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ABSTRACT
Homeowners are increasingly deploying grid-tied solar systems
due to the rapid decline in solar module prices. The energy pro-
duced by these solar-powered homes is monitored by utilities and
third parties using networked energy meters, which record and
transmit energy data at fine-grained intervals. Such energy data
is considered anonymous if it is not associated with identifying ac-
count information, e.g., a name and address. Thus, energy data
from these “anonymous” homes is often not handled securely: it
is routinely transmitted over the Internet in plaintext, stored unen-
crypted in the cloud, shared with third-party energy analytics com-
panies, and even made publicly available over the Internet. Ex-
tensive prior work has shown that energy consumption data is vul-
nerable to multiple attacks, which analyze it to reveal a range of
sensitive private information about occupant activities. However,
these attacks are useless without knowledge of a home’s location.

Our key insight is that solar energy data is not anonymous: since
every location on Earth has a unique solar signature, it embeds de-
tailed location information. To explore the severity and extent of
this privacy threat, we design SunSpot to localize “anonymous”
solar-powered homes using their solar energy data. We evaluate
SunSpot on publicly-available energy data from 14 homes with
rooftop solar. We find that SunSpot is able to localize a solar-
powered home to a small region of interest that is near the smallest
possible area given the energy data resolution, e.g., within a∼500m
and ∼28km radius for per-second and per-minute resolution, re-
spectively. SunSpot then identifies solar-powered homes within
this region using crowd-sourced image processing of satellite data
before applying additional filters to identify a specific home.

CCS Concepts
•Computing methodologies → Model development and analy-
sis; Model verification and validation;
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1. INTRODUCTION
The number of solar-powered homes is rapidly increasing due to

a steep decline in solar module prices. To illustrate, the cost of solar
energy in $/W dropped an estimated 50% from 2008 to 2013 [2],
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Figure 1: Example data from solar-powered home that is mak-
ing its 1Hz solar generation and energy usage publicly available
on the the Internet under the assumption of anonymity.
resulting in a 418% increase in solar energy capacity in the United
States over the same period [8]. These trends are accelerating due
to the Swanson effect [22], which observes that solar module prices
tend to decrease 20% for every doubling in manufacturing volume.
Solar power prices have now fallen below retail electricity rates
in many areas, further increasing the incentive to install solar mod-
ules [27]. Importantly, utilities and third-parties monitor the energy
produced by solar-powered homes using networked energy meters,
which record and transmit energy data at fine-grained intervals.

Such energy data is generally considered anonymous if it is
not associated with identifying account information, e.g., a name
and address. Thus, energy data from these “anonymous” solar-
powered homes is often not treated as sensitive: instead, it is rou-
tinely transmitted over the Internet in plaintext, stored unencrypted
in the cloud, shared with third-party energy analytics companies,
and even made publicly available. For example, Figure 1 shows a
screenshot of 1Hz energy data an anonymous solar-powered home
has made publicly available on the Internet via a networked energy
meter, such as the TED, eGauge, BrulTech, or Enphase Envoy.

These meters connect to the Internet and upload energy data to
the cloud in real time, where it is then stored to enable queries
on archival data. Solar installers typically add networked meters to
enable homeowners to monitor energy generation and consumption
via web dashboards or smartphone applications. For simplicity, in
many cases as in Figure 1, accessing the data does not require a
password, as there is an assumption the data is anonymous and can-
not be associated with a particular home. The example in Figure 1
is from one of the 28,000 anonymous homes we have found up-
loading solar generation and energy consumption data to the public
Internet. While the example makes the data publicly available for
simplicity, similar data is also being intentionally gathered and re-
leased by various research institutions to support energy analytics
research. As above, these datasets often include detailed solar and
energy usage data from thousands of volunteer anonymous homes.

While users may choose to not install (or securely configure)
the meters above, they are forced to allow utilities to monitor their
energy usage. In addition, to receive reimbursements for solar gen-
eration, some states also require users to upload their utility energy
data to an external database managed by a third party [19]. This
energy data is becoming increasingly detailed, as utilities employ
“smart” meters that record energy usage at fine-grained intervals.
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Figure 2: The start, stop, and peak of solar generation (red) ap-
proximates the time of sunrise, sunset, and solar noon (green).

Current smart meters monitor energy usage on the order of min-
utes [7] with next-generation meters expected to monitor on the
order of seconds [24]. In the U.S., utilities have deployed>50 mil-
lion smart meters [10], and are rapidly accumulating smart meter
data, which they may permanently archive for later analysis.

A plethora of startups have now arisen to analyze these vast
archives of utility energy data, ostensibly to make energy-efficiency
recommendations [3, 16, 18]. Prior research has demonstrated the
ability to learn a variety of insights into private user behavior by
analyzing their energy data [15]. For example, energy data indi-
rectly leaks occupancy [5, 12], which may reveal whether a home’s
occupants: i) include a stay-at-home spouse, ii) keep regular work-
ing hours and daily routines, iii) frequently go on vacation, or iv)
regularly eat out for dinner. Energy data can also reveal load power
signatures—changes in power unique to a device—for specific ap-
pliance brands and models. These behavioral insights and appli-
ance details are valuable to companies in profiling homes and di-
recting advertising campaigns, and may also be exploited by tech-
savvy criminals. Thus, some contend that energy data will eventu-
ally be worth more than the energy consumed to generate it [17].

Users and utilities commonly provide energy data to the energy
analytics companies above under the assumption the data is anony-
mous. In many cases, users do not realize their energy data leaks
side-channel information. Utilities typically anonymize any en-
ergy data they share with third-parties by removing account names
and addresses, as suggested by the U.S. Department of Energy’s
recently released Voluntary Code of Conduct (VCC) for manag-
ing user energy data [26]. Importantly, the VCC does not require
user consent to release anonymized energy data with names and ad-
dresses stripped. Consent is likely not required because the energy
analytics above do not reveal location, which prevents third-parties
from associating private behavior above with a specific home.

