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ABSTRACT
�e electric grid was not designed to support the large-scale pene-
tration of intermi�ent solar generation. As a result, current policies
place hard caps on the solar capacity that may connect to the grid.
Unfortunately, users are increasingly hi�ing these caps, which is
restricting the natural growth of solar power. To address the prob-
lem, we propose So�ware-de�ned Solar-powered (SDS) systems
that dynamically regulate the amount of solar power that �ows
into the grid. To enable SDS systems, this paper introduces funda-
mental mechanisms for programmatically controlling the size of
solar �ows, including mechanisms to both enforce an absolute limit
on solar output and a new class of Weighted Power Point Tracking
(WPPT) algorithms that enforce a relative limit on solar output
as a fraction of its maximum power point (MPP). We implement
an SDS prototype, called SunShade, and evaluate tradeo�s in the
accuracy and �delity of these mechanisms to enforce limits on solar
�ows. For example, we quantify the e�ects of variable conditions,
such as clouds, passersby, and other shading, on the �delity of a
search-based WPPT algorithm, which must periodically deviate
from its cap to discover changes in the MPP that a�ect the cap’s
accuracy.
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1 INTRODUCTION
�e electric grid is in the midst of a profound transformation, as
users are increasingly generating their own energy locally from
renewable sources rather than purchasing it from electric utilities.
�is transformation is being spurred by exponential decreases in
the cost of solar modules, which have fallen 60% since 2011 [1].
Rapidly falling prices have in turn driven signi�cant increases in
distributed solar generation. Nearly all solar deployments are “grid-
tied,” enabling them to draw power from the grid when their local
demand exceeds solar generation and feed power into the grid
when their local solar generation exceeds demand. However, these
grid-tied systems impose a burden on the grid to absorb a building’s
energy surpluses and make up for its energy de�cits.

�e electric grid was not designed to support such decentralized
and intermi�ent energy generation by millions of individual users.
Instead, the grid imposes a rigid top-down hierarchy where large,
highly-regulated utilities generate (and purchase) energy to meet
the demand of their customers and maintain grid stability. To do so,
utilities continuously balance electricity’s supply and demand in
real time by regulating generator power output. Since the energy
demand (or “load”) pro�le of individual users is stochastic, such
real-time balancing is only possible because the sum of load pro�les
across many users tends to be smooth and highly predictable. As a
result, utilities can plan when to activate (or “dispatch”) generators
in advance to satisfy large increases in demand.

Distributed solar generation at large scales fundamentally alters
this paradigm by increasing the stochasticity of user load pro�les,
even when aggregating them. While solar power output can change
instantaneously, e.g., due to passing clouds, dispatchable generators
are mechanical devices that take some time to activate and adjust
their power output, which prevents them from maintaining high
power quality when compensating for rapid solar variations. In
general, the grid faces signi�cant operational challenges when re-
newable penetration approaches 10% [14], necessitating additional
energy storage or sophisticated demand-side load management.

Due to the challenges above, states generally place hard limits
(“caps”) on the collective solar capacity that may connect to the grid.
However, due to the rapid growth in solar power, users are now
starting to hit these caps. For example, Massachuse�s reached its
cap in the summer of 2015, which immediately halted construction
on 134MW of new solar deployments. �e legislature did not pass
a stop-gap bill to raise the cap until April 2016 [13]. In Hawaii,
where 12% of residents have roo�op solar, utilities barred additional
residents from installing grid-tied solar for two years until the
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government recently intervened [3]. Similar tensions now exist in
Germany [19], Australia [12], and Italy [4].

�e underlying reason for the caps above is that the grid exer-
cises no control over when and how much solar power �ows into
it, enabling unlimited solar power to �ow in from any connected
solar-powered system, even when it might compromise grid re-
liability and power quality. To address the problem, we propose
So�ware-de�ned Solar-powered (SDS) systems capable of dynami-
cally regulating the power they let “�ow” into the grid, similar to
how the Internet and other networks strictly regulate data trans-
mission. By adaptively controlling the size of solar power �ows,
SDS systems provide the grid the necessary tools to control solar
power in real-time to balance supply and demand, thereby reducing
the need for arti�cial regulatory caps on solar connections. �e
current approach to allocating the grid’s available solar capacity
is essentially a static peak-based �rst-come-�rst-serve policy that
only approves new solar connections if the grid can handle all so-
lar connections operating at their peak capacity. �is approach
is highly ine�cient, and wastes much of the grid’s potential to
transmit solar power.

�e goal of SDS systems is to enable all users to freely connect
to the grid and dynamically share its capacity to transmit solar
power. �is principle represents a form of grid neutrality, akin
to net neutrality, where the grid treats all solar energy contribu-
tions equally without discriminating between users. Just as in
the Internet, the rate at which users inject energy should be dy-
namically regulated to maximize the grid’s available solar capacity
(i.e., maximize goodput), maintain the supply/demand balance (i.e.,
prevent congestion collapse), and fairly share the capacity among
connected users. Of course, controlling solar power di�ers in key
ways from regulating data transmission. Since data transmission is
packet-based, adjusting sending rates is simple and only requires
regulating the time between packet transmissions. In contrast, solar
power is continuous and thus requires di�erent mechanisms for
control. In addition, the maximum “sending rate” of a solar power
�ow varies continuously in real time based on physical properties,
e.g., the weather and the sun, and is not a function of an arbitrary
application’s demands.

