
supplier set S and demander set D, a matching result is given as home 1 provides
energy to 2; 3 and 4 provide energy to 5; and, 7 provides energy to 6 and 8. The energy
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Fig. 5. An example of matching results (Sm and Dm ({Sm, Dm} ∈ Q, m ∈ {1, . . . , |Q|}) can be one home or
multiple homes. The number in the © is the home id and the number outside the © is surplus or shortage
energy).

transmission order follows the order of the pair set. The constraint in Equation (2)
means we do not allow simultaneous energy sharing such as ({1, 3}, {2, 5}). Otherwise,
we cannot control whether energy transmission is from 1 to 2 and 3 to 5 or from 1
to 5 and 3 to 2. The detailed discussion of energy transmission order is described in
Section 5.5.

5. SYSTEM DESIGN

In this section, we introduce detailed system design for energy sharing. Firstly, we
give energy harvesting and consumption prediction algorithms for predicting future
energy information. Then, with the predicted energy information, we describe energy
sharing within the cluster through matching energy among homes. We also explain
how the energy sharing can be extended in homes with tree topology and propose a
cluster selection algorithm to maximize transmission efficiency. Finally, we present a
transmission protocol between homes and the cluster controller to assure that only one
transmission executes in a cluster at one time.

5.1. Renewable Energy Prediction

For renewable energy, we use a prediction model similar to Sharma et al. [2010] that
translates a weather forecast from the National Weather Service (NWS) into a solar or
wind energy harvesting prediction. Since solar energy is the predominant renewable
energy source in residential DG deployments, this article focuses on solar energy.
However, the prediction model and energy sharing method can also be applied to other
types of renewable energy such as wind energy. We briefly summarize the model below,
which uses forecasted sky conditions to predict solar energy harvesting. The NWS
releases a sky condition forecast, in addition to other weather metrics, every hour
for the next 24 hours. At any time t, based on the sky condition percentage C(t), we
compute the solar panel’s energy harvesting power PHi(t) as:

PHi(t) = Pmax · (1 − C(t)), (3)

where Pmax is the solar panel’s maximum possible harvesting power. Sharma et al.
[2010] quantify the accuracy of Equation (3) and show that it is more accurate than
existing techniques that use the past to predict the future. Thus, based on Equation (3),
at any time t = nw, we predict the solar energy harvesting within the next energy
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sharing interval w as follows:

ÊHi((n + 1)w) =
∫ (n+1)w

nw

PHi(τ )dτ, (4)

where w is the energy sharing window size.

5.2. Energy Consumption Prediction

To predict the home’s energy consumption, we use a simple model based on an Exponen-
tially Weighted Moving Average (EWMA). The EWMA exploits the diurnal nature of
home consumption, and also adapts to seasonal variations. On a typical day, we expect
the total energy consumption to be similar to the total energy consumption of previous
days with slight deviations in weather and daily activities. More sophisticated models
are possible that consider changing weekend activity patterns, weather conditions, or
other information.

One goal of this work is to quantify how much renewable energy we are able to utilize
with a simple and straightforward prediction model. Let ECi(nw) denote the amount
of energy consumed in [nw, (n + 1)w] and ÊCi((n + 1)w) denote the predicted energy
consumed in [(n + 1)w, (n + 2)w], which is given by:

ÊCi((n + 1)w) = α · ÊCi(nw) + (1 − α) · ECi(nw). (5)

The value of α is chosen by using the method in Kansal et al. [2007]. Note that more
sophisticated models that consider changing weekend activity patterns, weather con-
ditions, or other data are possible. The energy harvesting and consumption prediction
is not our main contribution and our framework is compatible with other consumption
prediction models.

5.3. Energy Matching Algorithm

With the predicted energy harvesting and consumption information, we introduce the
energy matching algorithm in this section. We first introduce the bipartite graph and
then use a greedy energy search algorithm to match the energy among homes.

With the information of energy harvesting and consumption above, we generate the
bipartite graph. If the harvested energy of home i is larger than its consumed energy,
i is categorized to S, shown in the left set in Figure 5; otherwise, i will be categorized
to D, shown in the right set in Figure 5.