Our key insight is that solar energy data is not anonymous: since
every location on Earth has a unique solar signature, e.g., a unique
sunrise, sunset, and solar noon time, it embeds detailed location in-
formation. While there is substantial prior work on estimating so-
lar energy output based on a home’s location, we know of no work
that does the reverse—estimating the location based on solar out-
put. The localization threat means home energy data that includes
solar generation is never anonymous.

As one example of this threat, an attacker could determine when
to burglarize the anonymous home in Figure 1 by first determining
its occupancy pattern from its consumption data (in red) using ex-
isting techniques [5, 12], and then analyzing its solar signature (in
green) to determine the home’s location. As a result, users and util-
ities should treat such data as highly sensitive by, in particular, not
making it publicly available on the Internet or releasing it to third-
parties without user consent. To explore the severity and extent
of this privacy threat, we design SunSpot, a system for localizing
an anonymous solar-powered home by analyzing its solar energy
data. Exposing and evaluating this threat is critically important
in informing evolving policies by DOE and others for managing

Figure 3: Sunlight map of the Earth.
anonymous energy data, and in emphasizing to users and utilities
the need to securely handle energy datasets that include solar gen-
eration. In doing so, this paper makes the following contributions.
Localization Challenges. We highlight numerous challenges to
localization from solar energy data, as a solar module is a highly
imprecise sensor for tracking the sun. Solar energy data is affected
by numerous unknown variables, including a home’s local climate,
e.g., frequency of cloud cover and temperature variations, physi-
cal characteristics, e.g., tilt/orientation, topography, shading from
nearby structures, etc., and properties of the electrical system, e.g.,
variations in grid voltage, choice of wiring and inverter(s), etc.
SunSpot Design. We design SunSpot, which localizes a solar-
powered home to a small region by exploiting multiple insights
dervied from the regularity in the Earth’s orbit. We leverage crowd-
sourced image processing on publicly-available satellite data to
identify potential homes in the area with visible solar modules.
SunSpot significantly reduces the search area by filtering out areas
without man-made structures, and may then apply additional fil-
ters, e.g., by matching solar output to module size or local weather
patterns, to hone in on a specific solar-powered home.
Implementation and Evaluation. We implement and evaluate
SunSpot on publicly-available energy data at both per-second and
per-minute resolution from 14 solar-powered homes. We find that
SunSpot localizes a solar-powered home to near the smallest pos-
sible region given the energy data resolution, e.g., within a ∼500m
and ∼28km radius for per-second and per-minute resolution, re-
spectively. SunSpot then leverages Amazon’s Mechanical Turk at
a cost of $13.60/km2 to identify a specific home, after reducing the
search space by filtering out regions without man-made structures,
which eliminates on average >97% of the search area in the U.S.

2. LOCALIZATION CHALLENGES
SunSpot assumes an anonymous solar-powered home at an un-

known location equipped with a networked energy meter that
monitors energy generation over time. Given this solar energy
data, SunSpot’s objective is to infer a location—a latitude and
longitude—where the data originates. Note that we focus exclu-
sively on localizing the source of solar energy data, and not “net
meter” data, which is the sum of a home’s solar generation and
energy consumption. Energy analytics companies have already de-
veloped solar disaggregation techniques, which analyze net meter
data to separate solar data from consumption data [14], and are ac-
tively applying them to utility smart meter data [3, 11]. While our
techniques may be used in conjunction with solar disaggregation to
localize based on net meter data, we consider solar disaggregation
a separate research problem that is out of scope. In addition, as dis-
cussed in Section 1, there are already thousands of solar-powered
homes, including the home in Figure 1, that are separately exposing
their solar generation and their energy consumption data.

The basic principle for localizing a solar-powered home from its
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Figure 4: We accurately derive location from sunrise and sunset times using existing online APIs that perform the reverse operation.

solar energy data is straightforward. On a clear sunny data, solar
generation data reveals a location’s unique solar signature, which
derives from the sun’s position in the sky at a particular location and
time and determines the amount of solar radiation that strikes the
Earth. In particular, a location’s unique solar signature dictates a
unique time of sunrise, sunset, and solar noon (see Figure 2), which
correspond to the times when a solar system’s generation starts,
stops, and peaks each day, respectively. SunSpot leverages this
information to infer the location where solar energy data originates.

2.1 Deriving Location from the Sun
Given the sun’s importance to life on Earth, astronomers can de-

rive its movements with incredible precision. For example, the PSA
algorithm [4] provides the sun’s position, i.e., its azimuth and ele-
vation angles, in the sky to within 0.0083◦ at any location, given its
latitude and longitude, at any time of the year. Open-source code
and online APIs are available that implement the sunrise/sunset al-
gorithm, which provides precise sunrise and sunset times (to the
second) given a location’s latitude and longitude [20, 21].

Interestingly, while technically feasible, there are no commonly
available open-source libraries or online APIs that perform the re-
verse operation, by computing a location from the sunrise and sun-
set times. Unfortunately, the PSA and the sunrise/sunset algorithm
above are not reversible, since they both use trigonometric func-
tions at multiple stages that are not one-to-one, i.e., their inverse
yields multiple solutions. Instead, the algorithms for deriving loca-
tion from sunrise/sunset events are much more obscure, as they are
typically only used for celestial navigation of ships without elec-
tronic navigation [25]. Unlike the open-source code and online
APIs above, these localization algorithms widely published in text-
books do not compensate for the slight irregularities in the Earth’s
shape and orbit that are required for high precision.