To provide a foundation for SDS systems, this paper proposes
fundamental so�ware mechanisms to control the “sending rate” of
solar �ows. Our �rst SDS mechanism enables so�ware to directly
control solar �ows by placing an arbitrary absolute cap on solar
power generation, akin to a network bandwidth cap. However, as
we discuss, controlling solar �ows using absolute caps may unfairly
penalize large, or optimally con�gured, solar installations, e.g., by
restricting the percentage of their maximum power that can �ow
into the grid. �us, we introduce a new class of Weighted Power
Point Tracking (WPPT) algorithms, akin to weighted proportional-
share allocation in networking, that enforce a relative limit on solar
output as a fraction of its (dynamically changing) maximum power
point. We implement these mechanisms in a prototype SDS system
we have developed, called SunShade. In designing SunShade, we
make the following contributions.
So�ware-de�ned Solar-powered Systems. We introduce
So�ware-de�ned Solar-powered (SDS) systems to enable innova-
tion in the design of higher-level solar transmission protocols to
support arbitrarily high solar penetrations in the grid. We contrast

SDS systems with existing work on smart inverters and active so-
lar curtailment, which enable speci�c operational modes and not
so�ware programmability.
Solar Flow Control Mechanisms. We design two fundamental
mechanisms for enabling so�ware to control solar �ow rates, in-
spired by similar mechanisms in networking and operating systems.
Absolute capping enforces hard caps on solar output, while WPPT
enforces a relative cap based on a system’s changing maximum
power point. We de�ne two WPPT variants—model-based and
search-based—and examine their tradeo�s in complexity, accuracy,
and performance.
Implementation and Evaluation. We implement a prototype
SDS system, called SunShade, and evaluate the �delity of the mech-
anisms above. In particular, we quantify the e�ects of variable
conditions, such as clouds, passersby, and other shading, on the
�delity of a search-basedWPPT algorithm, which must periodically
deviate from its cap to discover changes in the MPP that a�ect the
cap’s accuracy.

2 OVERVIEW
Solar-powered buildings and homes typically connect to the grid,
enabling them to feed power into the grid and draw power from
the grid as solar generation �uctuates. Such grid-tied systems are
muchmore e�cient (and less expensive) than “o� grid” installations
because they reduce (or eliminate) the need for local energy stor-
age, which is expensive to install and maintain. Grid-tied systems
are also inherently more e�cient because they enable buildings to
exchange power to balance demand, i.e., by permi�ing one build-
ing to consume surplus solar power from a neighbor. However,
injecting arbitrarily large amounts of intermi�ent solar energy into
the grid is problematic, as utilities must o�set any �uctuations in
solar generation to maintain grid balance and power quality, e.g.,
by generating less power during solar surpluses and more power
during solar de�cits. Unfortunately, installing and maintaining
enough energy storage capacity at grid scales to smooth �uctu-
ations remains prohibitively expensive at high solar penetration
levels, e.g., >10% generation from solar.

As a result, governments strictly regulate grid solar connections,
typically by se�ing a hard limit on the maximum solar capacity
that may connect to the grid. �ese limits—set statically through
legislation—are generally low. In Massachuse�s, the cap that was
hit in summer 2015 was set at 4% of peak grid load [13]. Admission
control policies for solar installations based on static peak-based
capping are highly wasteful because they prevent fully utilizing
the grid’s capacity to transmit solar power. To understand why,
consider that solar-powered systems are rarely generating at peak
power due to non-optimal operating conditions, e.g., from clouds,
shade from obstructions, early morning or evening hours, non-
optimal tilts/orientations, seasonal variations, etc. In fact, solar
installations are capable of generating their peak power at only a
single instant over the entire year: at solar noon on the summer
solstice, assuming clear skies. �us, generating the same amount
of solar power on cloudy days or in the winter requires energy
contributions from more solar-powered systems than on sunny
summer days. Unfortunately, static peak-based caps prevent new
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Figure 1: I-V curve for a typical solar module, and the e�ect
of changes in lighting and temperature.

solar connections unless the grid can safely service all systems
operating at their peak.

Any approach to dynamically regulating solar output must en-
sure fairness between solar systems. We de�ne an allocation of
solar �ow rates as fair if over some time period τ , the solar �ows
are able to contribute the same percentage of their maximum pos-
sible generation potential to the grid. �is de�nition of fairness
normalizes for the size of the deployment, and also incentivizes an
optimal con�guration. For example, physical characteristics, such
as non-optimal tilts and orientations and shade from surrounding
buildings, lower a deployment’s maximum generation potential
and thus its fair allocation. Unfair allocations of solar �ows are
undesirable because they reduce the compensation users receive
for the solar energy they contribute to the grid, and increase users’
local energy storage requirements (to store the energy they cannot
contribute). In this paper, we focus narrowly on introducing new
mechanisms to enforce se�ing proportional �ow rates in SDS sys-
tems. Using these mechanisms to globally and dynamically regulate
solar �ows across multiple SDS systems to ensure fairness is outside
of our scope.

