
SpotLight: An Information Service for the Cloud

Xue Ouyang, David Irwin, and Prashant Shenoy
University of Massachusetts Amherst

Abstract—Infrastructure-as-a-Service cloud platforms are
incredibly complex: they rent hundreds of different types of
servers across multiple geographical regions under a wide
range of contract types that offer varying tradeoffs between
risk and cost. Unfortunately, the internal dynamics of cloud
platforms are opaque along several dimensions. For example,
while the risk of servers not being available when requested is
critical in optimizing the cloud’s risk-cost tradeoffs, it is not
typically made visible to users. Thus, inspired by prior work
on Internet bandwidth probing, we propose actively probing
cloud platforms to explicitly learn such information, where each
“probe” is a request for a particular type of server. We model
the relationships between different contracts types to develop a
market-based probing policy, which leverages the insight that
real-time prices in cloud spot markets loosely correlate with the
supply (and availability) of fixed-price on-demand servers. That
is, the higher the spot price for a server, the more likely the
corresponding fixed-price on-demand server is not available.
We incorporate market-based probing into SpotLight, an in-
formation service that enables cloud applications to query this
and other data, and use it to monitor the availability of more
than 4500 distinct server types across 9 geographical regions
in Amazon’s Elastic Compute Cloud over a 3 month period.
We analyze this data to reveal interesting observations about
the platform’s internal dynamics. We then show how SpotLight
enables two recently proposed derivative cloud services to select
a better mix of servers to host applications, which improves
their availability from ∼70-90% to near 100% in practice.

I. INTRODUCTION

With the rise in popularity of cloud computing, busi-
nesses are increasingly renting computation and storage
from cloud providers in lieu of maintaining their own
private infrastructure. Cloud platforms provide a number of
benefits, including a pay-as-you-go billing model, the on-
demand allocation of resources, and the illusion of near-
infinite scalability. Cloud providers, such as Amazon’s Elas-
tic Compute Cloud (EC2), Microsoft Azure, and Google
Compute Engine (GCE), now provide these services using
a distributed infrastructure comprising millions of servers
in hundreds of data centers spread across the globe [7].
Cloud platforms have evolved significantly since their early
days. Early platforms exposed simple abstractions to their
users—a choice of a small number of server types with a
fixed per-hour price to lease each type. However, modern
cloud platforms have evolved to offer a myriad of options
for users to select from, including a plethora of server and
storage types from a wide range of geographical locations.
For example, EC2 users may choose from up to 53 server

types in 26 availability zones1 across 9 regions—a choice
of more than 12,000 distinct options.

Users may also lease each server configuration under
many different contracts, each of which expose a different
set of cost and availability tradeoffs. Table I depicts several
basic contract types for EC2 and their relative character-
istics. At one end of the spectrum, reserved servers incur
a, relatively high, fixed price, are non-revocable, and are
guaranteed to be available upon request. At the other end
of the spectrum lies spot servers, which are revocable and
have a variable, but relatively low, cost and availability. Con-
tracts (and prices) for on-demand servers, which are non-
revocable but not guaranteed to be available, lie somewhere
in between. Thus, today’s platforms require users to make
highly complex decisions in choosing from thousands of
server configurations and multiple contracts.

Perhaps more importantly, modern cloud platforms are
evolving into full-fledged markets where resource price
and availability changes continuously based on supply and
demand. Like any market, cloud markets experience phases
of stability and volatility, which further complicates the
decision of selecting which servers to run an application.
In addition, the cloud market is opaque along several di-
mensions. For example, while server prices are typically
published, server availability also varies in real-time based
on market conditions, but is not always made visible to users.
As a result, during a high demand period, a cloud platform
may reject a user’s request for an on-demand server due to
a lack of available resources. Similarly, the platform may
unilaterally revoke spot servers it has already allocated to
satisfy requests for on-demand or reserved servers.

The complex decisions required when selecting cloud
servers, as well as the dynamic and partially opaque nature
of the cloud market, often leads users to make sub-optimal
choices that increase their cost and reduce their application’s
performance. For example, conservative users may decide
to lease on-demand, rather than spot, servers to avoid
dealing with sudden revocations when running a workload
of parallel batch jobs. However, during periods of market
stability, these jobs may run on cheap spot servers at a small
fraction of the cost of on-demand servers. Alternatively,
price-conscious users might choose to run on cheap spot
servers during a period of market volatility, causing them
to incur higher costs due to the repeated loss of work from

1Each availability zone is physically independent of others in the same
geographical region, and consists of one or more data centers [7].

Contract Cost Revocable Availability
Reserved Fixed No Guaranteed

On-demand Fixed No High, but not guaranteed
Spot Variable Yes Variable

Table I
BASIC CONTRACT TYPES IN EC2.

frequent server revocations. Making intelligent decisions is
challenging, since it requires a careful analysis of historical
trends, current conditions, and application characteristics to
determine the best server configuration and contract. Given
the complexity of such decisions, and the lack of complete
information, users often resort to simple rules of thumb.

To address the problem, we design an information service
for the cloud, called SpotLight, that uses a mix of passive
and active probing based on a model of the cloud’s under-
lying operation to reveal the market’s hidden dynamics and
enable better decision making. In addition to tracking and
modeling historical prices, SpotLight uses active probing to
infer and quantify server availability, which is not directly
exposed by cloud platforms. While SpotLight may aid users
in better understanding cloud dynamics, it is intended for
programmatic decision-making by cloud cluster managers
that implement policies to automatically optimize the choice
of server type and contract based on market conditions
and application resource usage characteristics. SpotLight is
analogous to a stock information service for the cloud, which
analyzes prices, volatility, and other characteristics of each
stock (or server type and contract) in the stock (or cloud)
market to aid investors (or users) in making intelligent deci-
sions. Stock information services exist to “screen” and rate
stocks, alleviating each individual investor from performing
the tedious and complex tasks of gathering, tracking, and
analyzing each stock’s data themselves. SpotLight serves a
similar purpose for applications that use cloud resources.