However, as a prerequisite to localizing solar energy data,
SunSpot requires a precise algorithm for determining a location
based on its sunrise and sunset times. Due to the issues above,
rather than implement and refine published algorithms, we develop
an approach that uses available APIs, which only work in the oppo-
site direction by computing sunrise/sunset time given a latitude and
longitude, as tools to conduct a binary search for a location. Note
that in the paper we use UTC time to eliminate time zone issues.
Deriving Latitude. To determine a location’s latitude, we observe
that all locations at the same latitude have the same daylength, i.e.,
the duration between sunrise and sunset, on each day. We also ob-
serve that, the daylength gets shorter the further north the latitude
in the fall/winter, and gets longer the further north the latitude in
the spring/summer. To illustrate, Figure 3 shows a sunlight map of
the earth in the northern hemisphere’s winter, where daylength be-
comes shorter moving from south to north. We leverage this insight
to conduct a binary search to find a latitude that yields our desired
daylength, given a sunrise and sunset time. That is, we pick any

longitude value and then compute the daylength using the online
APIs for −90◦, 0◦, and 90◦ latitude. We then select the region,
either [−90◦, 0◦] or [0◦, 90◦], that includes the desired daylength.
We then compute the daylength for the mid-point of that interval,
and repeat the process. We terminate the search when the latitude
computed at the next step does not significantly change.
Deriving Longitude. We perform a similar procedure to compute a
location’s longitude. Longitude is uniquely determined by the time
of solar noon, when the sun is at its highest point in the sky, which
is always the mid-point between the sunrise and sunset times. In
this case, we pick any latitude and then compute solar noon using
the online APIs for both 0◦ and ±180◦ longitude. We then select
the region, either [0◦,-180◦] or [0◦,180◦], that includes our desired
solar noon. As above, we compute solar noon for the mid-point of
the selected region, either 90◦ or−90◦, and repeat the process until
the longitude computed at the next step does not change.

Note that, by searching based on daylength and solar noon, the
two procedures above are independent of each other. That is, com-
puting the longitude does not depend on knowing the latitude or
vice versa. We evaluate our approach across the full range of lat-
itudes and longitudes above using existing online APIs [21], as
shown in Figure 4. Figure 4(a) shows that our derived longitude
is always within 400m of the actual location’s longitude. Longi-
tude accuracy is a function of the latitude, such that higher latitudes
enable higher accuracy at the same data resolution. The Earth’s ro-
tation speed decreases by the cosine of the latitude, such that the
speed at X◦ latitude is 465× cos X◦m/s. As a result, the maximum
precision possible at the equator with second-level data is 465m,
and the accuracy possible with minute-level data is 27.9km. Fig-
ure 5 plots the maximum longitude precision possible for second-
and minute-level resolution data across all latitudes. To make both
lines visible, we plot second-level data based on the left y-axis and
minute-level data based on the right y-axis.

Similarly, Figure 4(b) shows that our computed latitude is al-
ways less than 500m from the actual location. The abrupt increases
at ±66.56◦1 indicate regions near the poles where the sun does not
rise or set. We ran this experiment on data from June 21st, 2015 (the
summer solstice) where the half of the Earth lit by the sun is max-
imally misaligned with the poles. Note that the solstices represent
the days that yield the most accurate results for latitude. Latitude
accuracy changes over the course of the year, as shown in Figure 6.
Since, on the equinoxes (September 22nd and March 20th), every
location experiences 12 hours of daylight, it is impossible to distin-
guish a location’s latitude from daylength.

2.2 Challenges to using Solar Energy Data
Our approach above derives a location from a known sunrise and

sunset time—or equivalently the daylength and solar noon—on a
particular day. A naïve approach to compute location from solar en-
1This latitude is equal to 90◦ minus the Earth’s tilt of 23.44◦.
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Figure 5: The precision possible for computing longitude from
solar noon is a function of the latitude and the data resolution.
ergy data is to simply use the times for the first and last positive so-
lar generation of the day as the sunrise and the sunset times, respec-
tively. SunSpot can use these times to directly estimate daylength
and solar noon, and then provide these estimates as input into the al-
gorithm above. However, this approach is inaccurate—on the order
of hundreds to thousands of kilometers—because a solar system
is a highly imprecise sensor for numerous reasons. For example,
even a few minutes of inaccuracy in solar noon can yield massive
errors, as each minute of error translates to roughly 27.9km error
in longitude, as mentioned above. Figure 2 shows that even on a
seemingly ideal day, sunrise, sunset, and solar noon often do not
precisely align with the start, stop, and peak of solar generation,
respectively. Below we describe the reasons for this error.
Atmospheric Conditions. Solar output depends on changing envi-
ronmental conditions, namely solar irradiance. For a flat stationary
solar deployment, the maximum solar irradiance (in W/m2) is pro-
portional to the sun’s position in the sky. However, atmospheric
effects alter the maximum solar irradiance. These effects include
not only the presence of visible clouds, but also other conditions,
including humidity, rain, dust, snow, pollution levels, etc. As a re-
sult, on a cloudy day, the start and stop of solar generation may be
tens of minutes after and before sunrise and sunset, respectively.
Generation Inefficiency. Solar modules are not 100% efficient at
converting solar radiation to power, but instead range in efficiency
from 15-25%. Due to this inefficiency, even under ideal condi-
tions with no clouds, the start and stop of solar generation each day
will not precisely align with sunrise and sunset, as shown in Fig-
ure 2. Solar module efficiency also decreases as the temperature
increases. Thus, the lag in detecting the first positive generation
after sunrise (and the last positive generation before sunset) varies
with temperature. Temperatures may vary significantly over the
day (from morning to evening) and year (from winter to summer).
Shading from Nearby Objects. Sunrise and sunset times are de-
rived assuming no topographical effects, i.e., the location and its
surroundings are at sea level. This is only true in the middle of the
ocean. In reality, the surrounding landscape dictates the horizon.
For example, in a valley, the sun will rise from behind the moun-
tains later and set behind them earlier than the official sunrise and
sunset times. The opposite will occur at the top of a mountain. So-
lar deployments, especially on rooftops, are also often obstructed
by nearby buildings and trees. The impact of these effects is not
consistent, but will vary over time, e.g., when trees lose their leaves.
Physical Properties. The physical properties of a module, namely
its tilt and orientation, also affect energy generation. The power
output of a stationary deployment oriented toward the equator, e.g.,
south in the northern hemisphere and north in the southern hemi-
sphere, is proportional to solar irradiance, which is a function of the
sun’s position in the sky. However, many deployments are not per-
fectly oriented toward the equator, and may also be tilted to varying
degrees. The equation below computes solar output as a function
of the sun’s position in the sky, and modules’ tilt and orientation.

