
BlinkFS: A Distributed File System for Intermittent Power

Navin Sharmaa,∗, David Irwinb, Prashant Shenoya

aCS Department, University of Massachusetts Amherst, MA 01003
bECE Department, University of Massachusetts, Amherst, MA 01003

Abstract

The ability to use intermittent power in data centers introduces numerous new op-
portunities for optimization, including i) using real-time markets to buy more power
when it is cheap, ii) increasing the fraction of clean, but intermittent, renewable power,
iii) capping power for long periods to extend UPS lifetime during blackouts, and iv)
fully utilizing a data center’s power delivery infrastructure. The capability to run off
intermittent power also moves us closer to the vision of a net-zero data center that con-
sumes no net energy from the electric grid and has a small carbon footprint. However,
designing systems to operate under intermittent power is challenging, since applica-
tions often access persistent distributed state, where power fluctuations can impact
data availability and I/O performance. To address the problem, we design and im-
plement BlinkFS, which combines blinking with a power-balanced data layout and
popularity-based replication/reclamation to optimize I/O throughput and latency as
power varies. Our experiments show that BlinkFS outperforms approaches that co-
opt existing energy-proportional distributed file systems (DFSs) for intermittent power,
particularly at low steady power levels and high levels of intermittency. For example,
we show that BlinkFS reduces completion time for MapReduce-style jobs by 42% at
50% full power compared to existing energy-proportional DFSs.

Keywords:
Distributed File System, Intermittent Power

1. Introduction

The growth of cloud-based services continues to fuel a rapid expansion in the size
and number of data centers. The trend only exacerbates the environmental and cost
concerns associated with data center power usage, which a recent report estimates at
1.7-2.2% of U.S. consumption [25]. Excessive energy consumption also has serious en-
vironmental ramifications, since 83% of U.S. electricity derives from burning “dirty”
fossil fuels [26]. Energy costs are also on a long-term upward trend, due to a combi-
nation of government regulations to limit carbon emissions, a continuing rise in global

∗Corresponding author
Email addresses: nksharma@cs.umass.edu (Navin Sharma), irwin@ecs.umass.edu (David

Irwin), shenoy@cs.umass.edu (Prashant Shenoy)

Preprint submitted to Elsevier April 5, 2014

energy demand, and dwindling supplies. Even with today’s “cheap” power, a data cen-
ter’s energy-related costs represent a significant fraction (∼31% [10]) of its total cost
of ownership. Prior research on green data centers often assumes that grid energy is
always available in unlimited quantities [7, 8], and focuses largely on optimizing ap-
plications to use less energy without impacting performance. By comparison, there has
been little research on optimizing applications for intermittent power that fluctuates
over time. Operating off intermittent power introduces new opportunities for optimiz-
ing a data center to be both cheaper and greener.

For instance, companies are highly interested in utilizing more intermittent re-
newable energy sources in data centers, both from a cost and environmental perspec-
tive [9, 29]. Both Microsoft (at the recent Rio+20 summit) [2] and HP [6] have an-
nounced bold initiatives to design net-zero data centers that consume no net energy
from the electric grid and include substantial use of on-site renewable energy sources.
Google has also pledged to reduce its carbon footprint to zero [3]. Additionally, star-
tups, such as AISO.net [1], have formed around the idea of green hosting using only re-
newables. While today’s energy prices do not strongly motivate renewable power from
an economic perspective, companies are concerned about continued future price in-
creases and the environmental (and public relations) consequences of fossil fuel-based
energy. Since long-term battery-based storage is prohibitively expensive, increasing re-
newable penetration requires closely matching power consumption to generation. Data
centers are particularly well-positioned to benefit from renewables, since unlike house-
hold and industrial loads, many workloads, including delay-tolerant batch jobs, may
permit some performance degradation due to varying power. As the fraction of renew-
ables increases in data centers, the data centers must be designed to gracefully handle
significant and frequent variations in the available power, and even sustained low power
scenarios, e.g., during extended cloudy periods.

The ability to use intermittent power introduces other opportunities, beyond in-
creasing use of renewable energy, for optimizing a data center to be cheaper, greener,
and more reliable. We argue that designing systems to exploit these optimizations will
move us closer to the vision of a net-zero data center.

• Market-based Electricity Pricing. Electricity prices vary continuously based
on supply and demand. Many utilities now offer customers access to market-
based rates that vary every five minutes to an hour [4]. As a result, the power
data centers are able to purchase for a fixed price varies considerably and fre-
quently over time. For instance, in the New England hourly wholesale market
in 2011, maintaining a fixed $55/hour budget, rather than a fixed per-hour power
consumption, purchases 16% more power for the same price (Figure 1). The ex-
ample demonstrates that data centers that execute delay-tolerant workloads, such
as data-intensive batch jobs, have an opportunity to reduce their electric bill by
varying their power usage based on price.

• Unexpected Blackouts or Brownouts. Data centers often use UPSs for backup
power during unexpected blackouts. An extended blackout may force a data
center to limit power consumption at a low level to extend UPS lifetime. While
low power levels impact performance, it may be critical for certain applications

2

 0

 1

 2

 3

 4

 0 60 120 180 240 300

P
ow

er
 (

M
W

)

Days

$55/hour Budget

Figure 1: Electricity prices vary every five minutes to an hour in wholesale markets,
resulting in the power available for a fixed monetary budget varying considerably over
time.

to maintain some, even low, level of availability, e.g., disaster response applica-
tions. As we discuss, maintaining availability at low power levels is challenging
if applications access distributed state. Further, in many developing countries,
the electric grid is highly unstable with voltage rising and falling unexpectedly
based on changing demands. These “brownouts” may also affect the power avail-
able to data centers over time.

• 100% Power Infrastructure Utilization. Another compelling use of intermit-
tent power is continuously operating a data center’s power delivery infrastructure
at 100%. Since data center capital costs are enormous, maximizing the power
delivery infrastructure’s utilization by operating as many servers as possible is
important. However, data centers typically provision power for peak demands,
resulting in low utilization [12, 24]. In this case, intermittent power is useful to
continuously run a background workload on a set of servers—designed explic-
itly for intermittent power—that always consume the excess power PDUs are
capable of delivering. Since the utilization (and power usage) of a data center’s
foreground workload may vary rapidly, the background servers must be capable
of quickly varying power usage to not exceed the power delivery infrastructure’s
limits.

In this paper, we present the design of a distributed file system (DFS) for intermit-
tent power. Since DFSs now serve as the foundation for a wide range of data-intensive
applications run in today’s data centers, taking advantage of any of the opportunities
above necessitates a DFS optimized for intermittent power. As we discuss, design-
ing such a DFS poses a significant research challenge, since periods of scarce power
may render data inaccessible, while periods of plentiful power may require costly data
layout adjustments to scale up I/O throughput. Our approach leverages a recently pro-
posed blinking abstraction [31], which rapidly, e.g., once a minute, “blinks” servers
between a high-power active state and a low-power inactive state, that has been shown
to improve performance for stateless applications, e.g., memcached, running on inter-
mittent power. Whether or not the technique applies to stateful applications is an open

3

problem, since both disk and memory state become unavailable whenever a blinking
node is inactive. Researchers must address the problem to make blinking a practical
option for a wide range of stateful applications.

Our work is the first to address the problem by designing a blink-aware stateful DFS
optimized for intermittent power. Our system, called BlinkFS, represents a dramatic
departure from all prior techniques used in energy-efficient storage systems, which gen-
erally rely on powering down large sets of servers for long periods of time to reduce
overall energy consumption. Our goal is to design a DFS that performs well across a
wide range of intermittent power scenarios – ranging from large and rapid power varia-
tions (+/- 90%) to sustained low power periods (∼20%). In all cases, BlinkFS’s goal is
to utilize intermittent power as efficiently as possible, rather than guarantee a specific
amount of work finishes within some time period. Since intermittent power may not be
available to satisfy workloads with strict performance requirements or deadlines, it is
not appropriate in these cases. Since we focus on using intermittent power, optimiza-
tions that use grid energy in combination with renewables to provide SLA guarantees
are beyond the scope of this paper. As we describe in Section 2, the dynamics of inter-
mittent power, where changes in available power may be significant, frequent, and un-
predictable, warrant our new approach. Below, we highlight the advantages of our DFS
designed for intermittent power, called BlinkFS, over co-opting prior energy-efficient
storage techniques, e.g., [16, 23, 27, 30, 34, 35].

• Low Amortized Overhead. Blinking every node at regular intervals prevents
costly and abrupt data migrations—common in many systems—whenever power
decreases—to concentrate data on a small set of active nodes—or increases—to
spread data out and increase I/O throughput. Instead, blinking ensures that each
node is active, and its data is accessible, for some period of time each blink
interval, at the expense of a modest overhead to transition each node between a
high-power active and low-power inactive state.