To maximize the overall transmission efficiency of the microgrid, we introduce the
concept of maximum transmission efficiency of home i as ri. For home i, we calculate
ri by matching energy with its neighbors in the descending order of transmission
efficiency. When we fetch a new matching home, we update ri based on the amount of
energy that can be shared between i and j and the energy loss rate between i and j. The
details of matching algorithms are shown in Algorithm 1. We first calculate maximum
transmission efficiency ri at time nw for every home (Lines 1–12). In Algorithm 1,
we only give a description of ri for suppliers and note that ri of demanders can be
calculated in a similar way. To calculate ri, we first fetch the home j with highest
transmission efficiency with home i (Line 4). Then, if home i does not have enough
energy for home j (Line 5), home i gives all the energy to home j and the calculation
of ri finishes (Line 6). Otherwise, home i gives the amount of energy that home j
needs and continues the process for the calculation of ri (Line 9). After calculation of
ri, we fetch the home i with highest maximum transmission efficiency (Line 13). If
matching process of i is not finished yet, we continue matching for i (Line 14). If i is a
supplier, we find demander j with highest transmission efficiency from i (Lines 15 and
16). The amount of energy transferred from i to j is calculated with energy difference
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ALGORITHM 1: Energy Matching Algorithm
Input: Energy supplier set S and demander set D with homes �Ei(nw), Bi(nw), and Ri→ j(nw).
Output: Energy matching results Ei→ j(n) of microgrid.
1: for each home i ∈ S at nw do
2: ri = 1, e = 0, T = D, and Li(nw) = �Ei(nw) + Bi(nw);
3: while T �= ∅ do
4: Fetch home j that ηi→ j = maxk∈T (ηi→k);
5: if (Li(nw) − e) · ηi→ j ≤ |Lj(nw)| then
6: ri = e·ri+ηi→ j ·(Li (nw)−e)

Li (nw) ;
7: break;
8: else
9: ri = |Lj (nw)|+ri ·e

e+|Lj (nw)|/ηi→ j
, e+ = |Lj (nw)|

ηi→ j
;

10: end if
11: end while
12: end for
13: Fetch home i that ri(nw) = maxk∈S

⋃
D(rk(nw));

14: while �Ei(nw) �= 0 do
15: if i ∈ S then
16: Fetch home j that ηi→ j = maxk∈D(ηi→k);
17: Ei→ j(nw) = min(|�Ej(nw) + Bi(nw)|, |(�Ei(nw) + Bi(nw)) · ηi→ j |);
18: else
19: Fetch home j that ηi→ j = maxk∈D(ηk→i);
20: Ej→i(nw) = min(|�Ei(nw) + Bi(nw)|, |(�Ej(nw) + Bi(nw)) · ηi→ j |);
21: end if
22: Update �Ei(nw), �Ej(nw);
23: end while

and battery level of two homes (Line 17). If i is a demander, we find supplier j with
highest transmission efficiency to j, and the amount of energy transferred from j to i
is calculated (Lines 18–21). We then update �Ei(nw) and �Ej(nw) (Lines 22 and 23).

Although Algorithm 1 does not guarantee the optimum solution of the energy match-
ing problem, it has a low complexity. From Line 1 to 12, the complexity is at most
|D| · |S|. From Line 12 to 22, where we do the matching for suppliers and demanders,
the complexity is also at most |D| · |S|. Thus, the complexity of Algorithm 1 is |D| · |S|.
The optimal solution of the problem can be solved by minimizing transmission loss
for every transmission combination. A transmission combination determines which
demander will get energy from which supplier. The transmission combination with
minimum transmission loss then can be the optimal solution. Here, we give a brief
description of minimizing transmission loss for a specific transmission combination.
For a specific transmission combination, we only need to decide the amount of energy
a demander gets from those suppliers. Then, we can fetch the transmission pair with
highest transmission efficiency and then assign the amount of transmission energy
based on the energy difference and battery level of two homes. This process will con-
tinue until all transmission pairs are associated to a corresponding amount of energy.
The complexity of the algorithm accounting for the matching followed by the energy
assignment is 2|S|·|D| · (|S| · |D|). As the energy match interval is limited and the number
of homes might be large, we adopt Algorithm 1 for energy matching instead of other
sophisticated approaches.