Sp = Si[cos(α) sin(β) cos(ψ −Θ) + sin(α) cos(β)] (1)

 0

 800

 1600

 2400

 3200

 4000

 0  60  120  180  240  300  360

A
c
c
u

ra
c
y
 (

m
)

Day of Year

Figure 6: The accuracy of deriving latitude from daylength
varies over the year and is least accurate near the equinoxes.

Here, Si is the intensity of solar radiation that strikes a flat mod-
ule, while Sp is the amount of solar radiation that strikes an actual
module, given the module’s azimuth and tilt angles (ψ and β, re-
spectively), as well as the sun’s azimuth and elevation angles (Θ
and α, respectively). Figure 7 graphically depicts how the orien-
tation affects the output of a module (in the northern hemisphere).
An ideal module oriented south (ψ = 180◦) will experience its
maximum production at solar noon (when the sun is at its highest
point in the sky, maximizing solar radiation). In contrast, an ideal
module with more of an eastward orientation will shift the genera-
tion curve earlier, such that its maximum production is earlier than
solar noon. The more eastwardly the orientation, the earlier the
maximum production point and the earlier the day’s first and last
generation times. A westward orientation has the opposite effect.

Unlike changes in the orientation, changes in the tilt do not affect
either the time of maximum generation or the time of first or last
positive generation. However, they do reduce the magnitude of the
maximum generation and, thus, result in a more gradual rise and
fall of the generation curve. Note that the relationships above dic-
tate the output for a solar system where all modules are tilted and
oriented in the same way. If there are multiple modules with differ-
ent tilts and orientations their output is the sum of each module’s
individual production based on its own tilt and orientation (assum-
ing each module has its own microinverter, as discussed below).
Electrical Characteristics. A solar deployment’s electrical system
also affects its output. For example, the output of modules wired
in series is dictated by the individual module generating the least
current. Each individual module’s output is also dictated by its IV
curve, which defines the amount of current (and power) a module
generates at different voltages. The IV curve of a multi-module de-
ployment connected to a single inverter is a complex function of the
IV curves of all the modules and how they are wired, e.g., in series
or parallel. As with module efficiency, the shape of the IV curve
also varies with temperature and solar irradiance. Inverters actively
vary their operating voltage to search for the maximum power point
on this complex aggregate IV curve as conditions change, which
may lead to periods of operation below the maximum power point.
Rather than connect multiple modules to a single inverter, deploy-
ments may also attach a microinverter to each module. In this case,
each microinverter independently optimizes its module’s maximum
power point. Thus, the same system using microinverters will gen-
erate a different energy profile than when using a single inverter.
Meter Accuracy. Ultimately, solar energy data derives from me-
ters that sense its generation. These meters have varying levels
of accuracy, typically ranging from 0.5% to 2%, depending on
whether they are certified as utility- or consumer-grade. Energy
meters are typically placed in front of the inverter and measure AC
power. As a result, the power they record is a function of, not only
the current generated by the modules, but also the grid’s voltage.
While RMS grid voltage in the U.S. is 120V, it may vary by ±5%
based on current standards. Thus, recorded power generation will
also vary in proportion to these voltage fluctuations.
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2.3 Summary
The inaccuracy in solar energy data caused by the effects above

varies across locations. For example, the power generated by a de-
ployment in Southern California (which has few temperature vari-
ations and cloudy days) that has few obstructions and all modules
oriented towards the equator (with the same tilt) will more closely
reflect the sun’s path than a deployment in a location with a highly
variable climate, many obstructions, multiple modules with differ-
ent orientations and tilts, unstable grid voltage, etc. In essence, the
more efficient a solar deployment is at generating power, the closer
it tracks the sun’s position in the sky, and the more susceptible it
is to localization. This general principle—that the more energy-
efficient a system, the more vulnerable it is to leaking information
via energy data—has been observed in other contexts [5, 12].

3. SUNSPOT DESIGN
The effects from the previous section are often significant—even

for the most efficient deployment—and impossible to accurately
model without knowing details of a solar installation, e.g., its loca-
tion, tilt/orientation, wiring, etc. Thus, accurate localization from
single day’s solar data (or even a few days or weeks) is challenging,
and impossible if the time period is near the equinox (since all lo-
cations have a similar daylength near the equinox). However, since
utilities, third parties, and current networked energy meters have
archives of solar energy data, as discussed in Section 1, SunSpot
leverages data over multiple days to mitigate inaccuracy from any
single day’s data. Note that Sunspot does not require many months
of data, and can operate on even a few weeks of data, as long it
includes some clear sunny days. However, as we discuss, for infer-
ring latitude, SunSpot does require data from a separate set of days
in the fall/winter and the spring/summer. Of course, in general,
data over a longer period increases both accuracy and confidence.

Similar to the approach in Section 2, SunSpot works by first
inferring a location’s longitude and latitude separately. SunSpot
uses this inferred location to identify a region of interest, since
solar energy data alone is not accurate enough to precisely iden-
tify a home’s location. After identifying a region of interest,
SunSpot then uses image processing on publicly-available satel-
lite data within the region to identify candidate homes with visible
solar systems. Finally, SunSpot applies filters to further prune this
set of homes. Figure 8 depicts SunSpot’s pipeline of operations.

3.1 Identifying a Region of Interest
Inferring Longitude. To infer longitude, SunSpot leverages the
time of solar noon. Solar noon is the wall clock time on any given
day where the sun is at its highest point in the sky at a specific lo-
cation. The clock time of noon, e.g., 12pm, often differs from solar
noon, as clock times are based on the local time zone, where a large
region within the same time zone has the same wall clock time. In
contrast, each location within that time zone has a different solar
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noon time, depending on when the sun rises to its highest point, i.e.,
nearest zenith, at that specific location. Further, as the Earth orbits
the sun, the time of solar noon for each location changes gradu-
ally over the course of the year. SunSpot leverages the fact that the
day-to-day changes in solar noon across a year are consistent at
every location on Earth. In particular, the ∼31 minutes of move-
ment in solar noon are the same at every location and dictated by
the Equation of Time (EoT), which is imprinted on sundials to rec-
oncile the difference between apparent solar time (which tracks the
actual movement of the sun each day) and mean solar time (which
tracks an “average” sun where noon is always 24 hours apart).