SpotLight is inspired by past work on network tomogra-
phy, which uses active and passive probing from the net-
work’s edge to discover the network’s internal state [8, 11].
Similarly, as a third-party service, SpotLight probes cloud
platforms from the outside to infer their internal state, and
its impact on price and availability. SpotLight’s probing
policy is market-based: it exploits correlations between real-
time prices and availability to optimize when and where
it probes—by probing more frequently during periods of
volatility and less frequently during stable periods. Since
some probes require allocating cloud servers that incur a
monetary cost, SpotLight’s probing policy is also cost-aware
and adjusts its probing to satisfy a budget. Our hypothesis is
that, by intelligently probing the cloud, SpotLight’s informa-
tion service enables applications to select server types and
contracts that improve performance and cost. In evaluating
our hypothesis, we make the following contributions.
Market-based Probing Policy. We design SpotLight’s
market-based probing policy by leveraging the insight that
the real-time prices for spot servers partially correlate with

the availability of on-demand and spot servers. Thus, Spot-
Light triggers probes of server availability when spot prices
spike, which may indicate a decrease in the supply of
available resources. After detecting an unavailable server,
the probing policy fans out by probing related servers.
Large-scale Availability Study. We implement a SpotLight
prototype in python, deploy it on EC2, and use it to mon-
itor the availability of over 4500 server types over a three
month period. Using SpotLight, we conduct the first large-
scale study of availability on EC2. We then leverage our data
to make a series of observations that reveal characteristics
of the underlying EC2 cloud market that are either not well-
known or have not been quantified in the past.
Implementation and Evaluation. Finally, we conduct case
studies to quantify how SpotLight improves application
performance. We show that a key assumption in recent
work—that an application can always fail-over to on-demand
servers if a spot server is revoked—is not correct, since spot
revocations often correlate with periods of unavailability in
on-demand servers. As a result, the actual availability of
such applications is much lower than reported—roughly 70-
90% instead of >99%. However, SpotLight can aid these
applications in maintaining >99% availability by informing
these applications of servers with higher availability.

II. BACKGROUND AND MOTIVATION

While all cloud platforms now offer a complex set of
server and contract options, we focus specifically on EC2
in this paper, since it remains the largest and most ma-
ture platform. EC2 is also the only cloud platform that
releases real-time spot price data, which, as we show, makes
its internal operational dynamics partially visible. We first
provide the details of EC2’s contracts—listed in Table I—
and then outline our probing approach, which exploits the
relationships between servers offered under each contract.

A. Contract Types

On-demand Servers. On-demand servers are the primary
contract type offered by cloud platforms, where users may
request servers at any time and, once allocated, pay a per
unit-time price while using them. Importantly, on-demand
servers are not revocable: users, and not the platform, decide
when to terminate them. Thus, once allocated, users may run
on-demand servers for as long as they wish.

While on-demand servers are simple for users to un-
derstand, they have a significant drawback for risk-averse
users: their availability is not guaranteed. Put simply,
the demand for EC2 servers may periodically exceed
their supply, and, as a result, EC2 can and often does
reject requests for on-demand servers by returning an
InsufficientInstanceCapacity error code. This
risk of rejection may prevent risk-averse users from relying
on on-demand cloud servers. For example, an online service

may deem the risk of rejection at a critical business time too
costly to offset the savings from using on-demand servers.
Reserved Servers. To cater to risk-averse users, EC2 also
offers reserved servers, which are also not revocable, but are
guaranteed to be available. That is, if a user is not running
a reserved server, and they request to start it, then EC2
guarantees it will not reject the request, i.e., it will always
have sufficient capacity to immediately start the server.2

Currently, users pay a fixed cost for reserved servers for
either a 1-year or 3-year term, regardless of whether or
not the servers are running. While reserved servers cost 25-
60% less than on-demand servers if they are fully utilized
over their term, they require users to accurately estimate
their long-term resource demands. As a result, they eliminate
much of the elasticity benefits of using the cloud for variable
workloads. Of course, if reserved servers are not fully
utilized then they may cost significantly more than using
the equivalent on-demand servers only when necessary.
Spot Servers. Finally, EC2 offers spot servers, which, unlike
on-demand and reserved servers, it may revoke at any time.
Spot servers enable EC2 to gain revenue from otherwise idle
resources without sacrificing the freedom to reclaim them
for higher-priority tasks, including requests for reserved and
on-demand servers or for internal workloads. Without spot
servers, to guarantee reserved servers are available when
requested, EC2 would have to waste significant resources
by maintaining a physically idle server for each unused
reserved server. Thus, spot servers enable EC2 to lease
unused reserved servers and prevent wasting those resources.

EC2 allocates spot servers using a market-based approach.
Users request a spot server by specifying the maximum price
they are willing to pay for it per unit time. EC2 then satisfies
the request if the user’s bid price is greater than the server’s
current spot price, which varies in real time. While allocated,
users pay the variable spot price for the server and not their
maximum bid price. The spot price is market-driven, and
determined similar to a second-price auction [13] where
the lowest winning bid dictates the spot price. However, if
the spot price ever rises about the user’s bid price, EC2
immediately revokes the server after a two minute warning.

EC2 operates a different spot market, with a different
dynamic price, for each instance type and configuration of
each availability zone in each region. As a result, there are
currently ∼4500 EC2 spot markets with their own dynamic
real-time spot price across multiple server configurations,
e.g., Windows, Linux, and SUSE Linux with and without
virtual networking, from the 53 instance types in the 26
availability zones over 9 regions in EC2. Importantly, the
spot price for each market is public and published in real
time. In addition, EC2 provides price data for each market
over the past 3 months, and public repositories provide mul-

2EC2 may reject the initial request for a reservation. The guarantee above
only applies to reservations EC2 has already granted to a user.

09-17 09-19 09-21 09-23 09-25 09-27 09-29 10-01

Timestamp

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
ri

ce
s

($
)

Figure 1. Spot prices are dynamic and may exceed the on-demand price.

tiple years of price data. Thus, while spot servers come with
no availability guarantees, users can analyze the historical
spot price data to estimate a spot server’s availability for a
given bid price, i.e., the percentage of time the spot price is
below the bid price, based on its historical availability.

Figure 1 depicts the spot price at the end of September
2015 for the c3.2xlarge instance type in one availability
zone of the U.S. East region. Note that the spot price
periodically exceeds the on-demand price, indicated by
the horizontal line, even though spot instances have much
weaker availability characteristics than on-demand instances.
This is not an isolated incident: while not frequent, the spot
price routinely rises above the corresponding on-demand
price. In one documented case, the spot price rose to near
$1000 per hour [1]. The rise was the result of a sudden
spike in demand coupled with a high “convenience” bid
made by users to prevent revocations (under the rational
assumption that the spot price should never rise above the
on-demand price). As a result, EC2 introduced a maximum
bid price for each spot instance—currently equal to 10× the
price for the corresponding on-demand instance—to prevent
customers from placing excessively high bids.

B. Active Probing Approach

EC2 offers numerous server types under the different
contract types above. Optimizing a user’s choice of contract
type depends not only on a server’s price, but also its
availability. For example, if a user does not fully utilize a
reserved server over its term, then its amortized per-hour cost
may be much more than an on-demand server. Determining
whether the reserved server is worth it requires knowing
how frequently on-demand servers are unavailable—if their
availability is near 100%, then an on-demand server may
offer similar performance at a much lower cost. A similar
decision exists when deciding whether to use a spot server
or an on-demand server. Unfortunately, the availability of
on-demand and spot servers is not made visible to users,
which prevents them from making informed decisions.