• Bounded Replica Inconsistency. Deactivating nodes for long periods requires
write off-loading to temporarily cache writes destined for inactive or overloaded
nodes [15]. The technique requires excessive writes whenever nodes activate or
deactivate to either apply or migrate off-loaded writes, respectively, while im-
pacting reliability if off-loaded writes are lost due to a node failure. In contrast,
BlinkFS ensures all replicas are consistent within one blink interval of any write,
regardless of the power level.

• No Capacity Limitations. Since migrating to a new data layout is expensive, a
goal of BlinkFS is to decouple I/O performance at any power level from the data
layout: the same layout should perform well at all power levels. To ensure such a
data layout, Rabbit [16] severely limits the capacity of nodes storing secondary,
tertiary, etc. replicas. Blinking enables a power-independent layout without such
limitations.

• Minimally Disruptive. DFSs support higher-level applications designed assum-
ing fully active nodes with stable data layouts. Frequently changing the set of
active nodes or the data layout disrupts scheduling and placement algorithms for

4

applications, such as MapReduce, that co-locate computation with DFS storage.
BlinkFS is less disruptive, since it keeps every node active for the same duration
every blink interval and does not change the data layout as power varies.

• Always-accessible Data. Prior systems render data completely inaccessible if
there is not enough power to store all data on the set of active nodes. In contrast,
BlinkFS ensures all data is accessible, with latency bounded by the blink interval,
even at low power levels where the set of active nodes is unable to store the entire
data set.

Since each node’s data is inaccessible for some period each blink interval, BlinkFS’s
goal is to gain the advantages above without significantly degrading access latency. In
achieving this goal, our work makes the following contributions.
Blinking-aware File System Design. We detail BlinkFS’s design and its advantages
over co-opting existing energy-proportional DFSs for intermittent power. The design
leverages a few always-active proxies to absorb file system operations, e.g., reads and
writes, while masking BlinkFS’s complexity from applications.
Latency Reduction Techniques. We discuss techniques for mitigating blinking’s la-
tency penalty. Our approach combines staggered node active intervals with a power-
balanced data layout to ensure replicas stored on different nodes are active for the max-
imum duration each blink interval. BlinkFS also uses popularity-based data replication
and reclamation to further decrease latency for frequently-accessed data blocks.
Implementation and Evaluation. We implement BlinkFS on a small-scale prototype
using 10 Mac minis connected to a programmable power supply that drives variable
power traces. We then benchmark BlinkFS’s performance and overheads at differ-
ent (fixed and oscillating) power levels. We also compare BlinkFS with prior energy-
efficient DFSs in two intermittent power scenarios—maintaining a fixed-budget de-
spite variable prices and using intermittent wind/solar energy— using three different
applications: a MapReduce-style batch system, the MemcacheDB key-value store, and
file system traces from a search engine. As an example of our results, BlinkFS im-
proves MapReduce job completion time by 42% at 50% power compared to an exist-
ing energy-proportional DFS. At 20% power, BlinkFS still finishes jobs, while existing
approaches stall completely due to inaccessible data.

2. DFSs and Intermittent Power

Reducing data center power consumption is an active research area. Much prior
work focuses on energy-proportional systems, where power usage scales linearly with
workload demands [22]. The goal of energy-proportional systems is to not impact per-
formance: if demands increase, these systems increase power consumption to maintain
performance. Energy-proportional distributed applications typically vary power con-
sumption by activating and deactivating nodes as workload demands change. An obvi-
ous approach for addressing intermittent power is to co-opt existing energy-proportional
approaches, but vary the number of active nodes in response to changes in avail-
able power rather than workload demands. Unfortunately, as we discuss below, the

5

approach does not work well for DFSs using intermittent power, since power varia-
tions may be significant, frequent, and unpredictable, e.g., from changing prices, ex-
plicit demand response signal sent by the electric grid, or wind, solar, geothermal,
etc. power. While energy-proportional systems optimize energy consumption to sat-
isfy workload demands, designing for intermittent power requires systems to optimize
performance as power varies. Below, we summarize how intermittent power affects
energy-proportional DFSs, and then discuss two specific approaches.

2.1. Energy-Proportional DFSs
DFSs, such as the Google File System (GFS) [21] or the Hadoop Distributed File

System (HDFS) [32], distribute file system data across multiple nodes. Designing
energy-proportional DFSs is challenging, in part, since naı̈vely deactivating nodes to
reduce energy usage has the potential to render data inaccessible [27]. One simple way
to prevent data on inactive nodes from becoming inaccessible is by storing replicas
on active nodes. Replication is already used to increase read throughput and reliabil-
ity in DFSs, and is effective if the fraction of inactive nodes is small. For example,
with HDFS’s random placement policy for replicas, the probability that any block is
inaccessible is m!(n−k)!

n!(m−k)! for n nodes, m inactive nodes, and k replicas per block. Fig-
ure 2 plots the fraction of inaccessible data as a function of the fraction of inactive
nodes, and shows that nearly all data is accessible for small numbers of inactive nodes.
However, the fraction of inaccessible data rises dramatically once half the nodes are
inactive, even for aggressive replication factors, such as k=7. Further, even a few in-
active nodes, where the expected percentage of inaccessible data is small, may pose
problems, e.g., by stalling batch jobs dependent on a small portion of the inaccessible
data.

Thus, a popular approach for designing energy-efficient storage systems is to use
concentrated data layouts, which deactivate nodes without causing inaccessible data.
The layouts often store primary replicas on one subset of nodes, secondary replicas on
another mutually-exclusive subset, tertiary replicas on another subset, etc., to safely
deactivate non-primary nodes [16, 27]. Other systems concentrate data to optimize
for skewed access patterns, by storing only popular data on a small subset of active
nodes [14, 20, 23, 30, 35]. Unfortunately, concentrated layouts cause problems if
available power varies independently of workload demands. Below, we highlight three
problems with approaches that use concentrated data layout to deactivate nodes for
long periods.
Inaccessible Data. If there is not enough power available to activate the nodes nec-
essary to store all data, then some data will become inaccessible at low power levels.
As we mention in Section 1, sustained low power periods are common in many inter-
mittent power scenarios, such as during extended blackout or brownout periods, when
using on-site solar generation on a cloudy day, or maintaining a fixed power budget
as energy prices rise. Thus, gracefully degrading throughput and latency down to ex-
tremely low power levels is important. With concentrated data layouts, as data size
increases, the number of nodes, and hence minimum power level, required to store all
data and keep it accessible increases.
Write Off-loading Overhead. Energy-proportional systems leverage write off-loading
to temporarily cache writes on currently active nodes, since clients cannot apply writes

6

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

In
a
c
c
e
s
s
ib

le
 D

a
ta

 (
%

)

Inactive Nodes (%)

k=1
k=3
k=7

Figure 2: Inaccessible data rises with the fraction of inactive nodes using a random
replica placement policy.

to inactive nodes, e.g., [15, 16, 34]. Write off-loading is also useful for deferring
writes to overloaded nodes, which are common when only a small number of active
nodes store all data. While a small number of active primary nodes decreases the mini-
mum power level necessary to keep data accessible, it overloads primaries by requiring
them to process all writes. The approach also imposes abrupt overheads when acti-
vating or deactivating nodes, either to apply off-loaded writes to newly active nodes
or overloaded primary nodes, respectively. Further, intermittent sources, e.g., wind
power, that exhibit abrupt power variations require near immediate node deactivations,
precluding the completion of time-consuming operations. While using a large battery
array as a buffer mitigates the impact of sudden variations, it is prohibitively expen-
sive [18]. Further, deferring writes to replicas on inactive nodes degrades reliability in
the event of node failure. Failure’s consequences are worse during low power periods,
by increasing the number of off-loaded writes on active nodes, and the time replicas on
inactive nodes remain in an inconsistent state.
Disrupts Higher-level Application. A common paradigm for DFSs in data centers
is to distribute file system data across compute nodes that host a variety of distributed
applications. These applications, e.g., MapReduce, have their own, often highly opti-
mized, algorithms to schedule and place computation to minimize data transfer over-
heads. Thus, activating and deactivating nodes or changing data layouts as power varies
often requires significant modifications to higher-level applications.

Below, we outline two approaches to energy-proportional DFSs that use concen-
trated data layouts and vary power by activating and deactivating nodes. We highlight
the additional problems these DFSs encounter if power variations are significant and
frequent.

2.2. Migration-based Approach
We classify any approach that varies power consumption by migrating data to con-

centrate it on a set of active nodes, and then deactivating the remaining nodes, as a
migration-based approach. With this approach, power variations trigger changes to
number of nodes storing either the most popular data or primary, secondary, tertiary,
etc. replicas. In either case, data layout changes require migrations to spread data out
to provide higher I/O throughput (as nodes become active) or to concentrate data and

7

D1

D1

D1

Ti
m
e

100%

50%

25%

D2

D2

D2

D3

D3

D3

D4

D4

D4

D1 D2

D2
D4

D3 D4

D1
D3

D2
D4

D1
D3

(b)(a)

Figure 3: Simple example using a migration-based approach (a) and blinking (b) to
deal with power variations.

keep it accessible (as nodes become inactive). Thus, mitigating migration overheads is
a focus of prior work on energy-efficient storage [23, 30, 35].