5.4. Energy Sharing Among Clusters

In this article, we adopt the tree topology in Figure 2 to do energy sharing. This is
because (i) the current power grid system uses a tree topology, which reduces the cost

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 5, Publication date: December 2016.



5:10 Z. Huang et al.

for reconstruction and design; (ii) since only one energy transmission can be executed at
a time within the cluster, the number of homes in a cluster should be limited to reduce
the energy transmission time. The reason why only one energy transmission can be
executed at a time within the cluster will be introduced in Section 5.5. However, the
energy matching algorithm we described above is mainly applicable for energy sharing
within the clusters. In what follows, we extend to introduce how energy matching can
be applied to a system with tree topology (see Algorithm 2).

ALGORITHM 2: Clusters Selection
1: for every two homes i ∈ S and j ∈ D do
2: Calculate cluster ratio pij if i and j are in a cluster
3: end for
4: Initialize H as S ∪ D
5: while |H| > 1 do
6: Select i and j in H with lowest pij to form cluster Cx, cluster ratio px = pij ;
7: Remove i and j from H
8: while |H| > 0 do
9: Select k in H with lowest p′

x if k ∈ Cx
10: if p′

x < px then
11: Add k in Cx and remove from H, px = p′

x;
12: else
13: break;
14: end if
15: end while
16: end while

At the beginning, every cluster will execute Algorithm 1 for homes in that cluster
with the energy information obtained from its children. The child can be either a home
or a cluster of lower layer. The cluster checks if there is more than one child of itself free
to execute the transmission. If yes, combine the transmissions in those children that
can be executed simultaneously. A child is free if there is no transmission executing in
the child.

However, we may have different transmission losses when considering different clus-
ter selections. Since only one energy transmission can be executed at one time in
a cluster, we should organize clusters with homes that have complementary energy
consumption patterns to speed up the transmission process. A greedy algorithm is pro-
posed to let most of the energy transmissions to be executed in parallel. The key idea
is to select homes that their demand and supply match well to be in the same cluster.
In our design, we propose a cluster ratio to evaluate whether the demand and supply
of homes in a cluster match well. Cluster ratio of a cluster Cx can be calculated as

px = | ∑k(�Ek(nw) + Bk(nw))|∑
k |�Ek(nw) + Bk(nw)| k ∈ Cx, (6)

where px is the cluster ratio of cluster Cx. For a cluster Cx that only consists of two
homes i and j, Cx = {i, j}. In this case, we also use Cij to refer to such a cluster, then
we also use pij to refer to the cluster ratio of such a cluster. The details of the algorithm
are described in Algorithm 2. We first calculate cluster ratio pij for any two homes
(Lines 1–3). Then we select two homes with the lowest pij to form cluster Cx and try to
add other homes into the cluster (Lines 4–8). A new home k will be selected with the
lowest cluster ratio p′

x if k ∈ Cx (Line 9). If cluster ratio px decreases with k added into
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Fig. 6. An example of transmission chaos.

Cx, we add k into Cx and remove k from H (Lines 10 and 11). Otherwise, we try to form
a new cluster until all homes are divided into clusters (Lines 12–16).

5.5. Energy Transmission Protocol

With the matching results, we can execute energy transmissions. The homes are all
connected to one main bus of a DC line shown in Figure 6. If two energy transmissions
({1}, {2}) and ({3}, {4}) occur simultaneously, we cannot ensure the energy is transmitted
from home 1 to 2 and 3 to 4 or home 1 to 4 and 3 to 2, which we refer to as transmission
chaos. A wrong matching may cause additional energy losses or billing problems. In
fact, only transmissions with one supplier and multiple demanders or one demander
and multiple suppliers do not cause transmission chaos.