Thus, we propose to gather availability data for on-
demand and spot servers by actively probing EC2 and
exposing it to users, enabling them to make informed server
and contract selection decisions. In this case, a probe is

	

Reserved	
Server	
Pool	

Spot	
Server	
Pool	

On-‐
Demand	
Server	
Pool	

Reserved	 Running	 Servers	 Reserved	 Not-‐Running	 Servers	

On-‐Demand	 Servers	 Spot	 Servers	 Idle	 Servers	

Figure 2. Relationship between reserved, on-demand, and spot servers
hosted on the same pool of physical resources.

simply a request for an on-demand or spot server of a
specific type (in a particular availability zone and region).
If EC2 allocates a server for the request, then we record
that the on-demand or spot server is available. However,
if EC2 does not allocate a server, but instead returns an
InsufficientInstanceCapacity error code, then
we record that the server is not available. Of course, each
probe may incur a cost, since there is a minimum charge—
one hour of server time in EC2—for each allocated server.
As a result, we cannot blindly flood EC2 with probes.

Instead, we adopt a market-based approach to probing that
tracks the spot price of a server and triggers probes of the
corresponding on-demand and spot servers when the spot
price rises. Our key insight is that EC2 likely divides the
same fixed pool of physical resources between the different
contracts above. As a result, the spot price in each spot
market not only indicates the current price of spot servers,
but also indirectly indicates the availability of on-demand
and spot servers of the same type, or, more precisely, in the
same family, as we discuss in §III. For example, a sudden
rise in the spot price may be the result of a surge in requests
for on-demand (or reserved) servers, which causes EC2 to
revoke some spot servers to satisfy the requests and, hence,
decreases the supply of resources available for spot servers.
Of course, a sudden rise in the spot price could also result
from a surge in requests for spot servers with high bids even
if the supply is fixed (and there are no additional on-demand
requests). Thus, there is only a partial relationship between
the spot price dynamics and on-demand and spot availability.

Figure 2 depicts our model of the relationship between
reserved, spot, and on-demand servers hosted on the same
pool of physical resources. The total physical resources
minus the resources allocated to running reserved and on-
demand servers dictates the resources available for spot
servers. In addition, there is an upper bound on the supply of
resources available for on-demand servers equal to the total
physical resources minus the number of reserved servers that

have been granted regardless of whether they are running.
Finally, there is also a lower bound on the supply of
resources available for spot servers equal to the number of
reserved servers that have been granted, but are not currently
running. Thus, the allocation and deallocation of reserved
and on-demand servers affects the supply of spot servers,
and hence also the spot price. For example, a request for an
unused reserved server reduces the pool of spot servers by
one. Likewise, if there are no idle servers, new requests for
on-demand servers are fulfilled by taking servers away from
the spot pool. The reduction in supply of spot servers drives
up the spot price by decreasing the number of spot servers,
and thus increasing the value of the lowest bid receiving
resources, and hence the spot price.

III. SPOTLIGHT DESIGN

We design SpotLight as a general information service for
IaaS cloud platforms. SpotLight exports a query interface
that enables applications or users to query information about
the availability characteristics of different server types and
contracts. SpotLight gathers the data for the query interface
by both actively probing the platform, and by passively
monitoring the spot price for each of EC2’s ∼4500 spot
markets. In both cases, SpotLight logs the data in a database
and defines an API that applications may use to query it.
While we focus on SpotLight’s active probing in this paper,
it also enables queries on historical spot price data across
multiple markets. For example, an application might query
SpotLight for the top ten server types with the longest mean-
time-to-revocation for a bid price equal to the corresponding
on-demand price over the past week. These servers would
represent the most stable spot markets over the past week.

While SpotLight is useful for users, we designed it for
programmatic access by applications using automated poli-
cies to continuously optimize server and contract selection
based on changing cost and availability. In §VI, we provide
examples of how SpotLight benefits two such applications.

A. Market-based Active Probing

Based on the relationship between the spot price and
the availability of on-demand servers, we develop a cost-
aware market-based probing policy. Our base policy triggers
a probe whenever the spot price spikes above a certain
threshold Pspike under the assumption that a spike in prices
partially correlates with a decrease in the supply of resources
available for spot servers. A probe is simply a request for a
single on-demand server of the same type (in the same avail-
ability zone and region) as the spot market that experienced
the spike. If the request is fulfilled, SpotLight logs the times-
tamp of the request, and then terminates the server. If the
request returns an InsufficientInstanceCapacity
error code, or any other error code, SpotLight logs both the
timestamp of the request and the error code that caused it not
to be fulfilled. Upon identifying an on-demand server is not

available, SpotLight continues issuing probes each interval
until a request is fulfilled, and the server is available.
Probing within a Server Family. SpotLight only uses spot
prices to trigger the initial probes. After discovering an
unavailable on-demand server, it then issues probes to on-
demand servers in the same family. We define a family as
server types with the same prefix, such as m3.*, t2.*, or
c4.*. SpotLight issues probes to servers within the same
family of the same availability zone, since different server
types in the same family likely reside on the same pool
of physical servers. In contrast, servers types in different
families have characteristics, such as CPU capacity and
number of cores, that vary across different physical servers,
making it unlikely they share common physical resources. In
addition, the size (in terms of both CPU cores and memory
allocation) of server types within each family often differs by
an even factor, e.g., an m3.2xlarge is twice as large as an
m3.xlarge, which is twice as large as an m3.large, etc.
These sizes are likely chosen to simplify the allocation of
server types within a family on the same physical resources,
as bin-packing servers with variable sizes complicates re-
source allocation, leading to server fragmentation and waste.

Since the spot price for each server type is a function of
both the available supply and demand, the spot price for each
server type within the same family may not spike at the same
time even if there is a decrease in supply. For example, even
if the overall supply shrinks, the set of bids and the demand
may not be high enough to alter the spot price in some spot
markets. Thus, a spike in the spot price for one server type
that correlates with on-demand unavailability may also be
associated with the unavailability of on-demand servers of
other types within the same family, even if the other server
types did not experience a spot price spike.
Probing across Availability Zones. In response to detecting
an unavailable on-demand server, SpotLight issues probes
not only to servers within the same family of the same
availability zone, but also to servers within the same family
in other availability zones. While availability zones in EC2
are designed to be physically independent, i.e., be located in
different data centers at different locations, we have found
that their demand exhibits strong dependencies. For exam-
ple, unless a user explicitly specifies a particular availability
zone in their request, EC2 has the freedom to fulfill a
request from any availability zone. As a result, increases in
aggregate demand for on-demand servers may be correlated
across availability zones. Thus, detecting an unavailable on-
demand server in one availability zone may indicate that
servers in other availability zones are also unavailable (if
the unavailability is due to a correlated increase in demand
across all availability zones). SpotLight treats probes to
related markets similarly to its initial probe: if any request
returns an error code that causes it not to be fulfilled,
SpotLight logs the error code and continues to periodically
probe the server every δ time until the request is fulfilled.