To highlight the problems with this approach, consider the simple example in Fig-
ure 3(a), where there is enough power to operate four nodes storing primary replicas
and the data fills two nodes’ storage capacity. A sudden and unexpected drop in power
by 2X, leaving only two active nodes, may not afford enough time for the necessary
migrations, leaving some data inaccessible. Even with sufficient time for migration, an
additional 2X power drop, leaving only one active node, forces at least 50% of the data
to become inaccessible. Note that we focus on regulating power consumption within a
single data center. Another way to handle power variations is to migrate applications
and their data to remote data centers with ample or cheap power [17]. The technique
is infeasible for large storage systems. Even assuming dedicated high-bandwidth net-
work links, we view frequent transfers of large, e.g., multi-petabyte, storage volumes
as impractical.

2.3. Equal-Work Approach
Amur et al. propose an energy-proportional DFS, called Rabbit, that eliminates

migration-related thrashing using an equal-work data layout [16]. The layout uses
progressively larger replica sets, e.g., more nodes store (n + 1)-ary replicas than n-
ary replicas. Specifically, the layout orders nodes 1 . . . i and stores bi = B

i blocks on
the ith node, where i > p and p nodes store primary replicas (assuming a data size
of B). The layout ensures that any 1 . . . k active nodes (for k < i total nodes) are
capable of servicing B

k blocks, since B
i < B

k . Since the approach is able to spread
load equally across any subset of nodes in the ideal case of reading all data, it ensures
energy-proportionality with no migrations.

Amur et al. provide details of the approach in prior work [16], including its perfor-
mance for workloads that diverge from the ideal. Rabbit’s primary constraint is its stor-
age capacity limitations as i → ∞, since B

i defines the capacity for node i. Thus, for

8

N homogeneous nodes capable of each storing M blocks, the nodes’ aggregate storage
capacity is MN , while Rabbit’s storage capacity is pM +

∑N
i=p+1

pM
i = O(logN).

For example, for N=500 nodes and M=214=16384 64MB blocks, the aggregate stor-
age capacity across all nodes is MN=500 terabytes, while Rabbit’s capacity is less
than 15 terabytes, or 3% of total capacity, when p=2.

The relationships above show that the fraction of unused capacity increases linearly
with N . Thus, the total storage capacity is capable of accommodating significantly
more replicas than Rabbit uses as N increases. To reduce capacity limitations, Rabbit
is able to individually apply the layout to multiple distinct data sets, by using a different
1 . . . i node ordering for each data set. However, multiplexing the approach between
data sets trades off desirable energy-efficient properties, e.g., few nodes storing primary
replicas and ideal energy-proportionality. Thus, Rabbit’s design presents issues for
large clusters of nodes with similar storage capacities.

3. Applying Blinking to DFSs

The systems in the previous section use activation policies that vary power con-
sumption only by varying the number of active nodes. As discussed by Sharma et
al. [31], the blinking abstraction supports many other types of blinking policies. As
we discuss in Section 4, BlinkFS uses an asynchronous staggered blinking policy. Be-
low, we provide a brief, high-level summary of blinking. A detailed description of
the abstraction and its implementation is available in Blink [31]. Blinking builds on
PowerNap [28], which enables rapid server transitions between the active and inactive
states.

The blinking abstraction permits an external controller to remotely set a blink in-
terval t and an active interval tactive on each node, such that for every interval t the
node is active for time tactive and inactive for time t − tactive. ACPI’s S3 (Suspend-
to-RAM) state is currently a good choice for the inactive state, since it combines the
capability for fast millisecond-scale transitions with low power consumption (<5%
peak power). In contrast, techniques that target individual components, such as DVFS
in processors, are much less effective at satisfying steep drops in available power, since
they are often unable to reduce consumption below 50% peak power [33]. To control
inter-node blinking patterns, the abstraction also enables a controller to specify when a
blink interval starts, as well as when within a blink interval the active interval starts.

3.1. Advantages for DFSs

To see the advantages of blinking for DFSs, recall the previous section’s example
(Figure 3(b)), where there is initially enough power to operate four nodes that each
provide storage for a fraction of the data. If the available power decreases by 2X, with
blinking we have the option of keeping all four nodes active for time tactive =

t
2 every

blink interval t. In this case, instead of migrating data and concentrating it on two
active nodes, we are able to keep the same data layout as before without changing our
aggregate I/O throughput over each blink interval, assuming each node has the same
I/O throughput when active. Thus, at any fixed power level, blinking is able to provide
the same I/O throughput, assuming negligible transition overheads, as an activation

9

File Metadata Server
---------------------- Power

Manager

Power Client
Block Server

Power Client
Block Server

Power Client
Block Server

Application BlinkFS Client

Power
Signal

da
ta

BlinkFS
Legend:

Data msg.
Control msg.

F
U
S
E

blk 1
blk 2

blk k

bs 1
bs 2

bs n

/bob/test

create, ls / get BS states

write <filename, offset, data>

read <b id, v no, offset, len>

<blink states, CPU utils,
I/O rates>

<B
lin

k
st

at
e

(s
ta

rt
tim

e,
 o

n
pe

rio
d)

>

<CPU util, I/O
 rate>

Blinking Nodes

m
etadata
info.

File Proxy
<blink states, CPU utils, I/O

 rates>

get block metadata

<b id, v no, BS id, blink state>

write <b id, v no, offset, data>(re
pli

ca
te

)
<b

 id
, p

ro
xy

, B
S>

FS metadata / BS states

cp
 <b

 id
, B

S,
 da

ta>

Figure 4: BlinkFS Architecture

approach. However, blinking has a distinct advantage over a migration-based approach
if the available power changes, since it is possible to alter node active intervals nearly
instantly to match the available power without the overhead of migration. Additionally,
in contrast to Rabbit, the blinking approach does not require severe capacity limitations
on nodes to maintain throughput. Finally, the approach is beneficial at low power levels
if not enough nodes are active to store all data, since data is accessible for some period
each blink interval.

3.2. Mitigating Reliability Concerns

We are not aware of any work that addresses the reliability impact of frequently
transitioning a platform’s electric components between ACPI’s S0 and S3 state. In fact,
related work on PowerNap [28] advocates even more rapid transitions (∼100ms) than
our prototype (∼60s). Anecdotally, we have blinked our prototype tens of thousands
of times without any failures.

Prior work on energy-efficient storage has likely not considered blinking due to the
reliability concerns of frequently transitioning mechanical components, such as mag-
netic disks and exhaust fans, to and from their low-power standby state. For instance,
prior work estimates a disk reaches its rated limit (estimated at 50, 000 start-stop cy-
cles) in five years when transitioning only 28 times per day [35]. Since our prototype
blinks nodes once a minute, it would reach the same limit in only 35 days. How-
ever, a node’s mechanical components typically comprise only a small percentage of
overall power consumption. For example, prior work estimates that consumer disks
use roughly 10W when active and 5W when idle [11], while electric components may
consume more than 150W. Thus, introducing a new low-power state that is similar to
ACPI’s S3 state, but decouples the power state of mechanical components would permit
blinking a node’s high-power electric components, without wearing out the mechanical
components.

10

Of course, flash-based Solid State Drives (SSDs) are reducing the reliance on disks,
and do not have the reliability concerns associated with rapid blinking. SSDs are in-
creasingly popular, since they support higher I/O rates and are more energy-efficient
than disks for a range of seek- and scan-intensive workloads [11, 33]. Since today’s
nodes do not decouple the power state of the electric and mechanical components, our
prototype uses only SSDs.

4. BlinkFS Design

Figure 4 depicts BlinkFS’s architecture, which resembles other recent DFSs, in-
cluding GFS [21], HDFS [32], Rabbit [16], etc., that use a master meta-data server
to coordinate access to each node’s data via a block server. The master also maintains
the file system namespace, tree-based directory structure, file name→ blocks mapping,
and block→ node mapping, as well as enforces the access control and block placement
and replication policy. As in prior systems, files consist of multiple fixed-size blocks
replicated on zero or more nodes. To mitigate the impact of node failure, the mas-
ter may recover from meta-data information stored at one or more proxies, described
below, or maintain an up-to-date copy of its meta-data on backup nodes.

