SpotCheck: Designing a Derivative
IaaS Cloud on the Spot Market

Prateek Sharma  Stephen Lee

Tian Guo

David Irwin ~ Prashant Shenoy

University of Massachusetts Amherst

{prateeks,stephenlee,tian,shenoy }@cs.umass.edu

Abstract

Infrastructure-as-a-Service (IaaS) cloud platforms rent re-
sources, in the form of virtual machines (VMs), under a va-
riety of contract terms that offer different levels of risk and
cost. For example, users may acquire VMs in the spot mar-
ket that are often cheap but entail significant risk, since their
price varies over time based on market supply and demand
and they may terminate at any time if the price rises too high.
Currently, users must manage all the risks associated with
using spot servers. As a result, conventional wisdom holds
that spot servers are only appropriate for delay-tolerant batch
applications. In this paper, we propose a derivative cloud
platform, called SpotCheck, that transparently manages the
risks associated with using spot servers for users.
SpotCheck provides the illusion of an IaaS platform that
offers always-available VMs on demand for a cost near that
of spot servers, and supports all types of applications, includ-
ing interactive ones. SpotCheck’s design combines the use
of nested VMs with live bounded-time migration and novel
server pool management policies to maximize availability,
while balancing risk and cost. We implement SpotCheck on
Amazon’s EC2 and show that it i) provides nested VMs
to users that are 99.9989% available, ii) achieves nearly
5x cost savings compared to using equivalent types of on-
demand VMs, and iii) eliminates any risk of losing VM state.

1. Introduction

Many enterprises, especially technology startup companies,
rely in large part on Infrastructure-as-a-Service (IaaS) cloud
platforms for their computing infrastructure [8]]. Today’s
TaaS cloud platforms, which enable their customers to rent
computing resources on demand in the form of virtual ma-
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chines (VMs), offer numerous benefits, including a pay-as-
you-use pricing model, the ability to quickly scale capacity
when necessary, and low costs due to their high degree of
statistical multiplexing and massive economies of scale.

To meet the needs of a diverse set of customers, IaaS
platforms rent VM servers under a variety of contract terms
that differ in their cost and availability guarantees. The sim-
plest type of contract is for an on-demand server, which a
customer may request at any time and incurs a fixed cost
per unit time of use. On-demand servers are non-revocable:
customers may use these servers until they explicitly decide
to relinquish them. In contrast, spot servers provide an en-
tirely different type of contract for the same resources. Spot
servers incur a variable cost per unit time of use, where the
cost fluctuates continuously based on the spot market’s in-
stantaneous supply and demand. Unlike on-demand servers,
spot servers are revocable: the cloud platform may reclaim
them at any time. Typically, a customer specifies an upper
limit on the price they are willing to pay for a server, and the
platform reclaims the server whenever the server’s spot price
rises above the specified limit. Since spot servers incur a risk
of unexpected resource loss, they offer weaker availability
guarantees than on-demand servers and tend to be cheaper.

This paper focuses on the design of a derivative cloud
platform, which repackages and resells resources purchased
from native IaaS platforms. Analogous to a financial deriva-
tive, a derivative cloud can offer resources to customers with
different pricing models and availability guarantees not pro-
vided by native platforms using a mix of resources pur-
chased under different contracts. The motivation for deriva-
tive clouds stems from the need to better support specialized
use-cases that are not directly supported (or are complex for
end-users to implement) by the server types and contracts
that native platforms offer. Derivative clouds rent servers
from native platforms, and then repackage and resell them
under contract terms tailored to a specific class of user.

Nascent forms of derivative clouds already exist. Pi-
Cloud [3] offers a batch processing service that enables cus-
tomers to submit compute tasks. PiCloud charges customers
for their compute time, and is able to offer lower prices than
on-demand servers by using cheaper spot servers to execute



compute tasks. Similarly, Heroku [4] offers a Platform-as-a-
Service by repackaging and reselling IaaS resources as con-
tainers. As with PiCloud, Heroku constrains the user’s pro-
gramming model—in this case, to containers.