B. Controlling Probing Costs

Each probe incurs a cost, since SpotLight must pay for at
least one hour of server-time—EC2’s minimum granularity
for billing—for each fulfilled probe request. The cost of
such probes is likely to decrease in the future, as cloud
platforms are adopting more fine-grained charging models.
For example, Google Compute Engine charges only for
the first 10 minutes if a server is deactivated within its
first 10 minutes, while Microsoft Azure charges on a per-
minute basis. SpotLight may adjust its costs by simply
changing its probing price threshold Tprice that triggers a
probe when the spot price rises above the threshold. A lower
threshold issues more probes and incurs higher costs, while
a higher threshold issues fewer probes and reduces costs.
SpotLight may use historical spot price data for each market
to determine a proper threshold for a given budget over some
probing window, e.g., a month.

However, one problem with simply adjusting the threshold
to control costs is that the probing budget may be too small
to probe any but the rarest events, e.g., spot price spikes
>7× the on-demand price. Thus, SpotLight also enables
users to set a sampling ratio, such that it only probes a price
spike greater than a threshold Tprice with some probability
p. By lowering p, we can also lower Tprice and sample
some fraction of less-volatile events. We set Tprice and p
based on historical data to ensure the budget lasts for a
specific time window. SpotLight supports simple budgeting
over a configurable time window, such that if it consumes
its budget within the window, it simply stops probing until
the next time window. In our current prototype, to maximize
data collection, we set Tprice equal to the on-demand price
and sample every event. Currently, the cost of probes to
related servers are deducted from the budget of the server
that triggered the probes. We treat these related server probes
as overhead, and do not consider the expected number of
them when setting Tprice and p. Of course, we could easily
extend the scheme above to account for the expected cost
of related server probes based on historical probing data.

C. Probing Spot Servers

SpotLight also includes the ability to probe the spot
market directly by issuing probe requests for spot servers
with different bid levels. EC2 may not fulfill a spot server
request for multiple reasons, including due to a spot price
being too low, capacity not being available, or capacity being
oversubscribed, i.e., there are too many bids equal to the spot
price to satisfy all of them. The primary difference between
probing spot servers and probing on-demand servers is that a
spot server probe requires SpotLight to specify a bid. Spot-
Light periodically issues probes for spot servers by setting
the bid equal to the published spot price. If the request re-
turns the status code capacity-not-available, then,
just as above, SpotLight logs the timestamp and result

of the request, and continues to issue the probe by bid-
ding the spot price until the capacity becomes available.
If the request returns status code price-too-low or
capacity-oversubscribed, SpotLight increases the
bid by a small amount and re-issues the request until it finds
the minimum bid price required to acquire the spot server.

Note that the price of spot instances is on average 10× less
than the price of on-demand instances, so SpotLight simply
issues these requests periodically, rather than only issuing
them during times of price spikes. Our current prototype
rate limits spot server probes by dividing its budget by
the average historical spot price to determine the frequency
it can issue probes over a given time window without
exceeding its budget. As we discuss, since spot server probes
rarely return capacity-not-available, we do not
support probing related spot servers within the same family.

IV. IMPLEMENTATION

We implemented a prototype of SpotLight in python and
deployed it on EC2. Our prototype interacts with EC2 via its
Boto3 python API, and concurrently monitors all ∼4500
spot markets and probes the corresponding spot and on-
demand servers based on the market-based probing policy
described in the previous section. When issuing probe re-
quests, our prototype removes all additional EC2 constraints
that might cause a request rejection, including placement
group, launch group, and availability zone group constraints,
as well as network-related VPC constraints for spot and
on-demand instance requests. To avoid rejected requests,
SpotLight also imposes the same limits on its probing as
EC2 imposes on its requests, including a strict limit on the
number of running on-demand servers, the number of spot
server requests per region, and the maximum number of API
calls per minute. SpotLight logs the entire timeline for each
request in its database by recording a timestamp for each
state transition over a request’s lifetime.

V. DATA AND OBSERVATIONS

We deployed SpotLight on EC2 and used it to conduct the
first large-scale availability study of EC2 over a three month
period. Below, we make a series of observations about the
underlying operation of EC2 from our data that are either
not well-known or have not been quantified in the past. Note
that EC2 is a dynamic, constantly changing environment,
so the absolute numbers below can and will change based
on changes in EC2’s supply and demand over time. Our
observations are independent of the absolute numbers and
intended to provide insight into EC2’s dynamics that may
affect application performance. In practice, SpotLight would
run continuously, enabling it to track these changes in EC2’s
operation to inform application allocation decisions.

Observation #1: The current spot market is ineffi-
cient, and there is ample opportunity for arbitrage.

Our first observation is that the spot market is not an
“efficient” market in that there is ample opportunity for
arbitrage. For example, larger servers within the same family
are often available for lower prices than smaller servers.
Thus, users must consider a wide range of servers and con-
tracts when deciding the optimal server types to select. Such
inefficiency also opens up arbitrage opportunities where
users may purchase large servers and use resource isolation
mechanisms, such as nested virtualization, to carve them
up and re-sell smaller servers to users for a significantly
lower price than EC2. Figure 3(a) demonstrates this point by
showing how the spot price for the c3.2xlarge, in this case, is
often much higher than the c3.4xlarge or c3.8xlarge, which
are 2× and 4× as large. These opportunities for arbitrage
also exist across availability zones, where the spot price
of the same server in different availability zones may vary
significantly. Figure 3(b) demonstrates this point by showing
how the spot price in the US-east-1d availability zone is
often 5-6× more than in the other two availability zones.

An efficient market would not exhibit wide price dis-
parities for similar resources within each family of servers
or across availability zones. This observation reinforces the
importance of making intelligent decisions about which
server types and contracts to use, and implies that users
should consider many server types when making allocation
decisions. It also motivates automated systems to exploit
arbitrage opportunities, as discussed in the next section.

Observation #2: On-demand servers are not al-
ways available, and these periods of unavailability
are often correlated with either spikes in the spot
price or the unavailability of a server in the same
family (within and across availability zones).

Cloud platforms offer their customer’s the illusion of
infinite scalability on-demand. However, in reality, cloud
resources are not infinite: if the demand for servers ever
exceeds the available supply, then the platform cannot satisfy
all requests. SpotLight’s probing algorithm collects data
that quantifies this unavailability for on-demand servers in
EC2. Here, we set the probing threshold to be equal to the
corresponding on-demand price for each market and set the
sampling probability to 100% to capture all samples. We
are particularly interested in these time periods where the
spot price exceeds the on-demand price, since the use of
spot servers during these periods seems particularly counter-
intuitive, as users could presumably use on-demand servers
with much stronger availability characteristics for a lower
price. That is, unless EC2 is rejecting new requests for on-
demand instances due to an insufficient supply.