To solve the problem, we develop a transmission protocol similar to Time Division
Multiple Access (TDMA) to schedule energy transmission. The basic idea of trans-
mission scheduling is to have transmissions executed simultaneously only if those
transmissions do not cause transmission chaos. Fortunately, the matching results pro-
duced by Algorithm 1 are all one supplier with multiple demanders or one demander
with multiple suppliers. Thus, we only need to let the cluster controller communicate
with homes to make sure two transmissions do not execute at the same time.

The detailed communication protocol is shown in Protocol 3. For every controller, it
first collects energy data and runs Algorithm 1 to get the matching results (Line 1).
Then it checks if any demander or supplier sent the TRANS_END signal to the corre-
sponding supplier or demander (Line 2). Then it checks if the transmission is executed
as the matching results from Algorithm 1; if not, it re-runs Algorithm 1 with updated
transmission details from the homes (Line 3). Note that the reason for rechecking stems
for the fact that the energy data is sent to the controller is based on prediction; thus,
there can be some prediction errors. It also needs to check if there are new children
free to execute transmissions and add transmissions into a waiting queue Q (Line 4).
If no transmission is currently executing, it fetches the transmission with the highest
transmission efficiency from Q and sends TRANS_END signals to both demander and
supplier (Line 5). The last thing for the controller is to make sure all the transmissions
end before the next window, even if the transmission is not finished yet (Line 6). For ev-
ery demander, it sends energy data to the cluster controller at a new window (Line 1). It
then waits for TRANS_START signal to start the transmission (Line 2). If the demander
receives enough energy, it sends TRANS_END to the cluster controller, ends the trans-
mission, and sends back the transmission details (Line 3). All homes end transmission
when they receive TRANS_END. However, receivers all need to send back transmis-
sion details when receiving TRANS_END because the transmission may not finish yet
but may be terminated by the cluster controller (Line 4). The behaviors of the supplier
are mostly similar to the demander, except it sends back TRANS_END when there
is no more energy to transmit. The controller needs transmission details about how
much energy is received at the demander. The TRANS_START signal should contain
demander id, supplier id, and amount of energy for transmission, while TRANS_END
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PROTOCOL 3: Energy Transmission Protocol
For cluster controllers
1: Collect energy data from child in cluster and execute Algorithm 1 when a new window

begins;
2: If receive TRANS END from demander or supplier, send TRANS END signal to responding

supplier or demander;
3: If transmission details are not consistent with transmission assigned to either demander or

supplier, rerun Algorithm 1 to update transmission pairs.
4: If more than one child in cluster are free, add all transmissions in free children to waiting

queue Q
5: If no transmission is executing, execute a new transmission with highest efficiency in Q,

send TRANS START to both demander and supplier;
6: If transmission time runs out, send TRANS END to both demander and supplier.

For demanders
1: Send energy data to cluster controller when a new window begins;
2: If receiving TRANS START, open the transmission.
3: If receiving enough energy, send TRANS END and transmission details to cluster controller;
4: If receiving TRANS END, end current transmission and send back transmission details.

For suppliers
1: Send energy data to cluster controller when a new window begins;
2: If receiving TRANS START, open the transmission.
3: If there is no more energy to transmit, send TRANS END and transmission details to

cluster controller;
4: If receiving TRANS END, end current transmission and send back transmission details.

signal should contain demander id, supplier id, and amount of energy the demander
receives.

6. IMPLEMENTATION AND EVALUATION

In this section, we evaluate the performance of our energy sharing system. We collect
real data of energy harvesting and consumption in Amherst, MA; then, we compare
the efficiency of our system against other solutions; finally, we show that our system
can work with different battery sizes and home topologies.