BlinkFS also includes a power manager that monitors available power, as well as
any energy stored in batteries, using hardware sensors. The power manager imple-
ments a blinking policy that continuously alters per-node blinking patterns to match
power consumption with available power. Specifically, the power manager commu-
nicates with a power client on each node to set the blink interval duration t, as well
as its start time and active interval (tactive). The power client also acts as an inter-
face for accessing other resource utilization statistics, including CPU utilization, I/O
accesses, etc. The power manager informs the master and proxies, described below,
of the current blinking policy, i.e., when and how long each node is active every blink
interval, and per-node resource utilization statistics. To access the file system, higher-
level applications interact with BlinkFS clients through well-known file system APIs.
Our prototype uses the POSIX API’s file system calls.

We do not assume that BlinkFS clients are always active, since clients may run
on blinking nodes themselves, e.g., in clusters that co-locate computation and DFS
storage. Thus, to enable clients to read or write blocks on inactive nodes, BlinkFS
utilizes one or more always-active proxies to intercept read and write requests if a
client and block server are not concurrently active, and issue them to the appropriate
node when it next becomes active. Each proxy maintains a copy (loaded on startup by
querying the master) of the meta-data information necessary to access a specific group
of files (each file is handled by a single proxy), and ensures replica consistency every
blink interval. The proxy propagates any file system operations that change meta-data
information to the master before committing the changes. The power manager also
maintains an up-to-date view of each node’s power state, since each power client sends
it a status message when transitioning to or from the inactive state. The messages also
serve as heartbeats: if the power manager does not receive any status messages from
a power client within some interval, e.g., 5 minutes, it checks if its block server has
failed. A failure prompts the master to initiate recovery actions.

11

(1)

(2)

Blink Interval

(3)

(4)

Nodes

R1

Staggered

(5)

(6)

(7)

(8)

R2

R3

R4
(if necessary)

R1

R3

R2

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

1st

2nd

3rd4th
(if necessary)

(a) Staggered Blinking (b) Power-balanced Data Layout

Figure 5: Combining staggered blinking (a) with a power-balanced data layout (b)
maximizes block availability.

Similar to a set of always-active nodes storing primary replicas, proxies consume
power that increases the minimum threshold required to operate the cluster. Impor-
tantly, however, proxies only serve as intermediaries, and do not store data. As a result,
the data set size does not dictate the number of proxies. However, proxies do limit
I/O throughput by redirecting communication between many clients and block servers
through a few points. However, as we discuss below, mostly-active clients may often
bypass the proxies when accessing data. Further, proxies are most useful at low power
levels, where available power, rather than proxy performance, limits I/O throughput.
Below we discuss the details of how BlinkFS’s components facilitate reading and writ-
ing files, and then present techniques for mitigating BlinkFS’s high latency penalty.

4.1. Reading and Writing Files
Proxies mask the complexity of interacting with blinking nodes from applications.

The master and each client use a well-known hash function to map a file’s absolute
path to a specific proxy. To read or write a file, clients either issue requests to the proxy
directly, or use an optimization, discussed below, that bypasses a file’s proxy if the
client is active at the same time as the file’s block servers.
Handling Reads. The meta-data necessary to read a file includes its block IDs and
their version numbers, as well as the (IP) address and blinking information of the block
servers storing replicas of the file’s blocks. The proxy holds read requests until a node
storing the block becomes active, issues the request to the block server, receives the
data, and then proxies it to the client. If multiple block servers storing the block’s
replicas are active, the proxy issues the request to the node with the longest remaining
active interval, assuming the remaining active time exceeds a minimum threshold nec-
essary to read and transmit the block. Using a proxy to transfer data is necessary when
executing both clients and block servers on blinking nodes, since the client may not be
active at the same time as the block server storing the requested data.

To optimize reads, mostly-active clients may directly request from the proxy the
block information—IDs and version numbers—and blinking policy for each block
server holding a replica, and then access block servers directly when they become

12

active. The optimization significantly reduces the proxy load for read-intensive work-
loads. To ensure the proxy applies all previous client writes to a block before any
subsequent reads, the proxy includes a version number for each block, incremented on
every update, in its response to the client. If the version number for the block stored
at the block server is lower than the requested version number, then the proxy holds
pending writes that it has not yet applied. In this case, the read stalls until the proxy
applies the writes and the version numbers match. If the block server has an equivalent
or higher version number, it sends back the data immediately. In either case, a block
server ensures that a client never gets stale data, i.e., a block of version number lower
than the requested version number. Like a Unix file system, application-level file lock-
ing might be necessary to ensure the atomicity of cross-block reads, e.g., as in the case
of concurrent producers and consumers.
Handling Writes. The proxy performs a similar sequence for writes. All writes flow
through a file’s proxy, which serializes concurrent writes and ensures all block replicas
are consistent each blink interval. The proxy may also return to the client before ap-
plying the write to every block replica, since subsequent reads either flow through
the proxy or match version numbers at the block server, as described above. The
proxy maintains an in-memory write-ahead log to track pending off-loaded writes from
clients. Since the log is small, the proxy stores in-memory backups on one or more
nodes (updated on each write before returning to the client), which it recovers from
after a failure. When the client issues the write, the proxy first records the request in its
log, increments the version number of the updated blocks, updates the master metadata
and its own metadata, and returns to the client; next it then propagates the write to
all replicas as the block servers become active; finally, when all replicas successfully
apply the write, it removes the request from its log of pending writes.

Since all block servers are active for a period each blink interval, all replicas are
consistent within one blink interval from when the write is issued, and the maximum
time a write remains pending in the proxy’s log is one blink interval. Of course, the
proxy does have a fixed-size log for pending writes. After filling the log, further write
requests stall until the proxy propagates at least one of its queued writes to each replica.
Based on available power and the CPU and network utilization of block servers, the
proxy limits write throughput to ensure all pending writes are applied within a blink
interval, e.g., by stalling additional writes.

As with reads, mostly-active clients could also interact directly with block servers,
as long as the client and block server are both active at the same time. In this case, the
proxy maintains an intermediate version number for each block, not visible to read re-
quests, to handle concurrent writes. An intermediate version number is always greater
than or equal to the real version number for any block. An intermediate version number
greater than the real version number indicates that one or more writes are pending for
the block. Below we describe the complete flow of a direct or bypass write:

1. To write data directly to block servers a client first sends the filename, offset, and
data size (in bytes) to the proxy.

2. The proxy increments the intermediate version number of the blocks to be up-
dated, and sends back the meta-data to the client. The meta-data includes block
IDs and their intermediate version numbers, as well as the address and blinking

13

information of block servers storing any replicas.
3. The client pushes the data to all replicas as the block servers become active. Each

block server keeps the data from the client in an internal cache until it is directed
by the proxy to apply the write or delete it from the cache. The client can push
data in any arbitrary order.

4. Once the data is successfully pushed to all the block replicas, the client sends
a request to the proxy. The request describes the update (block IDs, version
numbers, offsets, data sizes) sent to the replicas. Note that the version number in
a block update is same as the intermediate version number assigned by the proxy
for the block.

5. The proxy updates the metadata, including the version number, of the blocks and
the file metadata, updates the master metadata, and finishes the write operation
by returning back to the client. The client then returns back to the application.

6. The proxy notifies block servers to apply writes to blocks.
7. If the client could not finish the write operation within a time threshold set by

the proxy, based on the blink and I/O rates of the block servers, the proxy aborts
the write and directs the block servers to remove any writes from their caches.

A write operation could span several blocks. To ensure consistency and allow con-
current writes the proxy imposes two restrictions. First, the proxy cannot finish a by-
pass write operation (steps 5 and 6) until all previous overlapping write operations are
already finished or aborted. Second, the proxy stalls a via-proxy write until all previous
overlapping bypass writes are either completed or aborted. Two write operations are
overlapping if they have at least one block in common. Since versioning and meta-
data updates are serialized by the proxy, all replicas apply concurrent writes in the
same serial order, although the data could arrive in any order. Finally, by applying the
restrictions above the proxy also ensures the atomicity of cross-block write operations.

Since a write call in an application returns success only after the proxy updates
the metadata information, as described above, a subsequent read call from the same
application will always see the written data or a more recent version. Likewise, a read
request never gets inconsistent data since it cannot see intermediate versions and all
stable versions are already consistent.
Proxy Overhead and Scalability. As BlinkFS scales, it requires more proxies to
increase its maximum workload, especially at moderate power levels. Note that the
workload, and not data size, dictates the number of proxies. At high power, since
clients can bypass proxies, proxies are not a bottleneck. At low power, the lack of node
availability is the constraint, and not the proxies. For moderate power levels, our exper-
iments (Section 6) show a proxy-to-block server ratio of 1:10 performs well, and also
suggests that for some workloads a higher ratio may be acceptable. Thus, we expect
the power overhead of proxies (and the minimum power necessary for operation) to be
less than or equal to 10% in today’s clusters.