Figure 4 plots the probability over our monitoring
period that EC2 rejects a probe request for
an on-demand server, e.g., by returning an
InsufficientInstanceCapacity error code,
as a function of the size of the spike in the corresponding

09-17 09-19 09-21 09-23 09-25 09-27 09-29 10-01

Timestamp (us-east-1d, Linux/UNIX)

0

1

2

3

4

5

P
ri

ce
s

($
)

c3.2xlarge c3.4xlarge c3.8xlarge

09-17 09-19 09-21 09-23 09-25 09-27 09-29 10-01

Timestamp (us-east-1, Linux/UNIX, c3.2xlarge)

0

1

2

3

4

5

P
ri

ce
s

($
)

us-east-1a us-east-1b us-east-1d

(a) Server Types (b) Availability Zones
Figure 3. The difference in spot price between different servers in the same c3.* family and availability zone (us-east-1d) (a) and the spot price for the
c3.2xlarge server type across multiple availability zones (a).

>0 >1X >2X >3X >4X >5X >6X >7X >8X >9X >10X
Spot Price (X On-demand Price)

0

1

2

3

4

5

6

7

8

9

U
n
a
v
a
ila

b
ili

ty
 (

%
)

window<=900s

window<=1200s

window<=1800s

window<=2400s

window<=3600s

window<=7200s

Figure 4. Probability that an on-demand server is unavailable as a function
of the size of a spot price spike in the corresponding spot market.

spot price. Note that the x-axis is in multiples of the on-
demand price, where k× represents k times the on-demand
price. Each line represents a time window over which we
cluster together short periods of unavailability. That is,
if the window is one hour, and there are multiple spikes
within the hour correlated with unavailability, we only
count the first spike within the hour that correlates with
a rejected probe request. This graph aggregates data from
EC2’s global market including all ∼4500 availability zones
and instance types from all regions. The graph shows a
clear trend: as the size of a spot price spike increases,
the probability of on-demand instances (of the same type
in the same availability zone of the same region) being
unavailable increases from near 0% (for spikes <1× the
on-demand price) to near 10% (for spikes >10×).

The graph confirms the relationship between the spot price
and the unavailability of on-demand servers. The rise in
prices may be due to multiple reasons. For example, users
may realize on-demand servers are not available and switch
to requesting spot servers, thereby increasing their demand
and the spot price. Alternatively, the price increase may also
result from a spot server shortage, since unavailable on-
demand servers may indicate there are no idle resources left

>0 >1X >2X >3X >4X >5X >6X >7X >8X >9X >10X
Spot Price (X On-demand Price)

0

2

4

6

8

10

12

U
n
a
v
a
ila

b
ili

ty
 (

%
)

p=100%

p=80%

p=60%

p=40%

p=20%

p=10%

p=5%

Figure 5. Probability that an on-demand server is unavailable as a function
of different probing thresholds Tprice for different sampling probabilities.

for the spot pool. The graph above demonstrates that there
is some correlation between spot price spikes (of varying
sizes) and the probability that on-demand servers are not
available. However, the correlation is only probabilistic—in
many cases, spot price spikes are not correlated with rejected
probes. A spike in the spot price may simply be due to an
increase in demand for spot servers that is independent of
the supply and demand of on-demand servers.

Figure 5 then shows the results when SpotLight adjusts its
sampling probability p from Section III-B as a function of
its probing threshold Tprice on the x-axis. This graph uses
the window ≤ 900s from Figure 4 for p=100%, such that
SpotLight probes every price spike above the threshold on
the x-axis. The other lines indicate results when SpotLight
only probes a random sample of the price spikes as indicated
by p. The graph shows that even low sampling probabilities,
where SpotLight only samples 5-20% of the price spikes,
yield similar results as probing all price spikes. The cost
reduction is equivalent to the sampling probability p, such
that a 5% sampling probability yields a cost that is 5% of
the maximum costs when probing every sample. As a result,
SpotLight can reduce costs significantly by only probing a
small fraction of price spikes at any given threshold.

>0 1X >2X >3X >4X >5X >6X >7X >8X >9X >10X
Spot Price (X On-demand Price)

0

10

20

30

40

50

60

70

80

90
P
e
rc

e
n
ta

g
e
 (

%
)

by_related_markets by_price_spikes

Figure 6. The percentage of rejected probes triggered by spot price spikes
versus those triggered by probes of related markets in the same family.

In addition to detecting a rejected probe due to a spot
price spike, SpotLight also issues probe requests to all
servers within the same family across each availability zone.
Figure 6 plots the percentage of rejected probes based on
spot price spikes versus those from probing the related
markets in the same family across all availability zones. The
figure shows that the percentage of rejected probe requests
due to probing server types within the same family (after
detecting a rejected request due to a price spike) at ∼70%
is greater than the percentage of rejected requests SpotLight
receives due to price spikes at ∼30%. That is, for each
rejected probe triggered by a rise in the spot price, SpotLight
on average detects two servers within the same family (in
some availability zone) that are also unavailable. The graph
shows that the relationship is constant regardless of the spot
price. Thus, the unavailability of an on-demand server of
one type indicates a higher probability of unavailability for
on-demand servers of other types within the same family.

Figure 7 shows that, after detecting an unavailable on-
demand server, the probability of a related on-demand server
in another availability zone being unavailable decreases
as the spot price increases. This trend may result from
imbalances in supply and demand across availability zones.
When spot prices spike in one market, markets in other
availability zones not experiencing a spike likely have ample
resources. In contrast, when spot prices are low, demand is
likely more balanced across availability zones, resulting in
a higher probability of concurrently exhausting resources.

Finally, Figure 8 shows the cumulative distribution func-
tion (on a log scale) for the duration of each period of on-
demand unavailability across the global market. The graphs
show that >83% of the unavailability periods last <1 hour,
but there is a non-trivial fraction (∼17%) that last multiple
hours with 5% lasting >10 hours. Such long unavailability
periods can significantly impact application performance.

Observation #3: While cloud platforms are
global, the availability characteristics of different
servers are local and highly dynamic. The char-
acteristics of one server type in one region and

>0 >1X >2X >3X >4X >5X >6X >7X >8X >9X >10X
Spot Price (X On-demand Price)

0

5

10

15

20

25

P
ro

b
a
b
ili

ty
 (

%
)

window<=300s

window<=600s

window<=900s

window<=1800s

window<=2400s

window<=3600s

Figure 7. After detecting an unavailable server, the probability at least
one related on-demand server in another availability zone is unavailable.

0 1 2 4 8 16 32 64 128 256

Log of Duration (hours)

60

65

70

75

80

85

90

95

100

P
ro

b
a
b
ili

ty
 (

%
)

Figure 8. CDF of the duration of unavailability for on-demand servers.

availability zone are different than other server
types in other regions and availability zones.