6.1. Data Collection

We collect energy consumption data of 50 homes in Amherst, MA. We also deploy the
solar panels in one home to collect the harvested energy data. The energy harvesting
of a home is shown in Figure 7. In a day, the solar panel begins to harvest energy at
around 7:00 a.m., reaches the energy peaks around 12:00 p.m., and ends the harvesting
around 8:00 p.m. However, the amount of harvested energy in different days varies,
which may be due to the varying weather conditions. Since the amount of harvested
energy from solar panels is similar in a relative small area, we use the trace to produce
harvested energy data of other homes with some randomness. The consumption data
of homes consists of energy information collected every minute over 6 days. Harvested
energy data is collected every hour. The weather forecast data we use is from the NWS
(National Weather Station). Then, with the raw data, we calculate the prediction of
harvesting and consumption data over 6 days and use it in our simulations.

6.2. Evaluation Baselines and Metrics

Baselines: To verify the efficiency of our energy sharing algorithm GES, we compare
our design against (i) Oracle, which uses the same energy sharing algorithm as GES,
but assumes real energy consumption and harvesting data for the next window is
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Fig. 7. Harvesting energy in 6 days.

Fig. 8. Energy loss savings (total energy loss of four different algorithms, which includes transmission loss
over wires, battery, and AC line).

available. We aim to show the impact of our prediction algorithm with the comparison;
(ii) Local Energy Sharing (LES), which only allows homes to share energy with
their nearest neighbor, thus the efficiency of energy sharing is low due to the stringent
constraints for energy sharing; (iii) No Energy Sharing (NES), which adopts a large
battery for every home to store all the surplus harvested energy for future usage; if
there is no energy in the battery, it gets energy from the AC line.

Metrics: We use two metrics to evaluate the efficiency of our algorithm in our
experiment; (i) Energy Loss Savings: energy loss compared to the strategy that
homes always get energy from the AC line if there is no solar energy; (ii) Battery Size:
the size of batteries that are deployed for homes to store extra energy.

6.3. Basic Evaluation Results

In this section, we will evaluate the effectiveness of our energy sharing system, which
includes the energy loss savings and other detailed insights (detailed transmission
loss, battery size distribution, and transmission over AC and DC lines) of our system.
All results are simulated with the 6 days of empirical data of energy harvesting and
consumption introduced in Section 6.1. The battery loss rate we use is 15% [Schoenung
2011]; AC and DC transmission loss rate is around 22.6% and 7.6%, varying according
to the transmission distance [Larruskain et al. 2005].

6.3.1. Energy Loss Savings. Figure 8 shows the energy loss savings of four different
algorithms. In this simulation, the total number of homes varies from 10 to 50 and the
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Fig. 9. Detailed transmission loss (transmission loss by DC wires, battery, and AC lines of 50 homes with
5 clusters).

Fig. 10. Battery sizes needed for every home.

number of homes in one cluster is fixed as 10 (note that we do not use Algorithm 2 in
this simulation; the performance of Algorithm 2 will be discussed in Section 6.4.2). In
all four algorithms, the energy loss savings increase with the total number of homes
because with more homes, more energy can be shared or stored in local batteries. Our
algorithm outperforms LES and is very close to Oracle. NES performs the worst, since
the harvesting and consumption in a home usually do not match; thus, many homes
have less harvesting energy needed to get more energy from an AC line and the other
homes have more harvesting energy that will waste their large batteries to store energy.

6.3.2. Detailed Transmission Loss. We also show the detailed transmission loss in Fig-
ure 9. The result is for 50 homes with 5 clusters. The transmission loss over the AC line
still occupies a large portion of the total energy loss. However, our algorithm reduces
60% AC transmission loss compared to NES. LES has less energy transmission over
the DC line, therefore, it needs more energy from the AC line. Since the transmission
loss over the AC line is larger than the battery conversion loss and DC transmission
loss, the transmission loss of LES is larger, which explains Figure 8. Since the predicted
data is not accurate, some homes may envision transferring more energy than they can
harvest to other homes. In such cases, they have to get energy from the AC line after
sharing with our algorithm. That explains why our algorithm needs more energy from
both AC and DC lines compared to Oracle.

6.3.3. Battery Size. The battery size needed for every home is shown in Figure 10.
Compared to NES, the other three algorithms need a much smaller battery size at
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Fig. 11. Energy transmission over AC line (three algorithms (solid line) compared to NES (dashed line)).