Figure 9 shows the EoT (the bottom line) at 0◦ latitude over the
course of a year, where the y-axis is the change in solar noon time
assuming we set solar noon time on January 1st to zero. For an ef-
ficient solar system (oriented towards the equator) on a sunny day,
solar noon should correspond to the time of maximum generation.
Thus, the change in the time of maximum generation should pre-
cisely track the EoT, regardless of a deployment’s location. Note
that using solar noon should mitigate the effect of shading from
obstructions, as only the most inefficient deployments would be
shaded at solar noon. Of course, due to the other effects in the
previous section, the maximum time of generation does deviate
significantly from that predicted by the EoT over the year. Fig-
ure 9 includes a scatterplot of the time of maximum energy genera-
tion (with energy data at one minute resolution) for a representative
home. The scatterplot shows that there are numerous and signifi-
cant deviations in the time of maximum generation across the year.

Since the EoT is the same for every location on Earth, SunSpot
knows the shape of the EoT curve it must “fit” to the data: it need
only shift up and down the y-axis to determine where to best place
it. In the figure, we use 0◦ latitude as the baseline EoT. To “fit”
the EoT to the data, SunSpot assumes that on ideal (sunny) days
the time of maximum generation should often track the EoT, while
on non-ideal (cloudy) days the time of maximum generation will
be random, e.g., it might be before or after solar noon depending
on the weather. Given this assumption, we place the EoT curve
at the spot on the graph where it overlaps the most data points
within some tolerance, e.g., ±1 minute. In Figure 9, the placed
curve (in dark violet) nearly precisely overlaps the actual ground
truth EoT curve for the location—the bottom of the zoomed-in in-
set shows the two overlapping curves.We tried various other meth-
ods for placing the EoT curve, such as placing it to minimize the
root mean squared error, or RMSE (in blue), but found that this and
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similar approaches were not as accurate. This likely occurs because
using RMSE assumes the magnitude of the deviations above and
below solar noon are the same. However, the local climate may
cause the magnitude of these deviations to be biased towards the
morning or afternoon. For example, frequent fog in the mornings
might increase the probability of the time of maximum generation
often occurring much later than solar noon (as in the figure).

After placing the EoT on the graph, SunSpot then infers longi-
tude by taking solar noon time for any day on the EoT and applying
our algorithm from Section 2 to compute the longitude. Note that
solar noon time for any day on the same EoT curve will yield ex-
actly the same longitude. In experimenting with the basic approach
above, we found that the time of maximum generation often devi-
ates from solar noon on many sunny days that appear ideal. This
likely occurs due to small variations in the various factors listed in
Section 2.2, such as slight variations in grid voltage. As a result,
we extend this approach by using the top k times of maximum gen-
eration. That is, we sort the data points (for any resolution) by their
energy generation and plot the top k data points on the graph. Fig-
ure 10 shows how longitude accuracy changes based on the value
of k for 1Hz data. We typically use k = 3, as we have empirically
found that it performs best on a large set of solar deployments.

Note that our basic approach above assumes a deployment with a
single set of modules oriented towards the equator. Since most de-
ployments strive for efficiency, they are typically oriented towards
the equator, which mitigates the impact of our orientation assump-
tion in practice. However, we can extend the basic approach to
account for tilts and orientations, as described below.

Based on the PSA algorithm [4] and Equation 1, we can com-
pute a modified EoT that tracks the movement in solar radiation
incident on a module of different orientations. The PSA algorithm
gives the sun’s position in the sky at any time for any location, and
Equation 1 computes the expected solar generation given the sun’s
position and a deployment’s tilt and orientation. The PSA algo-
rithm requires a latitude and a longitude: we use the latitude we
infer below (which is derived independently of the longitude) and
we choose any longitude, since the EoT and our modified EoT will
have the same shape at any location. We then compute multiple
modified EoT curves for many different orientations, e.g., every 5◦

from 0◦ to 180◦, and place them based on the procedure above. We
choose the curve (and orientation) with the most overlapping points
as above, and use Equation 1 to compute the difference between the
point of maximum generation and the real solar noon for a module
with that orientation. After inferring solar noon (on any day), as
above, we infer longitude by taking this solar noon and using our
algorithm from Section 2 to compute a longitude.

While it may be possible to adjust for other factors that con-
tribute to inaccuracy, e.g., multiple modules with different tilts and
orientations, etc., we leave these optimizations as future work.
Inferring Latitude. To infer latitude, we observe that the length of
a day—the time from sunrise to sunset—varies with latitude. For
example, in the summer, the daylength gets longer as we go from
the equator to the north pole and shorter as we go from the equator

to the south pole. The situation is reversed in the winter. Thus,
latitude is a function of the daylength—the length of the day at a
location and how the daylength changes over the course of the year
depends on its latitude. To compute the daylength, we must esti-
mate the sunrise and sunset time. SunSpot estimates sunrise and
sunset by simply taking the first and last positive points of gen-
eration in the day, respectively. However, as discussed earlier, this
approach will always result in a significantly shorter daylength than
the actual daylength. We have found the difference to be on the or-
der of tens of minutes for sunrise and sunset, resulting in latitude
errors that approach 1000 kilometers.

SunSpot mitigates this error by leveraging the insight above:
namely, in the fall/winter, daylength becomes shorter moving north,
and in the spring/summer, daylength becomes shorter moving
south. As a result, using the approach above, in the fall/winter,
SunSpot will always infer a location north of the actual location,
and in the spring/summer, SunSpot will always infer a location
south of the actual location. SunSpot splits the difference between
these two errors by computing latitude separately for each half of
the year, and then averaging them. This approach is surprisingly
accurate, reducing latitude errors from near 1000km to less than
20km for 1Hz energy data. The accuracy improvement derives, in
part, from the technique’s ability to mitigate the impact of orienta-
tion, shading from structures, etc., as these characteristics affect the
inaccuracy in the fall/winter and spring/summer in a similar way.
Thus, when averaging, the effects largely cancel each other out.