While the discussion above relates to the global market,
EC2 and other cloud platforms are actually an aggregation of
many smaller independent clusters that have their own sup-
ply and experience their own local demand. Some pools are
well-provisioned, while others may be under-provisioned.
Figure 9 plots the fraction of rejected on-demand probe
requests that occurred in each region using the same data
from Figure 4 as a function of the size of the spot price
spike that triggered the rejection. The figure shows that a few
regions dominate the number of rejected on-demand probes,
and thus appear to be under-provisioned, particularly in
the sa-east-1 (South America), ap-southeast-1 (Singapore),
and ap-southeast-2 (Australia) regions. By contrast, EC2’s
largest region (by a wide margin)—U.S. East—-experiences
many fewer rejected probes. The graph also shows the total
number of rejected probes decreases substantially as the size
of the spot price spikes increases. Thus, there are nearly zero
events where the spot price spikes beyond 4× the on-demand
price outside of sa-east-1, which is located in Brazil.

Figure 10 shows the probability of a rejected probe request
as a function of the size of the spot price spike for multiple
different regions. In this case, the window size, as defined for
Figure 4, is 900 seconds (or 15 minutes). The figure shows
that some regions have a much higher likelihood of expe-

<1X 1X-2X 2X-3X 3X-4X 4X-5X 5X-6X 6X-7X 7X-8X 8X-9X9X-10X >10X
Spot Price (X On-demand Price)

0

10

20

30

40

50
U

n
a
v
a
ila

b
ili

ty
 (

%
)

ap-southeast-1

ap-southeast-2

us-west-2

us-east-1

ap-northeast-1

us-west-1

eu-central-1

eu-west-1

sa-east-1

Figure 9. The percentage of rejected probes in each region as a function
of the size of the spot price spike.

>0 >1X >2X >3X >4X >5X >6X >7X >8X >9X >10X
Spot Price (X On-demand Price)

0

2

4

6

8

10

U
n
a
v
a
ila

b
ili

ty
 (

%
)

us-east-1

us-west-1

eu-central-1

ap-southeast-1

ap-southeast-2

sa-east-1

Figure 10. The probability of detecting an unavailable on-demand server
in different regions as a function of the spot price spike.

riencing periods of unavailability than others. For example,
the us-east-1 region, which is EC2’s largest, appears well-
provisioned with a probability of unavailability less than 1%.
Note that the drop off in lines for some regions are due to
a lack of spot price spikes at those levels. The us-east-1
region experiences very few spot price spikes greater than
2× the on-demand price, and the spot price spikes it does
experience are likely the result of an increase in demand,
rather than a supply shortage. In contrast, sa-east-1 (Brazil),
ap-southeast-1 (Singapore), and ap-southeast-2 (Australia)
appear highly under-provisioned and thus have much higher
probability of having unavailable on-demand servers.

The results above demonstrate that users should make
decisions on a per-region basis. For example, a reserved
server in Brazil is worth more than in the U.S. East, since
on-demand servers in the U.S. East are rarely unavailable,
while on-demand servers in Brazil are often unavailable. The
data also shows the challenge of modeling EC2 spot markets,
where each pool of servers in each region may experience
different supply and demand signals.

Observation #4: The availability of spot servers
follows exactly the opposite trend as on-demand

<1/10X <1/9X <1/8X <1/7X <1/6X <1/5X <1/4X <1/3X <1/2X <1X >1X
Spot Price (X On-Demand Price)

0

5

10

15

20

U
n
a
v
a
ila

b
ili

ty
 (

%
)

us-east-1

us-west-1

eu-west-1

ap-southeast-1

ap-northeast-1

ap-southeast-2

sa-east-1

all

Figure 11. The probability of a spot server being unavailable, regardless
of the bid price, as a function of the spot price.

servers: their availability (for a bid price much
greater than the spot price) decreases as the spot
price decreases. Overall, the availability of spot
servers is much higher than on-demand servers,
likely because their unavailability is reflected as a
rise in the spot price, which dampens demand.

SpotLight also probes for the availability of spot servers.
While the availability of on-demand servers decreases as the
spot price increases, the availability of spot servers moves
in exactly the opposite direction: it decreases as the spot
price decreases. Figure 11 shows this trend for different
regions. The graph shows that as the spot price increases
along the x-axis, the probability of a spot market probe (with
a bid price much higher than the spot price) being rejected,
i.e., by returning the capacity-not-available error
code, decreases. When the spot price is low, this trend likely
results from the fact that EC2 has no incentive to sell spot
servers below the cost of the energy it takes to operate them.
Interestingly, while us-east-1 has the highest availability for
on-demand servers, it has one of the lowest availabilities for
spot servers (next to sa-east-1 in Brazil). This may result
from higher operating costs in us-east-1, e.g., to purchase
electricity, than in other regions. In addition, when the spot
price is high, EC2 has an incentive to allocate spot servers
to users if they are will to pay a much higher price for
them than on-demand servers. The data reflects this trend,
as the unavailability of spot servers decreases as the spot
price rises—-as in any market, the more users are willing to
pay, the less likely EC2 is to reject them.

VI. CASE STUDIES

We conduct two case studies to demonstrate how to
leverage the information gathered by SpotLight in the
previous section to improve application performance. We
examine two systems from prior work—SpotCheck [9] and
SpotOn [12]—that minimize the cost of running interactive
and batch workloads by opportunistically using spot servers.

d2.2x
Windows

d2.8x

us-east-1e

d2.2x
Linux/UNIX

d2.8x g2.8x(a)

ap-southeast-2
Linux/UNIX

g2.8x(b)

Markets

0

20

40

60

80

100

120
A

v
a
ila

b
ili

ty
 (

%
)

91.9
85.6

91.7
87.4

72.5 75.0

SpotCheck SpotLight

Figure 12. The availability of nested VMs in SpotCheck in practice based
on the availability data for on-demand servers gathered by SpotLight

A. SpotCheck

SpotCheck is a derivative cloud platform that rents spot
servers from EC2, partitions them up using nested virtualiza-
tion [15], and re-sells the nested VMs to users under a new
contract that guarantees high availability, e.g., 99.99989%
available. SpotCheck’s goal is to support interactive appli-
cations that require high availability using spot servers.