Fig. 12. Energy transmission over DC line (two algorithms (solid line) compared to Oracle (dashed line);
NES does not use DC).

every home. The distribution of battery sizes among homes is proportional to the
energy harvesting and consumption of homes. Our algorithm needs almost the same
battery size as Oracle for every home and much less than LES.

6.3.4. Transmission Over AC and DC Line. The energy transmission over an AC line per
hour is shown in Figure 11. All three energy sharing algorithms are compared to NES.
For Oracle, homes seldom need any energy from an AC line except when harvesting
energy from a solar panel is not enough in day 3 (hours 48 to 72). Our algorithm is
very close to Oracle, in which, for nearly 10 hours of 1 day, homes do not need to get
energy from an AC line. LES needs less energy than NES, especially when there is not
enough harvesting energy at night. The peak of AC line transmission is also reduced
from 70KWh to 50KWh in all three algorithms.

We show the energy transmission by DC per hour in Figure 12. The algorithms with
less AC line transmission need more from DC, and NES does not have DC transmission.
Note that in our algorithm, the prediction is not always accurate, thus, a home may
envision transferring more energy than it will harvest in the next window. In such
case, it needs to get energy from an AC line. Thus, even though energy transmission
from an AC line of our algorithm is larger than one from Oracle, the DC transmission
is still close to Oracle.
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Fig. 13. Normalized energy loss savings of different cluster selections. CS: cluster selection algorithm
introduced in Algorithm 2; NC: number of clusters.

6.4. Advanced Evaluation Results

In this section, we investigate the robustness of our system. We overview four main
factors which affect performance of the system: (i) cluster selection; (ii) energy con-
sumption pattern; (iii) battery size; and, (iv) energy prediction accuracy. The detailed
setup for simulation is the same with the previous, if it is without specific description.

6.4.1. Impact of Cluster Selection. We show the impact of cluster selection to demonstrate
the effectiveness of our system. Specifically, we use normalized energy loss savings to
evaluate the performance of different algorithms, which is calculated by extracting
energy loss savings of GES with Algorithm 2. Figure 13 shows the normalized energy
loss savings of two different cluster selection algorithms. One is Algorithm 2 (CS)
and the other is greedy selection. With a given number of clusters, greedy selection
divides the microgrid into clusters with an equal number of homes based on distances
between homes. Because the total number of homes is fixed as 50, with the increase
of the number of homes per cluster, the number of clusters decreases. To show the
performance of our system not only depends on the number of clusters in the microgrid
but also detailed selection strategies, we also show the results of greedy selection
with the same number of clusters as we get from Algorithm 2. Not surprisingly, the
performance of the system improves with the increase in the number of clusters for
greedy selection. This is because with more clusters, more energy transmissions can
be executed in parallel, which reduces the amount of energy needed from the AC line.
However, Algorithm 2 performs better than any greedy selections, even better than
greedy selections with more clusters. This is because with Algorithm 2, homes with
opposite energy consumption patterns are selected in the same cluster, which reduces
the possibility for energy transmission over clusters, thus improves the performance
of the system.

6.4.2. Impact of Energy Consumption Pattern. Since energy sharing is used to balance the
mismatch of energy consumption and harvesting. The natural question is whether our
system works when different homes in the microgrid have similar energy consumption
patterns. In this section, we evaluate system performance under homes with simi-
lar energy consumption patterns. Energy differences of homes over time is shown in
Figure 14. Each line in Figure 14 corresponds to energy consumption of a home. By
visual inspection, we selected two sets of homes from our traces. In the top of Figure 14,
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Fig. 14. Different energy consumption patterns.