4.2. Reducing the Latency Penalty

While migration-based approaches incur high overheads when power levels change,
they ensure data is accessible, i.e., stored on an active node, as long as there is power
to activate nodes necessary to store all data. In contrast, naı̈ve blinking incurs a high

14

latency penalty, since each node is inactive for some time each blink interval. BlinkFS
combines three techniques to reduce latency: an asynchronous staggered blinking pol-
icy, a power-balanced data layout, and popularity-aware replication and reclamation.
Asynchronous Staggered Blinking. Staggered blinking’s goal is to minimize the over-
lap in node active intervals by staggering start times equally across each blink interval.
Figure 5(a) depicts an example of staggered blinking. To perform well at both high
and low power levels, the policy assigns equal-sized active intervals to all nodes, while
varying the size of this interval to adjust to changes in available power. Thus, at any
power level all nodes are active for the same amount of time. In contrast, while activat-
ing all nodes in tandem (akin to co-scheduling) may exhibit slightly lower latencies at
high power levels (especially for read requests issued during an active interval that span
multiple blocks stored on multiple nodes), it performs much worse at moderate-to-low
power since it does not take advantage of replication to reduce latency.

Formally, for available power pavailable, total power ptotal necessary to activate all
nodes, total power pinactive required to keep all nodes in the inactive state, blink interval
duration t, and N nodes, the duration of each node’s active interval is tactive = t ∗
pavailable−pinactive

ptotal−pinactive
, and the blink start time (within each interval) for the ith node (where

i=0 . . . N −1) is bstart=(t− tactive) ∗ i
N−1 . Next we discuss how combining staggered

blinking with a data layout that spreads replicas across nodes, maximizes the time at
least one block replica is stored on an active node each blink interval. Importantly, the
approach maximizes this time at all power levels.
Power-balanced Data Layout. A power-balanced data layout spreads replicas for
each block across nodes, such that any set of nodes storing the block’s replicas have
minimum overlapping active intervals using the staggered blinking policy above. To
place replicas in such a layout, we order all N nodes in a circular chain from 0 . . . N−1
and choose a random node to store the first replica of each block. We then place the
second replica on the node opposite the first replica in the circle, the third replica on
one of the nodes half-way between the first and second replicas, the fourth replica on
the other node between the first and second replicas, etc. To delete replicas, we reverse
the process. Figure 5(b) depicts an example for three replicas using staggered blinking
from 5(a).

The layout policy above is optimal, i.e., maximizes the time each block is available
on an active node each blink interval, if the number of replicas is a power of two. Main-
taining an optimal placement for any number of replicas requires migrating all replicas
each time we add or remove a single one. Our layout policy does not always main-
tain an optimal placement of replicas – placement is optimal only when the number of
replicas is a power of two. However, the layout does perform well without requiring
expensive migrations each time the number of replicas for a block changes. Note that
for blocks with stable access patterns, where the number of replicas rarely changes, we
evenly distribute replicas around the chain. Our layout is more resilient to failures than
concentrated data layouts, since it spreads replicas evenly across nodes, rather than
concentrating them on small subsets of nodes.
Popularity-aware Replication and Reclamation. Replication in DFSs is common to
tolerate node failures and improve read throughput. Likewise, migrating popular repli-
cas to active nodes is common in energy-efficient DFSs [23, 30, 34, 35]. BlinkFS also

15

uses replication to mitigate its latency penalty as power varies by employing popularity-
aware replication and reclamation to reduce the latency for popular blocks. Note that
our replication strategy is independent of the power level, since replicating at low power
levels may be infeasible. In this case, a modest amount of battery-based storage may be
necessary to spawn the appropriate replicas to satisfy performance demands [18]. By
default, BlinkFS maintains three replicas per block, and uses any remaining capacity
to potentially store additional latency-improving replicas.

As clients create new files or blocks become less popular, BlinkFS lazily reclaims
replicas as needed. Using staggered blinking and a power-balanced data layout, the
number of replicas r required to ensure a block is available 100% of each blink interval,
based on the total nodes N , blink interval t, available power p, and active node power
consumption pnode, is r = d N

b (N−1)p
N∗pnode−p c

e. At low enough power levels, i.e., where

1 > p
pnode

, there are periods within each blink interval where no nodes are active. In
this case, the minimum possible fraction of each blink interval the block is unavailable
is 1− p

pnode
, assuming it is replicated across all nodes.

The master uses the relationships above to compute a block’s access latency, given
its replication factor and the current power level, assuming requests are uniformly dis-
tributed over each blink interval. There are many policies for spawning new replicas
to satisfy application-specific latency requirements. In our prototype, the master tracks
block popularity as an exponentially weighted moving average of a block’s I/O (read)
accesses, updated by the proxy every blink interval, and replicates blocks every pe-
riod in proportion to their relative popularity, such that all replicas consumes a pre-set
fraction of the unused capacity. For frequently updated blocks, BlinkFS caps the repli-
cation factor at three, since excessive replicas increase write overhead. To replicate a
block, the master selects a source and a destination block server based on blinking pat-
terns of the nodes, and directs the source node to send the data to the destination node
either directly – if both nodes are active at the same time – or via the proxy, otherwise.

5. Implementation

We implement a BlinkFS prototype in C, including a master (∼3000LOC), proxy
(∼1000LOC), client (∼1200LOC), power manager (∼100LOC), power client (∼50LOC),
and block server (∼900LOC). The client uses the FUSE (Filesystem in Userspace) li-
brary in Linux to transfer file system-related system calls from kernel space to user
space. Thus, BlinkFS clients expose the POSIX file system API to applications. BlinkFS
also extends the API with a few blink-specific calls, as shown in Table 1. These sys-
tem calls enable applications to inspect information about node blinking patterns to
improve their data access patterns, job scheduling algorithms, etc., if necessary. All
other BlinkFS components run in user space. While the master, proxy, and power man-
ager are functionally separate and communicate via event-based APIs (using libevent),
our prototype executes them on the same node. To experiment with a wide range of
unmodified applications, we chose to implement our prototype in FUSE, rather than
extend an existing file system implementation, such as HDFS.

Our prototype includes a full implementation of BlinkFS, including the staggered
blinking policy, power-balanced data layout, and popularity-aware replication. Our

16

FUSE Functions
getattr(path, struct stat ∗)
mkdir(path, mode)
rmdir(path)
rename(path, newpath)
chmod(path, mode)
chown(path, uid, gid)
truncate(path, offset)
open(path, struct fuse file info ∗)
read(path,buff,size,offset,fusefileinfo∗)
write(path,buff,size,offset,fusefileinfo∗)
release(path,fuse file info∗)
create(path,mode,fuse file info∗)
fgetattr(path, stat∗,fuse file info∗)
BlinkFS-specific Functions
getBlinkState(int nodeid)
getBlockInfo(int blockid)
getFileInfo(path)
getServerLoadStats(int nodeId)

Table 1: POSIX-compliant API for BlinkFS

current implementation redirects all writes through the proxy, but permits clients to
issue reads directly to block servers if both are concurrently active. Also, we maintain
an in-memory log of writes in the proxy, but currently do not mirror it to a backup.
Since our prototype has a modular implementation, we are able to insert other blinking
policies and data layouts. We implement the migration-based approach and Rabbit
from Section 2 to compare with BlinkFS. We also implement the load-proportional
blinking policy proposed by Sharma et al. [31], which blinks nodes in proportion to the
popularity of blocks they store. The policy is useful for access patterns with skewed
popularity distributions, e.g., Zipf, and does not require migrations.
Hardware Prototype. We construct a small-scale hardware prototype (Figure 6) that
uses intermittent power to experiment with BlinkFS in a realistic setting. Our proto-
type is similar to the Blink prototype used by Sharma et al. [31]. Unlike the Blink
prototype, which uses OLPC nodes, our BlinkFS prototype is based on more powerful
but energy-efficient Mac minis. We use a small cluster of ten Mac minis running Linux
kernel 2.6.38 with 2.4Ghz Intel Core 2 Duo processors and 2GB of RAM connected
together using an energy-efficient switch (Netgear GS116) that consumes 15W. Each
Mac mini uses a flash-based SSD with a 40GB capacity. We also use a separate server
to experiment with external always-on clients, not co-located with block servers. To
minimize S3 transition times, we boot each Mac mini in text mode, and unload all un-
necessary drivers. With the optimizations, the time to transition to and from ACPI’s
S3 state on the Mac mini is one second. Note that much faster sleep transition times,
as low as a few milliseconds, are possible [31], and would further improve BlinkFS’s
performance. Unfortunately, manufacturers do not optimize sleep transition time in
today’s server-class nodes. Fast millisecond-scale transitions, as in PowerNap [28],
significantly improve performance, especially access latency, by reducing the blink in-
terval’s length, but are not yet commercially available in today’s servers.

We select a blink interval of one minute, resulting in a transition overhead of
1
60=1.67% every blink interval. We measure the power of the Mac mini in S3 to be
1W and the power in S0 to be 25W. Thus, in S3, nodes operate at 4% peak power.