2.1 Background
SDS systems enable so�ware to control the size of solar power �ows
into the grid. Modern solar-powered systems already actively con-
trol solar power output within their inverter, which converts the
DC electricity generated by the solar modules into AC electricity
that is synchronized with the grid’s AC electricity, e.g., to the same
frequency and phase. Inverters typically implement an embedded
algorithm for Maximum Power Point Tracking (MPPT) that con-
stantly adjusts the deployment’s operating voltage to maximize
its power generation, as the current produced by solar modules
varies non-linearly with voltage. However, existing solar inverters
generally do not expose such control mechanisms to higher-level
so�ware. As we discuss, new smart inverters support other operat-
ing modes that implement embedded control algorithms beyond
MPPT, e.g., VAR control, voltage/frequency ride-through, etc., but
do not permit programmatic control by higher layers. In contrast,
we focus on exposing programmatic interfaces to leverage similar
inverter control mechanisms for regulating solar power output.

�e primary factor that a�ects a solar deployment’s maximum
possible production is its solar insolation, i.e. the amount of solar
radiation that is incident on the solar modules’ area. �e amount
of solar insolation is a�ected by numerous variables, including the
weather, angle of the sun in the sky (which varies across the day
and year), shade from neighboring buildings and trees, modules’

tilt and orientation, etc. Given these factors, a typical solar module
is capable of operating at a range of di�erent current and voltage
levels, which govern its actual power output. �e operating region
of a solar system is governed by its I-V curve, as depicted in Figure 1.
�e �gure shows a solar module’s output current across a range
of voltages (as dictated by the applied resistance), where the solar
power output is simply the product of the voltage and current. Due
to the nature of the I-V curve, the solar output power changes at
di�erent operating voltages. Speci�cally, since the I-V curve is
initially �at, as the operating voltage increases, the output current
remains virtually unchanged, leading to an increase in power output.
However, a�er reaching the knee of the curve, any further increase
in operating voltage yields a corresponding reduction in current,
and hence the power begins to drop. �us, the solar output rises
with increasing voltage up to a point and then precipitously drops.
As a result, each I-V curve has an optimal operating voltage Vopt
that maximizes its output.

Note that the precise shape of the I-V curve is dynamic and
changes continuously. For example, the maximum power point
decreases as the solar insolation decreases, causing the curve to
contract along both the x-axis and y-axis as depicted. In addition,
the solar cell temperature also a�ects the shape of the curve, ex-
panding and contracting it along the x-axis. While Figure 1 depicts
an idealized curve for a single solar module, solar systems are typi-
cally composed of multiple modules wired (or “strung”) together
and connected to a single inverter. In this case, the I-V curve of the
aggregate solar circuit is a combination of the I-V curves of each
module. Figure 2 shows how the combined I-V curve is a compo-
sition of each module’s I-V curve when wiring modules in series
(a), in parallel (b), and a combination of the two (c). In particular,
two modules wired in series operate at the same current, but have
additive voltage, while two modules wired in parallel operate at the
same voltage, but have additive current. �e characteristics of each
module may then change independently, a�ecting both the output
of the other modules and system’s aggregate I-V curve. For exam-
ple, two connected modules may be installed with di�erent tilts at
di�erent orientations, causing a shadow to cover one but not the
other. If wired in series, the module producing the lowest current
restricts the current generated by the other modules, reducing the
entire array’s output.

MPPT algorithms dynamically adjust the system’s voltage to
maximize power generation by operating at the “knee” of the I-V
curve as the curve changes. Inverters implement MPPT algorithms
using a DC-to-DC buck-boost converter that is able to adjust output
voltage to be greater than or less than input voltage. Buck-boost
converters typically use pulse-width modulation (PWM) to vary
their duty cycle, which also varies the input/output voltage. �ere
is a large body of prior work on developing Maximum Power Point
Tracking (MPPT) algorithms—examples include the perturb and
observe, current sweep, incremental conductance, and constant
voltage ratio algorithms amongst many others. MPPT algorithm
design is well-studied and presents many tradeo�s in optimizing
power accuracy, convergence speed, implementation complexity,
initialization procedures, etc. [2].

�e most common MPPT algorithm is the Perturb and Observe
(P&O) algorithm. �is algorithm perturbs the voltage by a small
amount, and then measures the instantaneous current and voltage
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Figure 2: Example I-V curve for a solar array formed from wiring multiple solar modules in series (a), in parallel (b), and a
combination of the two (c).
to calculate the new power (Pt ) and compares it to the power Pt−1
at the previous voltage. If the change in power is positive, it con-
tinues to perturb the voltage in the same direction; if the change is
negative then it reverses the direction of its search. Simple P&O
algorithms use a �xed voltage step size on each iteration, while
more sophisticated variations adapt the step size, e.g., proportional
to the slope of the P-V curve ∆P

∆V , to converge more quickly.