Fig. 15. Normalized energy loss savings of different energy consumption patterns. Blue solid lines are homes
with different energy consumption patterns (Var = 0.0448); red dashed lines are homes with similar energy
consumption patterns (Var = 0.0017).

we selected a set of homes whose energy consumption pattern is as complementary as
possible, i.e., favoring exchange opportunities. In the bottom of Figure 14, in contrast,
we selected a set of users with similar consumption patterns, which does not favor
exchanges. We refer to the users selected in the top (resp., bottom) of Figure 14 as
microgrid 1 (microgrid 2, respectively). Note that the results obtained in the previous
section considered the set of homes shown on the top of Figure 14. In general, both
microgrids need energy in the early morning, have surplus energy at noon, and need
energy in the evening. However, in microgrid 1, homes have different energy differ-
ences at noon while homes in microgrid 2 nearly have the same energy difference. The
variances of energy differences of two microgrids are 0.0448 and 0.0017, which also
shows homes in microgrid 2 have more similar energy consumption patterns. Then,
we repeat the simulations of the previous section and results are shown in Figure 15.
With similar energy consumption patterns in microgrid 2, energy loss saving decreases
for all algorithms. However, our system can still save 90% of energy loss compared to
microgrid 1. Moreover, the gap between, with and without Algorithm 2 in microgrid 2,
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Fig. 16. Energy loss savings of different battery sizes.

is even bigger than the gap in microgrid 1, which means Algorithm 2 can even provide
better performance improvement under homes with similar energy consumption pat-
terns. This is because Algorithm 2 takes advantage of energy consumption patterns
of homes; thus, when homes have similar consumption patterns, it can divide clusters
more efficiently than the greedy selection algorithm.

6.4.3. Impact of Battery Size. As shown before, our algorithm can reduce the battery size
needed by homes compared to NES. However, in some situations, the required large
battery size is still not acceptable. In what follows, we consider constraints on battery
size. We set the battery size to store energy that was harvested in two consecutive
windows and show the amount of energy transmission loss savings with different
window sizes in Figure 16. The result is using our algorithm for 50 homes with 5
clusters and 1 cluster. With the increase of the window size, the battery size increases
for both 5 clusters and 1 cluster. And energy loss savings also generally increase with
window size. The reasonable explanation is that with a large battery size, homes can
use more energy from the battery but not the AC line. However, the increase rate
decreases with the increase of window size. Thus, for different situations, the tradeoff
should be balanced by the price of the battery and the energy loss savings.

6.4.4. Impact of Prediction Accuracy. Finally, we show the impact of prediction accu-
racy in this section. In our previous section, we make use of weather forecast and
energy consumption history to predict future energy differences. However, prediction
accuracy can vary under different environments. Thus, in this section, we evaluate our
system with different prediction accuracy. Since it is difficult to attain prediction accu-
racy of different environments, we artificially generate prediction results with different
prediction errors. And the prediction errors follow normal distribution. The detailed
results are shown in Figure 17. The red stars are results with real trace data with
8.7% prediction error. We find that GES can save energy loss as long as the prediction
accuracy is higher than 65%, while LES and NES can only save energy loss when the
prediction accuracy is higher than 71% and 75%. This is because GES enables energy
sharing between homes to alleviate prediction errors in a single home.

7. DISCUSSION

Return-on-Investment. In many instances, homes already have the necessary
infrastructures to implement energy sharing. Many homes equip with solar panels
and batteries to generate renewable energy. To implement energy sharing, the main
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Fig. 17. Energy loss savings of different prediction accuracy.

Table II. Cost and Benefit for Different Window Sizes

Window Size 1 2 3 4 5 6
Cost ($105) 2.55 4.50 5.97 6.70 7.22 7.12

Benefit ($105/yr) 0.65 0.93 1.00 1.05 1.05 1.05
Years for Return 3.88 4.84 5.97 6.34 6.88 6.77

expense is to construct DC lines and larger batteries to store energy. For batteries,
the price is around $200/KWh, which can be cheaper in the future. For wires, the
maximum power of a DC line is around 150KW; thus, we choose wires with 2 AWG and
the price is $14.58 for 500 feet. Assuming the distance of 50 homes is 10 miles, then
the total price for wires is $1,539. The price of other equipment such as an inverter or
energy monitor is listed in our earlier work [Mishra et al. 2012]. The benefit brought
with our system design is mainly due to the savings of energy transmission over
AC lines. The utility price in Amherst, MA is $0.13/KWh. In Table II, we give an
analysis of benefit and cost. The benefit and cost both increase with the window size.
However, due to the significant increase ratio of battery size shown in Figure 16, the
cost increases faster than the benefit. To return the investment sooner, a window size
of 1 hour should be chosen for practicality.