SpotCheck achieves this high availability by leveraging a
live bounded-time VM migration mechanism that enables
it to simply migrate nested VMs to on-demand VMs if
spot servers are ever revoked, e.g., the spot price ever rises
above the on-demand price. The mechanism asynchronously
copies VM memory state to a backup server such that at
all times the VM has a bounded amount of outstanding
state that must be copied to complete a migration in the
event of a revocation. SpotCheck then leverages the two-
minute revocation warning provided by EC2 to ensure it can
always copy a VM’s outstanding memory state before a spot
VM is revoked. Essentially, SpotCheck runs on spot servers
when the spot price is below the on-demand price, and then
migrates to on-demand servers when the spot price rises
above the on-demand price. The availability is not 100%
only due to the small time nested VM’s must be paused
during a live migration to transfer the last bits of memory
state. Our prior work shows that by highly multiplexing the
backup server and amortizing its cost among many VMs,
SpotCheck is able to provide the availability of on-demand
servers for a cost near that of spot servers.

However, SpotCheck makes a key assumption that on-
demand servers are always available as a fallback whenever a
spot server is revoked. Critically, in SpotCheck, spot servers
are revoked as the result of spikes in the spot price above the
on-demand price. Unfortunately, SpotLight shows that these
are exactly the times when on-demand servers are least likely
to be available. Figure 12 shows the actual availability for
different server types in EC2’s U.S. east region, which is the
most well-provisioned region in EC2. The graph shows that,
rather than four 9’s of availability, in practice, SpotCheck

At least 4 At least 3

#Available Markets(us-east-1)

At least 2 At least 1 Other AZs
0

20

40

60

80

100

A
v
a
ila

b
ili

ty
 (

%
)

85.6
91.4

95.6 97.3 100.0
SpotLight

Figure 13. Availability of SpotCheck under SpotLight when considering
the 4 markets in us-east-1e listed in Figure 12

would only provide between 85.6% and 93.1% availability
for these server types due to on-demand servers not being
available when spot servers are revoked. The results for other
regions are much worse. For example, in the Asia/Pacific
Southeast region, SpotCheck’s availability is as low as 73%.

However, SpotCheck can use SpotLight’s data to im-
prove its selection of on-demand servers and increase its
availability back to near 100%. Namely, rather than falling
back to on-demand servers of the same type, SpotCheck
can select on-demand servers from a different uncorrelated
server family that is not experiencing spot price spikes or
unavailability. Figure 13 shows the correlated availability
of the 4 markets from Figure 12: the x-axis represents the
fraction of time that an on-demand server from at least one
of the markets is available. The graph shows that at least
one of the 4 markets is available 97.3% of the time. Thus,
by selecting from among only these 4 markets, SpotCheck
could maintain 97.3% availability. Further, if considering
these markets in other availability zones, the availability
is 100% (at least one server is always available). Thus,
by selecting independent markets, i.e., hosted on different
physical servers, SpotCheck’s preserves its assumption that
on-demand servers (in some market) are available when its
spot servers are revoked, and its availability increases back
to its original value near 100%.

B. SpotOn

SpotOn is similar to SpotCheck except that it focuses on
optimizing the performance of batch applications running
on spot servers. SpotOn’s goal is to leverage spot servers
to minimize the cost of running batch jobs at near the
performance of on-demand servers. Since SpotOn focuses
narrowly on batch jobs, it is capable of leveraging a much
wider range of fault-tolerance mechanisms than SpotCheck.
In particular, to ensure progress despite revocations, SpotOn
either replicates a batch job across multiple spot servers
or periodically checkpoints it. With replication, if all spot
servers hosting replicas of a job are revoked, SpotOn restarts
the job on an on-demand server to ensure its completion.

d2.2x
Windows

d2.8x

us-east-1e

d2.2x
Linux/UNIX

d2.8x g2.8x(a)

ap-southeast-2
Linux/UNIX

g2.8x(b)

Markets

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
R

u
n
n
in

g
 T

im
e
 (

h
o
u
rs

)

2.29
2.5

2.29
2.44

3.44
3.24

SpotOn SpotLight

Figure 14. Average job running time using SpotOn in practice based on
the availability data for on-demand servers gathered by SpotLight

Likewise, with checkpointing, if the spot server is revoked,
SpotOn restarts a job from its last checkpoint on the corre-
sponding on-demand server.

Thus, similar to SpotCheck, SpotOn leverages spot servers
to minimize the cost of running the job, while maintaining
performance near that of on-demand servers. SpotOn selects
the server type to run a job by determining the fault-tolerance
mechanism—replication or checkpointing—and spot market
with the lowest expected cost. To do so, SpotOn simply
brute force computes the expected cost per unit-time for each
market to run a job until it either completes or is revoked
on each market, and then runs the job on the server with the
lowest expected cost. See prior work for the closed-form
equations that compute expected cost based on the time
to checkpoint a job, checkpointing frequency, replication
degree, revocation probability, and job running time [12].
SpotOn computes the expected cost for checkpointing and
replication for all markets and then chooses the lowest
expected cost to run a job.

Of course, as with SpotCheck, SpotOn implicitly assumes
that on-demand servers are always available. Thus, it does
not consider the probability that on-demand servers are not
available when considering which servers to run a job on.
In this case, the lack of available on-demand servers will
decrease performance by increasing job running time. Since
SpotOn does not consider this option, it may choose a spot
market that has a minimum expected cost but has on-demand
servers that are much more likely to be unavailable. As a
result, the overall performance of the job may be signifi-
cantly worse than a spot market with only a slightly higher
expected cost, but highly available on-demand servers.

Figure 14 plots the completion time for a representative
job with a running time of two hours and a memory
footprint of 8GB, which takes approximately six minutes
to checkpoint, for the same spot markets as in Figure 12.
For this experiment, we plot the expected completion time
for 100 trials where the job is started at a random time both
assuming on-demand servers are always available after a re-

vocation, and using the on-demand availability data collected
by SpotLight. The figure shows that the job’s running time
increases by 15-72% relative to a system that assumes on-
demand servers are always available. Similar to SpotCheck,
the performance in ap-southeast-2 is significantly worse
than the other regions. As before, SpotLight can reduce the
running time back to near two hours by enabling SpotOn to
select different server types with uncorrelated availability.

VII. RELATED WORK

There is significant prior work on optimizing the use of
spot and on-demand servers on EC2 to minimize the cost
of executing a workload. Much of this work models spot
price dynamics and then examines various bidding policies
to determine the optimal bidding strategy to minimize costs,
while ensuring an application either finishes within some
deadline or maintains a specific availability target (with high
probability) [2, 3, 10, 17, 18]. In this case, when the bid
price is below the spot price, applications simply wait until
the spot price falls below the bid price again before resuming
execution, which lengthens the running time of batch jobs
and decreases the availability of online services.

Another class of work not only optimizes bidding, but
also employs fault-tolerance mechanisms, such as check-
pointing, to ensure that jobs can efficiently resume after
a revocation [4, 5, 14, 16]. Checkpointing introduces a
tradeoff: checkpointing too frequently incurs an overhead
that reduces performance but decreases the work lost on
each revocation, while checkpointing too rarely causes ap-
plications to lose more work on each revocation. Thus,
determining the optimal checkpointing frequency reduces
costs by maximizing the useful computation spot servers
are able to perform is an important problem. Other work
looks at employing a mix of spot and on-demand servers
to either hedge against the chance of revocation [6], use
on-demand servers as backups for spot servers [9], or as a
fallback if spot servers are revoked (or are too volatile to
satisfy performance requirements) [12].