In this paper, we design a derivative IaaS cloud plat-
form, called SpotCheck, that intelligently uses a mix of spot
and on-demand servers to provide high availability guaran-
tees that approach those of on-demand servers at a low cost
that is near that of spot servers. Unlike the examples above,
SpotCheck does not constrain the programming model by
offering unrestricted IaaS-like VMs to users, enabling them
to execute any application. The simple, yet key, insight un-
derlying SpotCheck is to host customer applications (within
nested VMs) on spot servers whenever possible, and trans-
parently migrate them to on-demand servers whenever the
native TaaS platform revokes spot servers. SpotCheck of-
fers customers numerous benefits compared to natively us-
ing spot servers. Most importantly, SpotCheck enables inter-
active applications, such as web services, to seamlessly run
on revocable spot servers without sacrificing high availabil-
ity, thereby lowering the cost of running these applications.
We show that, in practice, SpotCheck provides nearly five
nines of availability (99.9989%), which is likely adequate
for all but the most mission critical applications.

SpotCheck raises many interesting systems design ques-
tions, including i) how do we transparently migrate a cus-
tomer’s application before a spot server terminates while
minimizing performance degradation and downtime? ii) how
do we manage multiple pools of servers with different costs
and availability guarantees from native IaaS platforms and
allocate (or re-sell) them to customers? iii) how do we mini-
mize costs, while mitigating user risk, by renting the cheap-
est mix of servers that minimize spot server revocations, i.e.,
to yield the highest availability? In addressing these ques-
tions, we make the following contributions.

Derivative Cloud Design. We demonstrate the feasibility of
running disruption-intolerant applications, such as interac-
tive multi-tier web applications, on spot servers, by migrat-
ing them i) to on-demand servers upon spot server revoca-
tion, and ii) back when spot servers become available again.
SpotCheck requires live migrating applications from spot
servers to on-demand servers within the bounded amount of
time between the notification of a spot server revocation and
its actual termination. SpotCheck combines several exist-
ing mechanisms to implement live bounded-time migrations,
namely nested virtualization, live VM migration, bounded-
time VM migration, and lazy VM restoration.

Intelligent Server Pool Management. We design server
pool management algorithms that balance three competing
goals: 1) maximize availability, ii) reduce the risk of spot
server revocation, and iii) minimize cost. To accomplish
these goals, our algorithms intelligently map customers to
multiple pools of spot and on-demand servers of different
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Figure 1. Spot price of the m1.small server type in EC2
fluctuates over time and can rise significantly above the on-
demand price ($0.06 per hour) during price spikes. Note that
the y-axis is denominated in dollars and not cents.

types, and handle pool dynamics caused by sudden revoca-
tions of spot servers or significant price changes.
Implementation and Evaluation. We implement
SpotCheck on Amazon’s Elastic Compute Cloud (EC2) and
evaluate its migration mechanisms and pool management al-
gorithms. Our results demonstrate that SpotCheck achieves
a cost that is nearly 5x less than equivalent on-demand
servers, with nearly five 9’s of availability (99.9989%), little
performance degradation, and no risk of losing VM state.

2. Background and Overview

Our work assumes a native [aaS cloud platform, such as
EC2, that rents server resources to customers in the form of
VMs, and offers a variety of server types that differ in their
number of cores, memory allotment, network connectivity,
and disk capacity. We also assume the native platform of-
fers at least two types of service contracts—on-demand and
spot—such that it cannot revoke on-demand servers once it
allocates them, but it can revoke spot servers. Finally, we as-
sume on-demand servers incur a fixed cost per unit time of
use, while the cost of spot servers varies continuously based
on the market’s supply and demand, as shown in Figure

Given the assumptions above, SpotCheck must manage
pools of servers with different costs and availability values.
While our work focuses on spot servers, largely as defined in
EC2, such cost and availability tradeoffs arise in other sce-
narios. As one example, data centers that participate in de-
mand response (DR) programs offered by electric utilities
may have to periodically deactivate subsets of servers dur-
ing periods of high electricity demand in the grid [26]. While
participation in DR programs significantly reduces electric-
ity rates, it also reduces server availability.