2.2 Controlling Solar Flows
SDS-enabled inverters use the same basic functions as MPPT to
regulate solar power �ows by operating at points other than the
maximum power point (MPP). For example, an inverter could de-
crease the output below the MPP, or a�er decreasing output, could
then increase output back to the MPP. By controlling the operating
voltage, an inverter can precisely control solar output up to its MPP.
Note that inverters may be used in conjunction with solar charge
controllers, enabling them to either dissipate excess power when
operating below the MPP (if there is no ba�ery) or store the excess
power in a ba�ery. In the la�er case, the solar charge controller
circuitry implements the MPPT algorithm.

Interestingly, while solar power is characterized as inherently
intermi�ent, only its MPP is intermi�ent. Below the variable MPP,
solar inverters are capable of making rapid and precise changes
in solar output, and generally have more �exibility to rapidly and
precisely control power output than mechanical generators, which
have physical limitations on the speed at which they can increase
or decrease their revolutions. As we discuss in §6, active control of
solar power to support increased solar penetration is an emerging
area. However, prior work focuses largely on coarse solar cur-
tailment during times of peak generation (akin to coarse demand
response), and not on exposing mechanisms for fair, �ne-grained
regulation of solar output to higher-level so�ware.

3 SDS CONTROL MECHANISMS
We design two useful mechanisms to control solar �ows. Our �rst
mechanism enforces an absolute cap on solar output, wherein the
solar output is capped based on a speci�ed limit. Formally, this
cap is speci�ed by a tuple (Pcap , t ), which imposes an upper limit
Pcap on the power for a duration t . Our second mechanism is a
class of Weighted Power Point Tracking algorithms that enforce
relative caps, such that power output is capped as a percentage of
the system’s time-varying maximum output. Formally, this cap is
speci�ed by a tuple (∆, t ) which indicates that power should be
limited to a fraction ∆ of the maximum power over the duration
t , where 0 < ∆ ≤ 1. Note that, since the maximum power output

is constantly changing, the absolute power generated from the
relative cap also changes. While absolute capping enforces a strict
power limit, WPPT enforces a “fair” limit across deployments with
di�erent characteristics.

Our SunShade prototype exposes a narrow interface that enables
so�ware to set and alter either the absolute cap Pmax or the weight
∆. Note that this interface does not expose direct programmatic
control of the voltage, but rather internally determines the appro-
priate operating voltage to enforce the speci�ed power output. �is
is akin to so�ware-de�ned networks that expose forwarding mech-
anisms to an external controller in the control plane, but do not
expose direct control of the data plane’s packet processing. Ex-
posing direct control of voltage lowers the barrier to introducing
deviant behavior into the grid, and could enable sophisticated grid
a�acks. In the past, grid interconnection standards have prevented
inverters from actively adjusting their power output outside of
using MPPT (see IEEE 1547-2003 [6]). However, these standards are
changing to permit the basic control functions we propose (IEEE
1547a-2014 [7]), as solar capacity increases and smart inverters
become more commonplace.

3.1 Absolute Power Capping
As discussed in the previous section, the Perturb and Observe (P&O)
algorithm is the most widely used algorithm for tracking the MPP.
To support absolute power capping, we adapt the classic P&O algo-
rithm to ensure the solar output operates at or below a speci�ed
power limit. Algorithm 1 shows the pseudo-code for se�ing an ab-
solute power cap on solar output. Similar to the P&O algorithm, the
algorithm uses the instantaneous voltage and current to calculate
the current power Pt . Power Pt is then compared to the previous
power Pt−1 to determine if there has been a change in power.

To operate at a given power cap Pcap , the algorithm simply
compares Pcap to the current power Pt . If Pt is less or more than
Pcap , the voltage is perturbed to increase or decrease, respectively,
the power. To increase and decrease the magnitude of power, the
instantaneous power Pt is compared to previous power Pt−1. If the
change in power is positive, the algorithm continues to perturb in
the same direction, else the direction of the perturbation is reversed.
Upon reaching the limit Pcap , the instantaneous power output then
oscillates around the limit. In this case, a bigger step size results in
larger oscillations around the limit, but faster convergence, while
a smaller step size has smaller oscillations, but has a slower con-
vergence. As a result, a larger step size is more appropriate in
scenarios where conditions are changing rapidly, while a smaller
step size is more appropriate under stable conditions. While this
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Algorithm 1 Absolute capping via modi�ed P&O algorithm.
1 i f Pcap != P
2 i f Pcap > P
3 % i n c r e a s e power
4 i f P > Pold
5 i f V > Vold
6 D = Dold − de l t aD ;
7 e l s e
8 D = Dold + de l t aD ;
9 end
10 e l s e
11 i f V > Vold
12 D = Dold + de l t aD ;
13 e l s e
14 D = Dold − de l t aD ;
15 end
16 end
17 e l s e
18 %de c r e a s e power
19 i f P > Pold
20 i f V > Vold
21 D = Dold + de l t aD ;
22 e l s e
23 D = Dold − de l t aD ;
24 end
25 e l s e
26 i f V > Vold
27 D = Dold − de l t aD ;
28 e l s e
29 D = Dold + de l t aD ;
30 end
31 end
32 end
33 e l s e D=Dold ;
34 end