The approach above requires some energy data from the two dif-
ferent halves of the year. We generally use a few months worth
of data to mitigate the inaccuracy of data from any single day.
Since daylength is a function of latitude, we can derive a daylength
curve that dictates the daylength over a year. Of course, unlike
the EoT, the shape of the curve is dependent on the latitude, re-
quiring SunSpot to find the latitude curve that best “fits” the data.
In addition, just as above, the curve that minimizes the root mean
squared error is inaccurate, as it is “pulled down” by many short
daylengths due to cloudy days. Instead, SunSpot defines the best
fit as the daylength curve that represents the tighest upper bound on
the data. While the data point that defines this tightest bound repre-
sents the most ideal day of the year (in that it is the longest day we
record relative to the daylength curve), it will still always be shorter
than the actual daylength, since a solar deployment cannot generate
power until strictly after the sun has risen (and will stop generating
strictly before the sun has set). Thus, the tightest bound will never
define a longer daylength than the actual one. We find this upper
bound separately for data in the spring/summer and fall/winter.

Figure 11 shows three daylength curves for an example home,
representing the upper-bound on the spring/summer data and the
fall/winter data, as well as the daylength curve associated with the
average of the two derived latitudes. In computing the tightest
bound, we adjust for outliers due to sensing errors by removing the
data point that defines the tightest bound of the daylength curve,
and then find the next tightest bound. We then compare the dis-
tance between these two latitudes, and if it is less than a threshold
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Figure 10: Longitude accuracy depends on the top k points of
generation we include in the scatterplot when fitting the EoT.

distance nwe stop, but if not we iterate again. We continue until the
latitude does not change significantly. This approach ensures that at
least two points over the year define near the same daylength curve.
The figure shows how far apart the tightest bounds of the daylength
curve are in each half of the year. The difference typically trans-
lates to near 1000km. However, as we show, when averaging the
two, SunSpot achieves a location near the ground truth.

3.2 Localizing a Home
The latitude and longitude define only a region of interest, and

are not accurate enough, even with 1Hz resolution energy data, to
identify a specific address. SunSpot uses another method to lo-
calize a home within the region, as described below. We define a
region of interest as being a radius r around the inferred location.
Identifying Candidate Homes. To identify candidate homes, we
observe that solar modules are clearly visible from publicly avail-
able satellite imagery. Figure 12 shows a representative photo of
a rooftop solar deployment. While it is likely possible to identify
candidate homes using image recognition, given the consistent and
distinctive appearance of solar modules, SunSpot takes advantage
of crowd-sourced image recognition on Mechanical Turk, which
provides a programmatic interface to hiring people to perform rou-
tine tasks, such as image processing. In this case, SunSpot submits
tasks to identify whether a solar module appears within the image.

To reduce costs, we also leverage Google Maps’ landscape API
that colors areas with and without man-made structures differently,
allowing us to filter out forests, deserts, bodies of water, etc. Since
>97% of land area in the U.S. does not have man-made structures,
this optimization significantly reduces the search area, although it
becomes less effective the more urban the region. Figure 13 shows
an example of Manhattan, where man-made structures are colored
black and other areas are colored green (land) or blue (water). The
figure shows the API is precise at distinguishing areas without man-
made structures, as streets, central park, and shoreline are not black.
We provide images to the OpenCV image processing library to fil-
ter out images with very little black color.
Filtering Sites. There may be many candidate solar homes identi-
fied within the region of interest. There are numerous ways to filter
this list of candidate homes. Some examples include: computing
the area covered by a solar system to estimate its maximum out-
put, and then filtering out homes that deviate from the anonymous
solar data; observing panel properties, such as the orientation or
the presence of obstructions, and checking if those properties man-
ifest themselves in the data; or comparing how well drops in energy
generation align with clouds moving over each candidate home.

Of course, the filtering above may not be able to prune the list
of candidate homes to only a single one. Solar energy data in-
herently provides k-anonymity, where k represents the number of
nearby homes with similar solar deployments [23]. For example,
an Hawaiian neighborhood where nearly every home has solar is
less vulnerable to precise localization, despite the sunny weather,
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compared to a home in the Southeast where few homes have solar.

3.3 Preserving Privacy
There are many possible ways to preserve the privacy of solar

energy data. We discuss a few below, but, due to space constraints,
only focus on localization in this paper and leave a full treatment
of privacy preservation to future work. Simple data transforma-
tions that shift all datapoints forward or backwards in time would
reduce the accuracy of longitude estimates. Utilities could apply
these data transformations (or even remove time labels altogether)
before releasing data to third parties. However, there may be legit-
imate reasons for third parties to know the absolute time of gener-
ation. Consumers could apply such transformations themselves by
shifting their consumption using batteries. Such shifting would re-
quire significantly less battery capacity than is required to prevent
Non-Intrusive Load Monitoring [13, 28], since consumers can sig-
nificantly reduce longitudinal accuracy by shifting perceived gen-
eration by only a few minutes. Consumers might also be able to
employ background load scheduling to introduce noise at the start,
stop, and peak of solar generation. While our approach relies on
these three key generation points, more sophisticated approaches
may be possible that leverage the entire generation profile for local-
ization. Thus, provably masking latitude poses a greater challenge,
since it potentially requires modifying the entire profile.