Like the underlying native IaaS platform, SpotCheck of-
fers the illusion of dedicated servers to its customers. In
particular, SpotCheck offers its customers the equivalent of
non-revocable on-demand servers, where only the user can
make the decision to relinquish them. SpotCheck’s goal is to
provide server availability that is close to that of native on-
demand servers for a cost that is near that of spot servers. To

1'Spot price data is from either Amazon’s publicly-available history of the
spot price’s past six months, or from a third-party spot price archive [21].



[ Customers

Request Resell
Servers Servers

Derivative Cloud

T T T
. )

Lease Servers

u
Native laaS Cloud

Figure 2. A depiction of a derivative IaaS cloud platform.

do so, SpotCheck uses low-cost spot servers whenever possi-
ble and “fails over” to high-cost on-demand servers, or other
spot servers, whenever the native IaaS platform revokes spot
servers. To maintain high availability, migrating from one
type of native cloud server to another must be transparent to
the end-user, which requires minimizing application perfor-
mance degradation and server downtime. Section [6] quanti-
fies how well SpotCheck achieves these goals.

SpotCheck supports multiple customers, each of which
may rent an arbitrary number of servers. Since SpotCheck
rents servers from a native laaS cloud and repackages and
resells their resources to its own customers, it must manage
pools of spot and on-demand servers of different types and
sizes, as depicted in Figure[2} Upon receiving a customer re-
quest for a new server, SpotCheck must decide which server
pool should host the new instance. Upon revocation of one
or more native servers from a spot pool, SpotCheck must mi-
grate hosted customers to either an on-demand server pool or
another spot pool. SpotCheck intelligently maps customers
to pools to spread the risk of concurrent revocations across
customers, which reduces the risk of a single customer ex-
periencing a “revocation storm.” In some sense, allocating
customer requests to server pools is analogous to managing
a financial portfolio where funds are spread across multiple
asset classes to reduce volatility and market risk.

In addition to server pool management, SpotCheck’s
other key design element is its ability to seamlessly migrate
customer VMs from one server pool to another, e.g., from a
spot pool to an on-demand pool upon a revocation, or from
an on-demand pool to a spot pool when cheaper spot servers
become available. To do this, we rely on the native [aaS plat-
form to provide a small advance warning of spot server ter-
mination. SpotCheck then migrates its customers’ VMs to
native servers in other pools upon receiving a warning, and
ensures that the migrations complete in the time between re-
ceiving the warning and the spot server actually terminating.

3. SpotCheck Migration Strategies

We describe SpotCheck’s migration strategies and mecha-
nisms from the perspective of migrating an individual VM
from one native cloud server to another. There are a vari-
ety of reasons why such a migration may be necessary or
desirable—the native IaaS platform may force a migration

by revoking the underlying spot server, or a cheaper spot
server may become available, which incentivizes migrating
a VM running on a more expensive on-demand server to it.
Regardless of the reason, SpotCheck combines several virtu-
alization mechanisms to implement its migration strategies.

3.1 Nested Virtualization

SpotCheck rents VMs from native IaaS platforms that do not
expose all of the functionality of the VM hypervisor. For
example, EC2 allocates VMs to its customers, but does not
expose control over VM placement or support VM migra-
tion to different physical servers. To address this limitation,
SpotCheck uses nested virtualization, where a nested hyper-
visor runs atop a traditional VM, which itself runs on a con-
ventional hypervisor [[11}35]]. The nested hypervisor enables
the creation of nested VMs on the host VM. Since the nested
hypervisor does not need special support from the host VM,
SpotCheck can install it on VMs rented from native IaaS
platforms and use it to migrate nested VMs from one cloud
server to another, as depicted in Figure 3(a). Nested hypervi-
sors provide a uniform and standard platform for repackag-
ing and reselling virtualized server resources. Nested VMs
currently provide paravirtualized I/O devices and hide ad-
vanced features, such as SR-IOV [7]], which may reduce I/O
performance. However, as with the native VM platforms, we
expect nested VM technology to continue to improve.