algorithm uses a �xed voltage step size, we can also use an adap-
tive voltage step size proportional to the di�erence between Pcap
and Pt to converge faster a�er large variations. �e only external
input signal required is the absolute power cap Pcap . If the current
maximum power point Pmpp is higher than the allowed limit, the
system adjusts to operate at Pcap , else it operates at Pmpp .

3.2 Weighted Power Point Tracking
Weighted Power Point Tracking (WPPT) caps the power output
such that it maintains output at a �xed fraction of the maximum
power point Pmpp . So�ware sets the weight ∆ between 0 and 1. To
strictly enforce a weighted cap at any given time, the system must
know the maximum power point Pmpp to compute the appropriate
weighted power point. �us, in this case, the absolute power cap is
Pcap = ∆∗Pmpp and changes dynamically over time. �e challenge
with WPPT is that the maximum power point is not well-known,
and there is a cost to �nding it. We describe two approaches to de-
termine the Pmpp below. A�er determining Pmpp , we compute the
weighted cap ∆Pmpp and use our absolute capping P&O algorithm
above to maintain the weighted cap.

3.2.1 Search-based Approach. �e search-based approach oper-
ates by periodically computing the actual maximum power point
Pmpp using the standard P&O algorithm (or any other MPPT al-
gorithm). �e �delity of the search-based approach in tracking
the true weighted power point is a function of the variability in
the MPP, the convergence speed of the MPPT algorithm, and the
search interval. For example, if MPP variability is high and we
search infrequently, then the �delity will be low, as our weighted
cap will not accurately re�ect the actual cap (which is changing
as a function of the MPP). In contrast, if variability is low, and we
search frequently, then we will deviate from the weighted cap in

DC - DC 
Buck-boost
Converter

PV Module

MPPT
Algorithm

VLoad
+

--

Ipv

+

--

Vpv

Grid-tied 
Inverter

Net-metering

VLoad

Utility Grid

Figure 3: Depiction of our SunShade simulator.

searching, and thus generate more power than the cap dictates, and
introduce spikes in the system’s power output.

Our search-based approach invokes the P&O algorithm at a
con�gurable interval with a speci�ed search duration until the
algorithm oscillates for multiple iterations around the maximum
power point. �e algorithm then halts and returns the Pmpp . �e
algorithm then uses the absolute capping algorithm to �nd the
voltage Vcap that results in an absolute power cap of ∆Pmpp . �is
voltage will change based on weather conditions and time. �e
search-based approach may observe the changes in power at Vcap
to determine when the MPP has deviated from previous MPP and
trigger a new search. Our implementation supports se�ing a �xed
search interval or an adaptive search interval that triggers a new
search once Vcap has deviated by a con�gurable threshold.

3.2.2 Model-based Approach. �e search-based approach has
accuracy limitations because it must deviate from the true weighted
cap to �nd the current MPP. �ese deviations may reduce accuracy
to unacceptable levels under highly variable conditions that requires
frequent searching. An alternative approach is to compute the
MPP based on a model of the solar system’s maximum output at
any given time. �is model may be constructed either empirically
based on data collected by the inverter and weather sensors, or
analytically given speci�cations of the solar panels, including their
type, tilt, orientation, wiring, etc.

Building an empirical model has the advantage of not requiring
a priori knowledge of the deployment, since the system behavior is
learned from empirical observations. However, empirical models
take time to build, as they require collecting data on the maximum
power point under many di�erent environmental conditions. To
build such an empirical model, the inverter would use conventional
MPPT to operate at its maximum power point for a long period
of time to collect current and voltage values under many di�erent
ambient conditions with di�erent temperatures and solar radiation
levels. While the temperatures and solar radiation levels could
be estimated from a local weather station, e.g., via Weather Un-
derground, it is more accurate to link the inverter with external
temperature and solar radiation sensors to record actual conditions.
A�er recording the current and voltage at the maximum power
point for many di�erent values of temperature, solar radiation, and
time, it can use standard techniques to build a model that predicts
the current, voltage, and maximum power point for any values of
temperature, solar radiation, and time [8].