4. IMPLEMENTATION
We implemented SunSpot in python using widely available

open-source code that computes a location from its sunrise and sun-
set time2; SunSpot could also leverage any of a number of online
APIs [21]. Our current implementation determines the region of in-
terest as described in Section 3, but does not implement the adjust-
ments to account for different orientations (from Section 3.1). After
defining the region of interest, our implementation then processes
satellite data to filter areas without man-made structures, divides it
into many small images, and submits them to Amazon’s Mechani-
cal Turk to detect candidate homes. Our integration with Mechan-
ical Turk downloads satellite imagery from Google Maps, which
has a maximum zoom of 20 that corresponds to a width of ∼70m
in the northern U.S. (but increases to ∼100m near the equator). In
some highly rural areas, Google Maps either has much lower reso-
lution or is not available. For these areas, higher resolution satellite
imagery, which is available for purchase, may be necessary. The to-
2See https://github.com/mikereedell/sunrisesunsetlib-java and
https://github.com/rconradharris/pysunset/



Figure 12: Rooftop solar is identifiable from satellite imagery.

tal number of images at a zoom-level of 20 (640x640 pixel) within
a 1km2 radius is 276. We use the Google Maps API to generate
the equivalent images with areas with man-made objects black and
other areas a different color, and then use OpenCV to automatically
remove any images that have more than 5% of their area covered in
black pixels. We currently do not apply the additional filters from
Section 3.2. Thus, our results are conservative, as applying these
techniques would only improve SunSpot’s accuracy.

5. EXPERIMENTAL EVALUATION
We evaluate our results on publicly-available energy data from

14 solar-powered homes at known locations with visible solar mod-
ules in the northern hemisphere. We have per-second solar energy
data for three of the homes and per-minute resolution data for the
remaining 11 homes. For each home, we have between 6 months
and a year’s worth of data. Since our initial prototype does not
account for irregular module tilts or orientations (as discussed in
Section 3.1), we focus on homes with mostly south-facing orien-
tations that maximize solar generation. Our evaluation quantifies
the localization accuracy for solar deployments per-second and per-
minute data resolution. We then evaluate the cost and accuracy of
crowd-sourced image processing on Mechanical Turk.

5.1 Localization Accuracy
Figure 14 shows distance error when localizing the region of in-

terest for the three homes with per-second resolution solar energy
data. The latitude error is the north-south accuracy, while the lon-
gitude error is the east-west accuracy. We then compute the com-
bined distance error as the hypotenuse of the right triangle formed
by the latitude and longitude error. The combined area represents
the minimum radius required to include the home in the search area.
The figure shows that with per-second energy data the inaccuracy
ranges from 10km to 20km. Interestingly, for Homes A and B the
error in latitude dominates the total error, while for Home C the
error in longitude dominates the total error. We believe Home C’s
higher longitude error is largely due to its orientation, which de-
viates the most from south-facing (and our current implementation
does not take into account when determining the longitude). The
underlying reason for the difference in latitude error is more diffi-
cult to determine, as averaging the spring/summer and fall/winter
cancel out some, but not all, of the effects of a solar system’s ir-
regularities. This may be due to different conditions in each half of
the year, such as the presence of nearby trees, which might provide
shade in the summer but not in the winter.

Similarly, Figure 16 shows results for 11 homes with per-minute
resolution data. We sort the homes based on their error in total
distance from the ground truth location in Figure 16(a), and again
report both the latitude and longitude error in (b) and (c). The
red line at 27.9km indicates the baseline precision (at the equator)
with minute-level data.3 Overall, the minimum error is 10km with

3Note that the actual precision varies by the cosine of the latitude,

Figure 13: Map of Manhattan using Google Maps API that
colors areas that include man-made structures black.
six homes having an error near or below the baseline precision.
The average error is 62km (or near 2× the baseline precision), the
largest error is 160km (or near 5× the baseline precision). Again,
the larger errors are due to less efficient deployments with orien-
tations that deviate more from south-facing. Since we define the
region of interest based on a radius r from the home, the region of
interest on average is within 22 = 4× the smallest possible region
given the minute-level resolution of the data. Interestingly, in this
case, the average latitude error is less than the average longitude
error, despite the fact that our daylength estimates are much more
inaccurate that our solar noon estimates (due to the start and stop
of generation not aligning with the sunrise and sunset times).

Our results above demonstrate that 1Hz resolution significantly
improves accuracy. To illustrate this, Figure 15 shows this scatter-
plot for five months of data for Home A, along with the inferred
EoTs when using minute-level and second-level data over this pe-
riod. As the graph shows, the time difference between the best fit
with minute-level data and the best-fit with second-level data is 22
seconds, which corresponds to an error of ∼41km. In contrast, the
error between the ground truth longitude and the longitude inferred
by the second-level data is only 1.75km (or 4× the baseline preci-
sion for second-level data).

SunSpot’s longitude accuracy also depends on tuning the k pa-
rameter and the tolerance parameter from Section 3.1. Figure 17
plots the accuracy of inferring longitude as a function of the toler-
ance parameter for k=3 using Homes A, B, and C with 1Hz res-
olution data. Recall that the tolerance parameter is the amount of
time above and below the EoT curve we are fitting, such that we
count datapoints within this range as overlapping the EoT curve.
The graph shows that as we increase the threshold to near 50 sec-
onds the localization for all three homes becomes more accurate.
Interestingly, the best tolerance for second-level data is near one
minute, which is similar to the one minute tolerance we also used
for the minute-level data. Since our dataset includes a wide range of
homes from different locations, these results suggest the magnitude
of these parameters do not vary significantly across deployments.

Finally, while our current implementation does not adjust for in-
efficient orientations that deviate significantly from south-facing,
we have performed an initial evaluation of this effect. Home
C is unique in that it has two separate solar arrays—one south-
facing and one east-facing—with two separate inverters and me-
ters. While the data in Figure 14 is from the south-facing solar
array and has a longitude error of 18km, the longitude error for
the east-facing array is 50km. By quantifying the effect of orien-
tation on solar generation under the same weather conditions, this
initial result indicates the potential of the optimizations that adjust
for orientation. We plan to explore this as part of future work.

and these homes are located across a range of latitudes.
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Figure 14: Sunspot accuracy when identifying efficient solar
deployments using per-second resolution solar energy data.
5.2 Image Processing

To preserve privacy, we did not conduct any real searches on
Amazon’s Mechanical Turk, but rather ran microbenchmarks to
evaluate the accuracy and cost of identifying anonymous solar-
powered homes. Here, we took a random urban area with 2km
radius (or 12.6km2). We chose this small area both to limit costs
and to enable manual verification of all the solar-powered homes in
the area by observing each image. We divided this area into 3481
satellite images from Google Earth, which has a maximum zoom
of ∼65-70m at 640x640 resolution. Since we chose an urban lo-
cation, a much higher percentage (82%) of these images contained
man-made structures compared to the U.S. average, yielding a to-
tal of 2847 images. We manually checked these images for solar-
powered homes and found 28 total.