17

Battery

A

Programmable
Power Supply

+ –

Charge Controller

+ –

+ –

+

––

+

V

trace data

Mac-mini
(FMDS+Proxy+PM)

Mac-mini
(BS+PC)

Mac-mini
(BS+PC)

Mac-mini
(BS+PC)

Storage Cluster

cu
rre

nt
 re

ad
in

g

vo
lta

ge
 re

ad
in

g

Voltage
Logger

Current
Transducer

Programmable
Power Supply

+ –

A/C

BS: Block server
PC: Power client
PM: Power manager
FMDS: File metadata
server

SSD SSD SSD

Figure 6: BlinkFS hardware prototype.

Since BlinkFS requires at least one node (to host the master, proxy, and power man-
ager) and the switch to be active, its minimum power consumption is 40W, or 15% of
its maximum power consumption. The remaining nine nodes each run a power client,
block server, and BlinkFS client. We power the cluster from a battery that connects to
four ExTech 382280 programmable power supplies, each capable of producing 80W,
that replay the variable power traces below. To prevent the batteries from over and
under-charging we connect the energy source to the battery using a TriStar T-60 charge
controller. We also use two DC current transducers and a voltage logger from Na-
tional Instruments to measure the current flowing in and out of the battery and the
battery voltage, respectively. Our experiments use the battery as a short-term buffer of
five minutes; optimizations that utilize substantial battery-based storage are outside the
scope of this paper.
Power Signals. We program our power supplies to replay DC generation traces from
our own small-scale solar panel and wind turbine deployment and 2) traces based on
wholesale electricity prices. We also experiment with both multiple steady and oscil-
lating power levels as a percentage, where 0% oscillation holds power steady through-
out the experiment and N% oscillation varies power between (45 + 0.45N)% and
(45− 0.45N)% every five minutes.

For our renewable trace, we combine traces from our solar/wind deployment, and
set a minimum power level equal to the power necessary to operate BlinkFS’s switch
and master node (40W). We compress our renewable power signal to execute three

18

 0

 20

 40

 60

 80

 100

4KB 32KB 128KB 4MB 16MB

T
h
ro

u
g
h
p
u
t
(M

B
p
s
)

Block size

Write (via proxy)
Read (via proxy)

Read (direct)
Write (direct)

Figure 7: Maximum sequential read/write throughput for different block sizes with and
without the proxy.

 0

 2000

 4000

 6000

 8000

 0 20 40 60 80 100

La
te

nc
y

(m
se

c)

% of Total power

1-replica
3-replicas
6-replicas

 0

 400

 800

 1200

 1600

 2000

 0 20 40 60 80 100

La
te

nc
y

(m
se

c)

% of Total power

1-replica
3-replicas
6-replicas

(a) Reads (b) Writes

Figure 8: Read and write latency in our BlinkFS prototype at different power levels
and block replication factors.

days in three hours, and scale the average power to 50% of the cluster’s maximum
power. Note that the 24X compressed power signal is not unfair to the migration-based
approach, since our data sets are relatively small (less than 20GB). We would expect
large clusters to store more than 24X this much data, increasing the relative transfer
time for migration. BlinkFS’s performance is, by design, not dependent on the data
set size. For our market-based electricity price trace, we use the New England ISO
5-minute spot price of energy for the 3-hour period from 7am to 10am on September
22, 2011, assuming a fixed monetary budget of 1¢/kWh; ISO’s regulate wholesale
electricity markets in the U.S. The average price in the trace is 4.5¢/kWh, the peak
price is 5.2¢/kWh, and the minimum price is 3.5¢/kWh. We envision utilities increasing
their use of market-based electricity pricing in the future, as electricity demands and
prices increase. For example, Illinois already requires utilities to provide residential
customers with access to hourly market-based electricity prices based directly on the
wholesale price [4].

6. Evaluation

We first benchmark BlinkFS’s overheads as a baseline for understanding its per-
formance at different steady and oscillating power levels. We then evaluate BlinkFS

19

Latency (ms) Power (%)
⇓ 20 40 60 80 100

Replication factor = 1

Std Dev W 1619 1069 1014 9 7
R 15524 12701 1692 725 9

90thper
W 60 60 61 62 65
R 46058 33636 64 64 63

Replication factor = 3

Std Dev W 6017 4475 2089 22 22
R 5476 322 309 9 7

90thper
W 79 103 131 145 147
R 13065 64 63 63 63

Replication factor = 6

Std Dev W 8883 5743 2467 703 372
R 523 7 7 7 7

90thper
W 127 183 257 258 263
R 63 63 63 63 63

Table 2: Standard deviation and 90th percentile latency at different power levels and
block replication factors.

for three different applications: a MapReduce-style application [13] (a data-intensive
batch system), unmodified MemcacheDB [5] (a latency-sensitive key-value store), and
file system traces from a search engine. Each application runs as a normal process with
access to the BlinkFS mount point.

6.1. Benchmarks

To benchmark BlinkFS, we wrote a single-threaded application that issues block-
ing read/write requests to the client’s interface, rather than through FUSE, to examine
performance independent of FUSE overheads. One limitation of FUSE is that the max-
imum size of write and read requests are 4KB and 128KB, respectively, irrespective
of BlinkFS’s block size. The breakdown of the latency overhead at each component
for a sample 128KB read is 2.5ms at the proxy, 0.57ms at the block server, 2.7ms at
the client, and 0.33ms within FUSE for a total of 6.1ms. The results demonstrate that
BlinkFS’s overheads are modest. We also benchmark BlinkFS’s maximum sequential
read and write throughput (for a single replica) at full power for a range of block sizes.
Figure 7 shows that, as expected, read and write throughput increase with increasing
block size. However, once block size exceeds 4MB throughput improvements dimin-
ish, indicating that I/O transfer overheads begin to dominate processing overheads.

Read and write throughput via the proxy differ because clients off-load writes to
proxies, which return before applying the writes to block servers. We also benchmark
the throughput for reads sent directly to the proxy, which shows how much the proxy
decreases maximum throughput (∼40% for large block sizes). The overhead motivates
our client optimization that issues reads directly to the block server, assuming both are
concurrently active. The throughput of writes sent directly to block servers is similar to
that of reads. We ran a similar experiment using 4MB blocks that scales the number of
block servers, such that each block server continuously receives a stream of random I/O
requests from multiple clients (using a block size of 4MB). As shown in Figure 9, write
throughput reaches its maximum using three block servers, due to CPU overheads. The
result shows that in the worst case a proxy-to-block server ratio larger than 1:3 does not

20

improve write throughput; for realistic workloads, each proxy is capable of supporting
at least ten nodes, as our case studies demonstrate.

We also benchmark the read and write latency for different block replication factors
for a range of power levels. Figure 8(a) shows that average read latency increases
rapidly when using one replica if available power drops below 50%, increasing to more
than 8 seconds. Additional replicas significantly reduce the latency using staggered
blinking: in our prototype, all blocks are always available, i.e., stored on an active
node, when using six replicas at 20% power. Write latency exhibits worse performance
as we increase the number of replicas. In this benchmark, where clients issue writes
as fast as possible, the proxy must apply writes to all replicas, since its log of pending
writes becomes full (Figure 8(b)). Since the increase in the write latency is much less
than the increase in read latency, the trade-off is acceptable for workloads that mostly
read data. Table 2 shows the standard deviation and 90th percentile latency for read
and write requests as the replication factor and power levels change.

Finally, we benchmark the overhead to migrate data as power oscillates, to show
that significant data migration is not appropriate for intermittent power. For the bench-
mark, we implement a migration-based approach that equally distributes data across
the active nodes. As power varies, the number of active nodes also varies, forcing mi-
grations to the new set of active nodes. We oscillate available power every five minutes,
as described in Section 5. We wrote a simple application that issues random (and block-
ing) read requests; note that the migration-based approach does not respond to requests
while it is migrating data. Figure 10 shows that read throughput remains nearly con-
stant for BlinkFS at different oscillation levels, whereas throughput decreases for the
migration-based approach as oscillations increase. Further, the size of the data signifi-
cantly impacts the migration-based approach. At high oscillation levels, migrations for
a 20GB data set result in zero effective throughput. For smaller data sets, e.g., 10GB,
the migration-based approach performs slightly better than BlinkFS at low oscillation
levels, since the overhead to migrate the data is less than the overheads associated with
BlinkFS.

Small power variations trigger large migrations in large clusters. If a 1000 node
cluster with 500GB/node varies power by 2% (the average change in hourly spot
prices), it must deactivate 20 nodes, causing a 10 terabyte migration. Even with a
10 gigabit link, the migration would take >2 hours, and prevents the cluster from per-
forming useful work. We compare the migration-based approach with BlinkFS for
these small power variations.