�e amount of time and data an inverter must collect to build
an accurate model varies with each location. For example, in San
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Diego, CA, where the climate is nearly constant year-round at 24◦C
and sunny, an accurate model will take li�le time to build, while in
a highly variable climate, such as in the Northeast, it might take
an entire year. As a result, we focus on an approach that analyti-
cally models a solar deployment based on its speci�c characteristics.
While this approach requires con�guring the inverter with details
speci�c to each deployment, it requires no extended period of oper-
ation to collect training data. In the model-based approach, we are
given the deployment speci�cations that dictate a model of the I-V
curve for the deployment based on solar radiation and temperature.
Again, we assume that the inverter uses external sensors to measure
solar radiation, e.g., using a pyranometer, and temperature at the
location. �e model then infers the MPP based on the radiation
and temperature levels. Note that no model is perfect; thus, the
�delity of this approach is ultimately a function of the model’s
accuracy. Another drawback of the model-based approach is that it
requires irradiance and temperature sensors, which add to the cost
and complexity of a solar deployment.

4 IMPLEMENTATION
We implement our SDS rate control mechanisms in simulation
and in a small-scale SunShade prototype. Our simulation lever-
ages Matlab’s Simulink library (SimPowerSystems) for simulating
a solar deployment’s output based on its electrical characteristics,
irradiance, and temperature.

Matlab includes a �exible solar cell model that we con�gure
to match the panel from our small-scale prototype, and an imple-
mentation of the P&O MPPT algorithm that tracks maximum solar
output as a function of solar radiation and temperature. �e model
shows a close, albeit imperfect, �t to the published data provided
by the manufacturer. In order to compute the power cap Pmpp , our
algorithm measures irradiance and temperature from the sensors,
which it provides as input to the model. Our simulator implements
absolute power capping and the two WPPT variants from the pre-
vious section by modifying the existing P&O algorithm in Matlab.
Our simulator takes as input, data traces gathered from a pyra-
nometer that measures solar radiation, and a temperature sensor.
We are also able to generate synthetic traces of solar radiation and
temperature for the simulator to test the �delity of the mechanisms
above under arbitrary conditions. Note that Matlab simulations
are considered highly accurate and frequently used as the only
means of evaluating new MPPT algorithms in the power systems
community. Figure 3 depicts the circuit diagram of our SunShade
simulator.

In addition to our simulations, we also construct a SunShade
prototype to evaluate its mechanisms under realistic conditions.
For our prototype, we connect voltage and current sensors between
a load and a small solar panel (rated at a ideal peak capacity of 25W),
which independently measure voltage and current. Rather than
employ an embedded buck-boost converter, we use a programmable
load—the BK Precision 8500 Programmable Load—to control the
panel’s operating voltage. Using the programmable load enables
rapid experimentation by allowing us control operating voltage
remotely from a server via python, rather than embedding such
control into the buck-boost converter’s �rmware. Note that the
programmable load is functionally equivalent to the buck-boost

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  2  4  6  8  10  12  14  16  18  20

C
u

rr
e

n
t 

(A
m

p
s
)

Voltage (Volts)

9 am 4 pm 5 pm

Figure 4: Expansion and contraction of the I-V curve for our
SunShade prototype, as light intensity changes throughout
the day.
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Figure 5: Depiction of our SunShade prototype.

converter, and uses the same PWM mechanism to vary the panel’s
operating voltage. �e primary di�erence is that the minimum
reaction time—the time between two changes in voltage—on the
programmable load is ∼100ms due to the latency imposed by the se-
rial connection. We could reduce this latency to near that provided
by a typical buck-boost converter, e.g., tens of milliseconds, by
using a modern I/O interface, such as USB. Figure 4 shows current
and voltage from our SunShade prototype that re�ect the expansion
and contraction of the I-V curve, similar to Figure 1 from §2, as the
intensity of light changes over the day.

Finally, evaluating WPPT’s �delity requires comparing its re-
sults to the actual weighted power point dictated by the real MPP.
To support such comparisons, we construct an additional parallel
prototype to run MPPT that uses the same solar panel as SunShade.
We then place the two systems directly adjacent to each other so
they are subject to nearly identical solar conditions. Figure 5 shows
a picture of our SunShade prototype with its key components la-
beled. �e algorithm logic runs on a Raspberry Pi, which connects
to both an external current sensor—to read changes in current—and
to a programmable load to programmatically alter the solar panel’s
operating voltage. To support model-basedWPPT with sensors, our
prototype also includes a pyranometer (for sensing solar radiation)
and a temperature sensor.
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Figure 6: SunShade capping the absolute power of a solar
panel to 100W.
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Figure 7: Example of model-based weighted power capping
at 80% of the MPP.

5 EVALUATION
We �rst evaluate the performance and �delity of SunShade’s mech-
anisms in simulation, as our simulator is able to support a much
wider range of experimentation, i.e., covering a range of conditions,
compared to our prototype. We then examine the performance and
�delity of our SunShade prototype. To evaluate SunShade’s �delity,
we use the Normalized Root Mean Squared Error (NRMSE), which
is a common metric for quantifying the di�erence between two
time-series. We compute the NRMSE between SunShade’s capped
values and the ideal values. In this case, an NMRSE closer to one is
be�er, as it indicates the two time-series are similar. �e equation
for NMRSE is below, where | | denotes the 2-norm of the time-series
vector.