Our work differs from this prior research in that we focus,
not on optimizing a particular application for spot or on-
demand servers, but instead on revealing the correlation
between spot prices and the internal availability dynamics
of EC2. We model the relationship between reserved, spot,
and on-demand servers and show how SpotLight partially
exposes these relationships to users by actively probing the
cloud based on the spot price. As we demonstrate in our case
studies, much of the work above that mixes spot and on-
demand servers assumes that on-demand servers are always
available, which we show is not true in practice. In fact, we
show that on-demand servers are least available when the
applications above need spot servers the most: when spot
prices spike. By quantifying the availability of spot and on-
demand servers, SpotLight enables users to assess the true
value of reserved, spot, and on-demand servers. Note that

EC2 continues to increase the diversity of their contract
types. For example, during our evaluation, they released spot
block contracts, which enable users to bid on servers for
fixed blocks of time between one and six hours, such that
EC2 promises to revoke only at the end of the time block.
We plan to incorporate probing the availability of spot blocks
into SpotLight as part of future work.

Of course, our work is based on EC2’s current operational
dynamics. If EC2 were to change how it sets the spot
price, e.g., if it were not market-based, or eliminate spot
prices entirely then the correlations we identify might no
longer hold. For example, Google Compute Engine offers
preemptible instances, which are akin to spot instances, in
that they may be revoked, but are sold for a fixed price per
unit-time. As a result, Google reveals no information, similar
to the spot price, that reveals their internal operational
dynamics. The only way to discover these internal dynamics
is to flood the system with probe requests, which is likely too
expensive for any single entity (although such information
could potentially be crowd-sourced from users). While EC2
could also block SpotLight’s probe requests, it might be
difficult to distinguish them from normal requests of a
periodic service (as probes appear as requests for instances).

Finally, much of the work above is based on (or evaluated
using) data from just a few spot markets, while our work
is based on three months of data from nearly all of the
∼4500 spot markets and server types in EC2. We know
of no prior system that has either operated at or collected
data at the scale of SpotLight. The systems above that were
actually deployed were done so only to conduct a small set
of experiments on EC2. In contrast, SpotLight continuously
ran for three months at such a massive scale that any bug
in its probing could incur significant EC2 usage costs.

VIII. CONCLUSION

We present SpotLight, an information service for the
cloud. SpotLight’s key contribution is an active market-
based probing policy that reveals the internal cloud dynamics
related to the availability of servers. Understanding server
availability under different contract types is critical in se-
lecting the optimal server and contract type for applications
that minimizes cost subject to a user’s risk tolerance. We
deploy SpotLight on EC2 and collect availability data from
all ∼4500 server types across all regions and availability
zones over a three month period. We then demonstrate how
SpotLight’s information can improve two applications—
SpotCheck and SpotOn—that implicitly assume on-demand
servers are always available. We show that, in practice, since
this assumption is not true, these applications would perform
much worse than expected. However, by using SpotLight’s
data, they can maintain their performance by selecting server
types that are likely to be available with high probability.
Acknowledgements. This work is supported by NSF grants
#1422245 and #1229059.

REFERENCES

[1] Moz Engineering. Amazon EC2 Spot Request Volatil-
ity Hits $1000/hour. https://moz.com/devblog/amazon-
ec2-spot-request-volatility-hits-1000hour/, 2011.

[2] W. Guo, K. Chen, Y. Wu, and W. Zheng. Bidding
for Highly Available Services with Low Price in Spot
Instance Market. In HPDC, June 2015.

[3] X. He, R. Sitaraman, P. Shenoy, and D. Irwin. Cutting
the Cost of Hosting Online Internet Services using
Cloud Spot Markets. In HPDC, June 2015.

[4] S. Khatua and N. Mukherjee. Application-centric Re-
source Provisioning for Amazon EC2 Spot Instances.
In EuroPar, August 2013.

[5] A. Marathe, R. Harris, D. Lowenthal, B. de Supinski,
B. Rountree, and M. Schulz. Exploiting Redundancy
for Cost-effective, Time-constrained Execution of HPC
Applications. In HPDC, June 2014.

[6] I. Menache, O. Shamir, and N. Jain. On-demand, Spot,
or Both: Dynamic Resource Allocation for Executing
Batch Jobs in the Cloud. In ICAC, June 2014.

[7] T. Morgan. A Rare Peek Into the Massive Scale of
AWS. EnerpriseTech, November 14th 2014.

[8] R. Prasad, C. Dovrolis, M. Murray, and k. claffy. Band-
width Estimation: Metrics, Measurement Techniques,
and Tools. IEEE Network, 17(6), November 2003.

[9] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin,
and Prashant Shenoy. SpotCheck: Designing a Deriva-
tive IaaS Cloud on the Spot Market. In EuroSys, 2015.

[10] Y. Song, M. Zafer, and K. Lee. Optimal Bidding in
Spot Instance Market. In Infocom, March 2012.

[11] J. Strauss, D. Katabi, and F. Kaashoek. A Measurement
Study of Available Bandwidth Estimation Tools. In
IMC, October 2003.

[12] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and
P. Shenoy. SpotOn: A Batch Computing Service for
the Spot Market. In SOCC, August 2015.

[13] W. Vickrey. Counterspeculation, Auctions, and Com-
petitive Sealed Tenders. Journal of Finance, 1961.

[14] W. Voorsluys and R. Buyya. Reliable Provisioning of
Spot Instances for Compute-Intensive Applications. In
AINA, March 2012.

[15] D. Williams, H. Jamjoom, and H. Weatherspoon. The
Xen-Blanket: Virtualize Once, Run Everywhere. In
EuroSys, 2012.

[16] S. Yi, D. Kondo, and A. Andrzejak. Reducing Costs
of Spot Instances via Checkpointing in the Amazon
Elastic Compute Cloud. In CLOUD, July 2010.

[17] M. Zafer, Y. Song, and K. Lee. Optimal Bids for Spot
VMs in a Cloud for Deadline Constrained Jobs. In
CLOUD, June 2012.

[18] L. Zheng, C. Joe-Wong, C. Wei Tan, M. Chiang, and
X. Wang. How to Bid the Cloud. In SIGCOMM,
August 2015.

	Introduction
	Background and Motivation
	Contract Types
	Active Probing Approach

	SpotLight Design
	Market-based Active Probing
	Controlling Probing Costs
	Probing Spot Servers

	Implementation
	Data and Observations
	Case Studies
	SpotCheck
	SpotOn

	Related Work
	Conclusion