6.2. Case Studies

We experiment with a MapReduce-style application, MemcacheDB, and file sys-
tem traces from a search engine using the traces discussed in Section 5 for three differ-
ent approaches: BlinkFS, Rabbit, and Load-proportional. Since MapReduce executes
batch jobs, it is well-suited for intermittent power if its jobs are tolerant to delays. We
also experiment with interactive applications (MemcacheDB and file system traces) to
demonstrate BlinkFS’s flexibility. To fairly compare with Rabbit, we use an equal-
work layout where the first two nodes store primary replicas, the next five nodes store
secondary replicas, and the last two nodes store tertiary replicas.

21

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9

T
hr

ou
gh

pu
t (

M
B

ps
)

No of block servers

write
read

Figure 9: Maximum possible throughput in our BlinkFS prototype for different number
of block servers.

 0

 10

 20

 30

 40

Low(5%) Mid.(25%) High(50%)

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Oscillation from 45% of Full Power

BlinkFS
Migration (10 GB)
Migration (20 GB)

Figure 10: BlinkFS performs well as power oscillation increases.

Note that, while Rabbit performs well in some instances, it relies on severe capac-
ity limitations, as described in Section 2, to avoid migrations. For BlinkFS’s power-
balanced data layout, we use 2/9ths of the capacity to store one replica of each block,
and the rest to store additional replicas. We set the default number of replicas to three,
with a maximum replication factor of six for our popularity-aware replication policy.
For load-proportional, we arrange blocks on nodes a priori based on popularity (from
an initial run of the application) to eliminate data migrations, which provides an upper
bound on load-proportional performance. Since MapReduce co-locates computation
and data, the nodes execute both a client and a block server. For the other applications,
we use an external, e.g., always-on, client. Finally, we use a 4MB block size.
MapReduce. For MapReduce, we create a data set based on the top 100 e-books over
the last 30 days from Project Gutenberg (http://www.gutenberg.org/). We randomly
merge these books to create 27 files between 100 and 200MB, and store them in our file
system. We then write a small MapReduce scheduler in Python, based on BashReduce,
that partitions the files into groups for each job, and sends each group to a MapReduce
worker node, co-located on each block server. We execute the simple WordCount
MapReduce application, which reads files on each node, counts the words in those
files, and sends the results back to the scheduler. The scheduler then executes a reduce
step to output a file containing all distinct words and their frequency.

22

 0

 3000

 6000

 9000

20 50 80

T
im

e
(s

ec
s)

% of Total power

BlinkFS
Rabbit

Load proportional

 0

 100

 200

 300

 400

 500

 0 30 60 90 120 150 180
 0

 50

 100

 150

 200

 250

T
im

e
 (

s
e

c
s
)

P
o

w
e

r
(w

a
tt

s
)

Time (minutes)

Power
BlinkFS

Load Proportional
Rabbit

(a) Steady Power (b) Solar/Wind Power Signal

Figure 11: MapReduce completion time at steady power levels and using our combined
wind/solar power trace.

 0

 500

 1000

 1500

 2000

20 50 80

La
te

nc
y

(m
se

c)

% of Total power

BlinkFS
Rabbit

Load proportional

 0

 1000

 2000

 3000

 4000

 5000

 0 30 60 90 120 150 180
 0

 50

 100

 150

 200

 250

La
te

nc
y

(m
se

c)

P
ow

er
 (

w
at

ts
)

Time (minutes)

Power
BlinkFS

Load Proportional
Rabbit

(a) Steady Power (b) Solar/Wind Power Signal

Figure 12: MemcacheDB average latency at steady power levels and using our com-
bined wind/solar power signal.

We experiment with MapReduce using both constant and intermittent power. At
constant power, Figure 11(a) shows that the completion time is nearly equal for all
three policies at high power, but BlinkFS outperforms the others at both medium and
low power. For instance, at 50% power BlinkFS improves completion time by 42%
compared with Rabbit and 65% compared with load-proportional. Note that at low
power (20%), MapReduce stalls indefinitely using Rabbit, since it requires at least two
active nodes to ensure all data is accessible. Both Rabbit and Load-proportional also
impact MapReduce computations by deactivating or reducing, respectively, the active
time of cluster nodes as power decreases. BlinkFS does not affect the scheduling or
placement policy as power varies.

For variable power, we execute a stream of smaller jobs, which process data sets
that only consist of 27 e-books, to track the number of jobs we complete every five
minutes. For this experiment, Figure 11(b) shows that BlinkFS outperforms Load-
proportional at all power levels, since it does not skew the active periods of each node.
While Rabbit performs better at high power levels, it stalls indefinitely whenever power
is unable to keep all data accessible, i.e., two active nodes.
MemcacheDB Key-Value Store. MemcacheDB is a persistent version of memcached,
a widely-used distributed key-value store for large clusters. MemcacheDB uses Berke-
leyDB as its backend to store data. We installed MemcacheDB on our external node,
and configured it to use BlinkFS to store its BerkeleyDB. To avoid any caching effects,

23

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150 180
 0

 50

 100

 150

 200

 250

 300

Q
ue

rie
s/

m
in

ut
e

P
ow

er
 (

w
at

ts
)

Time (minutes)

Power
BlinkFS

Migration
Load Proportional

Figure 13: Search engine query rate with price signal from 5-minute spot price in New
England market.

we configure MemcacheDB to use only 128 MB of RAM and set all caching-related
configuration options to their minimum possible value. We then populated the DB
with 10,000 100KB objects, and wrote a MemcacheDB workload generator to issue
key requests at a steady rate according to a Zipf distribution.

Our results show that BlinkFS and Rabbit perform well at high and medium con-
stant power levels (Figure 12(a)), while load-proportional performs slightly worse.
Load-proportional does not benefit from replication, since replicas of popular blocks
are inevitably stored on unpopular nodes. Thus, BlinkFS significantly outperforms
load-proportional at low power levels. As with MapReduce, Rabbit has infinite latency
at low power, since its data is inaccessible. Next, we run the same experiment using our
wind/solar signal and observe the average request latency over each 5-minutes interval.
As shown in Figure 12(b), BlinkFS performs better than load-proportional at nearly all
power levels. The latency for BlinkFS scales up and down gracefully with the power
signal. As in the MapReduce example, Rabbit performs better, except when available
power is not sufficient to keep primaries active.
Search Engine. We emulate a search engine by replaying file system traces, and
measuring the number of queries serviced each minute. The trace is available at
http://www.storageperformance.org/specs/. To emulate the trace, we created a 30GB
file divided into 491, 520 blocks of size 64KB and implemented an emulator in Python
to issue I/O requests. We run the experiment with the power signals described in Sec-
tion 5. As Figure 13 shows, BlinkFS outperforms load-proportional at all power levels.
As expected, the migration-based approach performs slightly better than BlinkFS at
steady power levels, but much worse for even slight (∼10%) fluctuations in the avail-
able power. Since the available power is always more than the power required to run
two nodes, Rabbit (not shown for clarity), outperforms (57 queries/minute) the oth-
ers, since it stores primary replicas on these two nodes. Even for such a small dataset
and power fluctuations, BlinkFS satisfies 12% and 55% more requests within a 3-hour
period than the migration-based and load-proportional approaches.

24

7. Conclusion

We design BlinkFS to handle significant, frequent, and unpredictable changes in
available power. Our design includes techniques to mitigate blinking’s latency penalty.
Recent work [19] also highlights the difficulty of designing latency-sensitive applica-
tions that are also energy-efficient. Intermittent power enables opportunities for opti-
mizing data centers to be cheaper and greener, including incorporating more intermit-
tent renewables, leveraging market-based electricity pricing, operating during extended
blackouts, and fully utilizing a data center’s power delivery infrastructure. Regulating
power usage independent of workload demands enables data centers to leverage these
optimizations. While today’s energy prices do not strongly motivate intermittent power
optimizations, such as increasing the fraction of renewable power in data centers, com-
panies remain interested to be environmentally friendly and due to expectations of
future increases in energy prices. We envision rising energy prices to incentivize data
centers to design systems optimized for intermittent power in the future.

References

[1] AISO (Solar Powered Green Web Hosting). http://www.aiso.net/.

[2] United Nations Conference on Sustainable Development.
http://www.uncsd2012.org/.

[3] Google’s Green PPAs: What, How, and Why.
http://www.google.com/green/pdfs/renewable-energy.pdf, April 2011.

[4] Dynamic Pricing and Smart Grid, 2011.

[5] MemcacheDB, 2011.

[6] M. Arlitt, C. Bash, S. Blagodurov, Y. Chen, T. Christian, D. Gmach, C. Hyser,
N. Kumari, Z. Liu, M. Marwah, A. McReynolds, C. Patel, A. Shah, Z. Wang, and
R. Zhou. Towards The Design and Operation of Net-zero Energy Data Centers.
In ITherm, May 2012.