NRMSE = 1 − ||actual − estimated | |

| |actual −mean(estimated ) | |
(1)

5.1 Simulation Results
Figure 6 demonstrates SunShade’s performance in simulation using
absolute power capping on a cloudy day. In this case, the clouds are
not strong enough to cause the panel output to drop below the cap
for most of the middle part of the day. As a result, the system has
a near-steady 100W power output with minor oscillations around
100W due to the P&O-based capping algorithm that constantly per-
turbs voltage searching for the cap. As expected, absolute capping
is relatively straightforward as it requires no external knowledge
about theMPP. In contrast, WPPT is more challenging, as it requires
a prediction (or search) of the MPP.

Figure 7 shows the performance of model-based WPPT (relative
capping using sensors) at 80% of the MPP in simulation. Since
our model, as with most models, is most accurate when the sun
is shining, the 80% cap is a near perfect re�ection of 80% of the
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Figure 8: Example of model-based weighted power capping
at 80% of the MPP.
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Figure 9: Example of search-based WPPT at 80% MPP on a
sunny day.

MPP in real-time. Figure 8 shows the same model-based weighted
power capping at 80% on a cloudy day with signi�cant variations
in power. �e �delity of WPPT is slightly less (in terms of NRMSE)
under cloudy conditions, as the model may be less accurate and
there is more time spent searching for the weighted cap. Likewise,
Figures 9 and 10 show the performance of the search-based algo-
rithm (relative capping using no sensors) for the same simulated
days as above. In this case, we conduct a search at a �xed interval
every 15 minutes. �e results show that the search-based algorithm
frequently deviates from the relative cap to �nd the MPP in order
to reset the cap.

Table 1 shows the NMRSE for each of the mechanisms. �e
results show that absolute power capping has the highest �delity,
i.e., is closest to the ideal power time-series, since it is the simplest
mechanism. In addition, weighted power capping using an accurate
model is close to the performance of absolute capping, since it
is able to accurately adjust the power cap in real-time without
deviating from it. �e degradation in �delity of the approach in our
simulations stems primarily from searching for the cap, similar to
how MPPT algorithms must search for the MPP. Finally, the last
row shows that the NRMSE for search-based WPPT is the lowest
for both the sunny and cloudy day. �e search-based approach on
the sunny day is only slightly lower than the other approaches,
despite conducting a search every 15 minutes. However, on the
cloudy day the performance is less than the other algorithms, as
the 15 minute search interval is too long relative to the frequency
of environmental variations.

While the experiments above demonstrate the behavior of our
power capping mechanisms for representative sunny and cloudy
days, Figure 11 demonstrates how the �delity of capping changes for
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Figure 10: Example of search-based WPPT at 80% MPP on a
cloudy day.

Algorithm Sunny Cloudy
Absolute .9888 .9843
WPPT (model-based) .9874 .9826
WPPT (search-based) .9677 .8628

Table 1: NRMSE comparison for sunny and cloudy weather
conditions
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Figure 11: NRMSE for periods with di�erent levels of varia-
tion.

the di�erent mechanisms as the frequency of variations increases.
In this graph, we subject SunShade to synthetic power �uctuations
that increase in frequency along the x-axis. �us, the higher the
frequency on the x-axis the more variance in the power output
of the solar panel. �e graph shows that for both absolute power
capping and model-based WPPT (relative capping using sensors)
are much less sensitive to variations than the search-based WPPT
(relative capping using no sensors).

5.2 Prototype Results
Due to the complexity of modeling a solar module, we use our
SunShade prototype to primarily evaluate the search-based WPPT
algorithm. Figure 12 shows power measurements from our Sun-
Shade prototype running over a three hour period on a relatively
sunny day. �e graph includes results from our two systems run-
ning in parallel: one running the search-based WPPT (in black)
and one running a typical P&O MPPT algorithm (in red). From the
MPPT measurements, we compute the ideal WPPT value. In this
case, we set the WPPT weight ∆ to be 0.5 or 50% of the maximum
value. As the graph shows, WPPT periodically searches (every 15
minutes here) for the MPPT to set a new WPPT weight, causing its

power output to increase until it converges to the maximum power
point, and then to decrease.

At some time periods, clouds cause the WPP to diverge from the
ideal between a search interval. For example, near 11am there are
passing clouds that cause the MPPT to decrease. During this time
period, the WPP also diverges more from the ideal between each
search interval. In contrast, a�er 11:30am, there is li�le change in
the MPP, and thus the WPP tracks the ideal WPP nearly perfectly.
�is experiment also stressed our WPP implementation due to
people passing by the prototype and brie�y shading it. �is shading
is evident in the graph from the periodic dips in both the MPPT and
the WPPT. Since these dips caused power output to drop to near
zero, they a�ected both theMPPT andWPPT algorithm even within
a search interval. In these cases, WPPT was unable to maintain
its power cap due to li�le available power, causing it to match the
MPPT algorithm even without searching for the new MPPT. Note
that in a few cases, the passersby shaded the two adjacent panels
unevenly, causing only one of them to drop its output.