We then submitted the 2487 images as “categorization” tasks on
Mechanical Turk. We selected master-level workers for 5% extra
cost to ensure high accuracy.4 Amazon allows a maximum redun-
dancy of two workers per task, so we issued a total of 2487× 2 =
5694 images for categorization into two categories: i) yes, solar
modules do exist or ii) no, solar modules do not exist. Each task
had a reward of $0.02 and Amazon charges an additional $0.02
per task. Thus, the overall cost of the experiment was $170.82, or
$13.60/km2. Of the 5594 images, 99% were categorized in <30
minutes with the average time per task equal to 42 seconds. The
workers agreed on 26 images, and were thus correct in identifying
all but two deployments, yielding a 93% accuracy.

Since we chose a relatively small area (to minimize experiment
costs and perform manual verification) in an urban setting, we were
only able to filter out 18% of the search area. However, generally
the larger the search radius, the higher the percentage of land area
that can be filtered out. For example, in this experiment, if we had
chosen a 10km radius near the search radius for Home A, only 60%
of the images contained man-made structures (38085 out of 62845
total images). For non-urban areas and larger areas, we expect to
be able to filter out an even higher percentage of the images. Thus,
even for the relatively large search areas, it is possible to filter out a
high percentage of the actual land area when searching. These costs
may be reduced using computational image processing, rather than
people, recognizing solar modules. Given the uniformity in solar
module appearance, automated recognition is likely possible.

6. RELATED WORK
There is significant prior work on estimating solar production for

a specific location, which solar installers routinely use to give users
an estimate of their potential benefits from solar. There is also sig-
nificant prior work on analyzing building energy consumption data
to infer individual appliance energy usage [29], i.e., Non-Intrusive
Load Monitoring (NILM) and user behavioral patterns, such as oc-
cupancy [5, 12]. NILM researchers have also looked at inferring
the generation profile of solar power by treating it as another load

4Master-level workers have an accuracy >90%.
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Figure 15: The difference in error in placing the EoT when
using minute-level and second-level data.
(with negative consumption) and disaggregating it [14]. Such solar
disaggregation is now included in commercial offerings from third
party analytics startups, which actively use it on data from a large
number of utilities [3, 11]. As part of future work, we plan to ex-
tend SunSpot to localize a home based on net meter data by first
disaggregating the solar data.

Security researchers have recognized that the energy analytics
above represent significant privacy threats [13, 28, 15, 6]. How-
ever, this prior work focuses on using chemical or thermal energy
storage, e.g., batteries and water heaters, to mask the changes in
energy usage that analytic techniques use to infer behavior. The
threat is that utilities can associate behavior learned from energy
data with account information, e.g., names and addresses. The
threat SunSpot exposes is different, as it reveals that data most peo-
ple believe is anonymous is actually not anonymous.

SunSpot is also related to prior work on modeling a solar de-
ployment’s generation based its various characteristics, e.g., the
weather, tilt/orientation, etc. These models are largely used for pre-
dicting solar generation in the near-term future based on weather
forecasts. Large solar farms may develop detailed models that in-
corporate specific characteristics of the deployment, e.g., type of
panels, tilt/orientation, wiring, etc., and data from co-located irradi-
ance sensors [1]. SunSpot differs from this work in that it does not
predict solar output, but instead estimates the location of a solar-
powered home based on its output. Prior work also applies machine
learning techniques on empirical solar data to develop “black box”
models that do not require such deployment-specific details [9].
SunSpot is similar to this work in that it also operates on anony-
mous solar energy data, although for localization and not predic-
tion. However, SunSpot could potentially improve its accuracy by
incorporating information about a solar deployment’s characteris-
tics learned via such models, such as tilt and orientation.

7. CONCLUSION
We design SunSpot to localize anonymous solar energy data and

expose its threat to privacy. SunSpot extracts the location informa-
tion inherently embedded in solar data to localize a solar deploy-
ment to a small region of interest. The system then uses crowd-
sourced image processing to identify a small set of potential solar
deployments within the region. We evaluate SunSpot on publicly-
available energy data from 14 homes with rooftop solar, and show
that its accuracy ranges from 10km to 20km for 1Hz data. For
per-minute resolution, SunSpot identifies a region of interest that is
within 4× on average the size of the smallest possible region given
the data resolution. SunSpot is then able to narrow this region to a
set of candidate sites with visible solar panels using crowd-sourced
image processing of publicly-available satellite data on Amazon’s
Mechanical Turk at a cost of $13.60/km2. SunSpot’s motivates a
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Figure 16: Sunspot accuracy when identifying efficient solar deployments using minute resolution solar energy data. The red line
depicts the baseline precision possible (27.9km) with minute-level data.
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SunSpot’s tolerance threshold when computing longitude.
reconsideration of what energy data is classified as “anonymous,”
as current regulations, such as the DOE’s Voluntary Code of Con-
duct for handling energy data, only consider energy data without
associated account information to be anonymous. In contrast, our
work shows that energy data itself can reveal location.

We plan to implement the optimization that accounts for module
orientation to see if we can improve the accuracy of modules with
orientations that do not point towards the equator. Even so, there
may be deployments that are inherently inaccurate due to condi-
tions outside SunSpot’s control, such as wide variations in grid
voltage that might occur in regions with unstable grids. Even if
we cannot accurately localize a deployment, it may be possible to
estimate localization accuracy. For example, the amount of devi-
ation from the Equation of Time when inferring longitude might
indirectly reveal the level of inaccuracy. Thus, we plan to study
different methods for assessing the probability that our localization
is accurate. We also plan to investigate various approaches for pre-
serving the privacy of solar data, as this paper focuses solely on
localization. Finally, we plan to apply existing techniques for so-
lar disaggregation on net metered data to understand the potential
to accurately localize “anonymous” net metered data that includes
solar generation.
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