[7] I. Goiri, K. Le, M. Haque, R. Beauchea, T. Nguyen, J. Guitart, J. Torres, and
R. Bianchini. GreenSlot: Scheduling Energy Consumption in Green Datacenters.
In SC, April 2011.

[8] I. Goiri, K. Le, T. Nguyen, J. Guitart, J. Torres, and R. Bianchini. GreenHadoop:
Leveraging Green Energy in Data-Processing Frameworks. In EuroSys, April
2012.

[9] P. Gupta. Google to use Wind Energy to Power Data Centers. In New York Times,
July 20th 2010.

[10] J. Hamilton. Overall Data Center Costs. In Perspectives.
http://perspectives.mvdirona.com/, September 18, 2010.

25

http://www.aiso.net/
http://www.uncsd2012.org/
http://www.cntenergy.org/pricing/
http://www.cntenergy.org/pricing/
http://www.memcachedb.org/
http://www.memcachedb.org/

[11] S. Rivoire and M. Shah and and P. Ranganathan. JouleSort: A Balanced Energy-
Efficient Benchmark. In SIGMOD, June 2007.

[12] X. Fan and W. Weber and L. Barroso. Power Provisioning for a Warehouse-Sized
Computer. In ISCA, June 2007.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In OSDI, December 2004.

[14] L. Ganesh and H. Weatherspoon and M. Balakrishnan and K. Birman. Optimizing
Power Consumption in Large Scale Storage Systems. In HotOS, May 2007.

[15] Dushyanth Narayanan and Austin Donnelly and Antony Rowstron. Write Off-
Loading: Practical Power Management for Enterprise Storage. In FAST, February
2008.

[16] H. Amur and J. Cipar and V. Gupta and M. Kozuch and G. Ganger and K. Schwan.
Robust and Flexible Power-Proportional Storage. In SoCC, June 2010.

[17] S. Akoush and R. Sohan and A. Rice and A. Moore and A. Hopper. Free Lunch:
Exploiting Renewable Energy for Computing. In HotOS, May 2011.

[18] R. Urgaonkar and B. Urgaonkar and M. Neely and A. Sivasubramaniam. Optimal
Power Cost Management Using Stored Energy in Data Centers. In SIGMETRICS,
March 2011.

[19] D. Meisner and C. Sadler and L. Barroso and W. Weber and T. Wenisch. Power
Management of Online Data-Intensive Services. In ISCA, June 2011.

[20] Dennis Colarelli and Dirk Grunwald. Massive Arrays of Idle Disks for Storage
Archives. In SC, November 2002.

[21] S. Ghemawat and H. Gobioff and S. Leung. The Google File System. In SOSP,
October 2003.

[22] L. Barroso and U. Hölzle. The Case for Energy-Proportional Computing. Com-
puter, 40(12), December 2007.

[23] R. Kaushik and M. Bhandarkar. GreenHDFS: Towards an Energy-Conserving
Storage-Efficient, Hybrid Hadoop Compute Cluster. In USENIX, June 2010.

[24] V. Kontorinis, L. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis,
D. Tullsen, and T. Rosing. Managing Distributed UPS Energy for Effective Power
Capping in Data Centers. In ISCA, June 2012.

[25] J. Koomey. Growth in Data Center Electricity Use 2005 to 2010. In Analytics
Press, Oakland, California, August 2011.

[26] L. L. N. Laboratory. U.S. Energy Flowchart 2008, June 2011.

[27] J. Leverich and C. Kozyrakis. On the Energy (In)efficiency of Hadoop Clusters.
In HotPower, October 2009.

26

http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1250665
http://dl.acm.org/citation.cfm?id=1250665
http://dl.acm.org/citation.cfm?id=1250665
http://dl.acm.org/citation.cfm?id=1250665
http://dl.acm.org/citation.cfm?id=1250665
http://dl.acm.org/citation.cfm?id=1250665
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1361406
http://dl.acm.org/citation.cfm?id=1361406
http://dl.acm.org/citation.cfm?id=1361406
http://dl.acm.org/citation.cfm?id=1361406
http://dl.acm.org/citation.cfm?id=1361406
http://dl.acm.org/citation.cfm?id=1361406
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=2000103
http://dl.acm.org/citation.cfm?id=2000103
http://dl.acm.org/citation.cfm?id=2000103
http://dl.acm.org/citation.cfm?id=2000103
http://dl.acm.org/citation.cfm?id=2000103
http://dl.acm.org/citation.cfm?id=2000103
http://dl.acm.org/citation.cfm?id=762819
http://dl.acm.org/citation.cfm?id=762819
http://dl.acm.org/citation.cfm?id=762819
http://dl.acm.org/citation.cfm?id=762819
http://dl.acm.org/citation.cfm?id=762819
http://dl.acm.org/citation.cfm?id=762819
http://dl.acm.org/citation.cfm?id=945450
http://dl.acm.org/citation.cfm?id=945450
http://dl.acm.org/citation.cfm?id=945450
http://dl.acm.org/citation.cfm?id=945450
http://dl.acm.org/citation.cfm?id=945450
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://dl.acm.org/citation.cfm?id=1924927
http://dl.acm.org/citation.cfm?id=1924927
http://dl.acm.org/citation.cfm?id=1924927
http://dl.acm.org/citation.cfm?id=1924927
http://dl.acm.org/citation.cfm?id=1924927
https://flowcharts.llnl.gov/
https://flowcharts.llnl.gov/
https://flowcharts.llnl.gov/
http://dl.acm.org/citation.cfm?id=1740405
http://dl.acm.org/citation.cfm?id=1740405
http://dl.acm.org/citation.cfm?id=1740405
http://dl.acm.org/citation.cfm?id=1740405

[28] D. Meisner, B. Gold, and T. Wenisch. PowerNap: Eliminating Server Idle Power.
In ASPLOS, March 2009.

[29] R. Miller. Microsoft to use Solar Panels in New Data Center. In Data Center
Knowledge, September 24th 2008.

[30] E. Pinheiro and R. Bianchini. Energy Conservation Techniques for Disk Array-
based Servers. In SC, July 2004.

[31] N. Sharma, S. Barker, D. Irwin, and P. Shenoy. Blink: Managing Server Clusters
on Intermittent Power. In ASPLOS, March 2011.

[32] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File
System. In MSST, May 2010.

[33] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin, and I. Moraru.
Energy-efficient Cluster Computing with FAWN: Workloads and Implications.
In e-Energy, April 2010.

[34] A. Verma, R. Koller, L. Useche, and R. Rangaswami. SRCMap: Energy Propor-
tional Storage Using Dynamic Consolidation. In FAST, February 2010.

[35] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes. Hibernator: Helping
Disk Arrays Sleep Through the Winter. In SOSP, October 2005.

27

http://dl.acm.org/citation.cfm?id=1006220
http://dl.acm.org/citation.cfm?id=1006220
http://dl.acm.org/citation.cfm?id=1006220
http://dl.acm.org/citation.cfm?id=1006220
http://dl.acm.org/citation.cfm?id=1006220
http://dl.acm.org/citation.cfm?id=1950389
http://dl.acm.org/citation.cfm?id=1950389
http://dl.acm.org/citation.cfm?id=1950389
http://dl.acm.org/citation.cfm?id=1950389
http://dl.acm.org/citation.cfm?id=1950389
http://dl.acm.org/citation.cfm?id=1914427
http://dl.acm.org/citation.cfm?id=1914427
http://dl.acm.org/citation.cfm?id=1914427
http://dl.acm.org/citation.cfm?id=1914427
http://dl.acm.org/citation.cfm?id=1914427
http://dl.acm.org/citation.cfm?id=1791347
http://dl.acm.org/citation.cfm?id=1791347
http://dl.acm.org/citation.cfm?id=1791347
http://dl.acm.org/citation.cfm?id=1791347
http://dl.acm.org/citation.cfm?id=1855531
http://dl.acm.org/citation.cfm?id=1855531
http://dl.acm.org/citation.cfm?id=1855531
http://dl.acm.org/citation.cfm?id=1855531
http://dl.acm.org/citation.cfm?id=1855531
http://dl.acm.org/citation.cfm?id=1095828
http://dl.acm.org/citation.cfm?id=1095828
http://dl.acm.org/citation.cfm?id=1095828
http://dl.acm.org/citation.cfm?id=1095828
http://dl.acm.org/citation.cfm?id=1095828

	Introduction
	DFSs and Intermittent Power
	Energy-Proportional DFSs
	Migration-based Approach
	Equal-Work Approach

	Applying Blinking to DFSs
	Advantages for DFSs
	Mitigating Reliability Concerns

	BlinkFS Design
	Reading and Writing Files
	Reducing the Latency Penalty

	Implementation
	Evaluation
	Benchmarks
	Case Studies

	Conclusion