In addition to the illustrative experiment above, we also examine
the impact of changing the search interval, voltage step size, and
weight on the �delity of WPPT compared to the ideal WPPT. Fig-
ure 13 shows how the Root Mean Squared Error betweenWPPT and
the ideal WPPT di�ers as a function of the search interval, which
ranges from 30 seconds to three minutes. For each datapoint, we
run the WPPT algorithm for 15 minutes with a default voltage step
size of 0.5, a default interval of one minute, and a default weight
of 50%. Each graph then adjusts one dimension and observes the
e�ect on the RMSE. �e proper search interval is a function of the
current conditions and the variability of solar output. Under high
solar variations, a smaller interval is be�er, as the ideal weighted
cap is changing frequently, while under near constant solar output,
a longer interval is be�er since the MPP is not changing. Here,
as the search interval increases, the error also increases, since the
weather conditions during this experiment were partly cloudy.

Figure 14 then plots the RMSE as a function of the weight se�ing.
Since lower weights deviate more from the MPP, they take longer
to search for the MPP and deviate more from the ideal WPP. �e
graph demonstrates this trend as the lower the weight se�ing, the
higher the RMSE for our WPPT tracking algorithm. One way to
address this issue for lower weights is to save the previous MPP
value and immediately start searching from the previous value,
rather than from current voltage se�ing. Of course, this approach
is not ideal during highly variable conditions, where the MPP might
change signi�cantly. Finally, Figure 15 plots the voltage step size
as a function of WPP. Similar to the interval above, the tradeo� in
the step size is dependent on the conditions. Under highly variable
conditions that require more frequent searching, a larger step size
is more desirable as it makes each search faster. Even though the
larger step size decreases accuracy, since conditions are highly vari-
able this is outweighed by the faster search time. In contrast, under
stable conditions that require fewer searches, a smaller step size is
be�er, since it �nds a more accurate weight, which is important
because searches occur infrequently. Here, since conditions were
variable, we see that, as we increase the voltage step size, the RMSE
increases.
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Figure 12: WPPT of SunShade in a real deployment compared with ideal WPPT based on true MPPT
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Figure 13: �e RMSE between the ideal WPPT and search-
based WPPT as a function of the periodic search interval.
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6 RELATEDWORK
While prior work has also advocated applying Internet design prin-
ciples to the overall electric grid [5, 9], SDS systems focus narrowly
on applying these design principles to solar systems for multiple

reasons: in particular, solar power is the predominant source of
distributed generation, is growing rapidly, and is programmatically
controllable. Since solar cells are silicon-based semiconductors,
their output can be programmatically controlled between zero and
their maximum output based on the intensity of light.

SDS and SunShade is related to prior work on active solar power
curtailment. However, this work primarily focuses on sensing and
responding to speci�c situations where an inverter may need to
reduce or eliminate solar power output. For example, all grid-tied
inverters are able to sense a power outage and reduce output to
zero to prevent energizing downed power lines. In addition, there is
signi�cant prior work on reducing solar power output during over-
voltage situations [10, 11, 15–17]. �is research di�ers from our
work in that it focuses on speci�c algorithms and policies embedded
in the inverter that respond to speci�c situations. Instead, our goal
is to expose programmatic interfaces to fundamental mechanisms
for rate limiting solar power. As a result, SDS decouples mechanism
from the policy: while its mechanisms could be used to cap power
in response to increased voltage, they could also be used in other
contexts.

Recent advancements in smart solar inverters have also recog-
nized the potential bene�ts of controlling solar power to support
grid operation [18]. In contrast, similar to TCP, SDS focuses, not
only on managing solar generation to support grid stability, but
also on fairly sharing the grid’s available capacity to accept solar
power with the goal of maintaining grid neutrality. In addition,
prior work typically focuses on low-level power systems and power
electronics issues. However, the introduction of smart inverters
with sophisticated controls is raising the grid’s level of abstraction.
Similar to the Internet, we expect the grid to evolve into a layered
architecture, where the physical layer (layer 2) addresses challenges
in power systems and electronics and the higher layers address chal-
lenges in capacity management, fair-sharing, quality-of-service, etc.
�is paper demonstrates mechanisms necessary to address these
higher-level problems.

7 CONCLUSION
�is paper proposes So�ware-de�ned Solar-powered (SDS) systems
to control the �ow rates of solar power into the grid. �e goal of
SDS systems is to eliminate the need for policies that arti�cially
cap the number and size of solar deployments that can connect to
the grid, and instead dynamically rate-limit them if they exceed
capacity in real time. To provide a foundation for SDS systems, this
paper presents two fundamental so�ware mechanisms to control
solar �ow sending rates, including an absolute capping mechanism
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and a class of WPPT algorithms that enforce a relative cap. We
implement a prototype SDS system, called SunShade, and evaluate
the �delity of these mechanisms for controlling solar �ow rates,
and their tradeo�s in terms of accuracy and responsiveness.
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