Centralized vs. Distributed. Our current system design is a centralized control
and a centralized cluster controller needs to collect energy harvesting and consumption
information of all the homes in a cluster. However, since the number of homes in a
cluster is limited, the computation and storage consumption would not be too high.
After the energy sharing in a cluster, the cluster controllers only need to send the
energy information of homes which still have energy surplus or shortage to a higher
layer controller. Thus, the total computation and storage cost is under control. However,
we also plan to develop distributed control in the future to allow homes to collect
information from their neighbors for energy sharing to further reduce the computation
and storage cost of controllers.

Sharing Price Design. Since we are mainly concerned about minimizing the energy
loss in energy sharing, we do not pay much attention to the price of energy shared
between homes. However, when considering the price factor, the incentives for homes
to share energy may change. Some homes may not have enough incentives to share
energy if the price of energy shared is low. However, we may consider to adapt some
market-based solutions to design the price of shared energy in the future.
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8. RELATED WORK

Our research is related to energy efficient buildings, smart power grids, and workload
scheduling.

—Research in energy efficient buildings mainly focus on energy auditing [Jiang et al.
2009] and design of control algorithms [Behl et al. 2011] to reduce energy consump-
tion inside a single building. In addition, some of the work focuses on reducing the
usage of building-wide heating, ventilation, and air-conditioning [Anil and Tomlin
2011]. Our work takes a different approach by investigating energy sharing among
multiple nearby homes.

—In smart power grids, researchers have (i) developed models based on measurement
from phaser measurement units to solve wide area control problems of large-scale
power systems [Chakrabortty 2012; Chakrabortty and Salazar 2011; Chakrabortty
et al. 2011], (ii) investigated the integration of renewable energy into power grids
[Thatte and Xie 2012; Xie et al. 2012; Ilic et al. 2011a, 2011b], and (iii) optimized
the packing size of large scale batteries to improve battery utilization in microgrids
[Jin and Shin 2012]. Our work builds on previous works but targets on minimizing
energy sharing loss over the small community level DC line.

—Since the price of electricity varies over time, related works focus on scheduling the
workload to reduce the energy cost [Rao et al. 2010, 2012]. Rao et al. [2012] utilize
both location and time diversity of electricity prices under multi-regional electricity
markets to minimize the total electricity cost of data centers. Yao et al. [2012] takes
a standard constrained model predictive control approach to smooth power demand
and shave the power peak. Unlike previous works, our approach reduces the energy
consumption without impacting the users’ workload.

Even enormous work has been done and is still going on in the areas such as energy-
efficient building automation [Aswani et al. 2012], energy saving electronics [Crowcroft
2012; Vallina-Rodriguez et al. 2010], energy efficient data centers [Basmadjian et al.
2012; Mann et al. 2011], or optimal charging of plug-in hybrid electric vehicles [Sojoudi
and Low 2011], but our work opens up a new approach where energy can be gained
efficiently and used smartly.

9. CONCLUSION

In this article, we addressed the mismatch between harvested and consumed energy
in individual homes by proposing energy sharing among nearby homes. We have (i) de-
signed an efficient energy sharing system to share energy among homes, (ii) developed
a lightweight energy matching algorithm and cluster selection algorithm to minimize
the total energy transmission loss based on the predicted energy consumption and en-
ergy harvesting, and (iii) proposed an energy transmission protocol for controllers and
homes to communicate through control signals to avoid transmission chaos.

We evaluated our system using empirical traces of harvested solar energy and home
energy consumption in Amherst, MA. Through extensive simulations, we verified that
our system (i) can reduce 64% of energy loss from an AC line by efficiently sharing
energy among homes, (ii) can achieve high energy efficiency with low battery size,
and (iii) is robust with different energy consumption patterns and energy prediction
accuracy in a microgrid.
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