Our SpotCheck prototype uses the XenBlanket nested hy-
pervisor [35]. One benefit of using nested virtualization is
that SpotCheck can create multiple nested VMs on a single
host VM, allowing it to slice large native VMs into smaller
nested VMs and allocate them to different customers, similar
to how an IaaS platform slices a physical server into multi-
ple VMs. SpotCheck could also use lighter-weight mecha-
nisms, such as resource containers [9], to isolate partitions
of virtualized resources. We chose to use nested VMs in our
prototype because the current resource container implemen-
tations, e.g., Linux Containers and Docker, do not support
the advanced migration features that SpotCheck requires.

3.2 VM Migration

Since SpotCheck runs nested hypervisors on VM servers
acquired from native [aaS platforms, it has the ability to
migrate nested VMs from one server to another. SpotCheck
leverages two VM migration mechanisms to implement its
migration strategy: live migration and bounded-time VM
migration. Live VM migration enables SpotCheck to migrate
a nested VM from one server to another, while incurring
nearly zero downtime to a customer’s resident applications,
as depicted in Figure [3[a). Prior work proposes a variety of
live VM migration mechanisms and optimizations, such as
the pre-copy [16] and post-copy [20] migration variants.

In general, the total latency to live migrate a VM, whether
nested or not, is proportional to the size of the VM’s mem-
ory. Thus, larger VMs with tens of gigabytes of RAM may
take several minutes, while smaller VMs with a few giga-
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Figure 3. SpotCheck uses live and bounded-time VM mi-
gration to migrate nested VMs within an [aaS platform.

bytes of RAM may take tens of seconds. In addition to mem-
ory size, the write (or dirtying) rate of memory pages, which
depends on application characteristics, also influences live
migration latency. As a result, live VM migration is not suit-
able in all of SpotCheck’s migration scenarios. In particular,
an JaaS platform may revoke a spot server at any time, while
providing only a small warning period for the server to com-
plete a graceful shutdown. Once the warning period ends, the
IaaS platform forcibly terminates the VM. For example, EC2
provides a warning of 120 seconds before forcibly terminat-
ing a spot server. While the 120 second warning has always
been a well-known hidden feature of spot servers, Ama-
zon publicly acknowledged it in January 2015 and now sup-
ports official 120 second termination notices for spot servers
through its external web services API [10]. Importantly, if
the latency to live migrate a VM exceeds the warning period,
as it often does with large memory sizes, then the IaaS plat-
form will terminate the spot server and any resident nested
VMs before their migrations complete, resulting in the loss
of memory state at best and VM failure at worst.

In this scenario, SpotCheck leverages an alternative mi-
gration approach, called bounded-time VM migration [30,
31], which provides a guaranteed upper bound on migra-
tion latency that is independent of a VM’s memory size or
the dirtying rate of memory pages. Supporting bounded-time
VM migration requires maintaining a partial checkpoint of a
VM’s memory state on an external disk by running a back-
ground process that continually flushes dirty memory pages
to a backup server to ensure the size of the dirty pages does
not exceed a specified threshold. This threshold is chosen
such that any outstanding dirty pages can be safely commit-
ted upon a revocation within the time bound [30, [31]]. The
VM may then resume from the saved memory state on a dif-
ferent server, as depicted in Figure [3(b).

SpotCheck adapts and applies both live [16] and
bounded-time VM migration [30, 31] to nested VMs. De-
pending on the scenario, SpotCheck uses the most appropri-
ate technique for VM migration. When migrating a nested
VM from an on-demand server to a spot server, e.g., when a
cheaper spot server becomes available, SpotCheck uses live
migration regardless of the nested VM’s memory size, since
there is no constraint on the migration latency. SpotCheck
then voluntarily relinquishes the native VM as soon as the
migration completes. When migrating a nested VM from a
revoked spot server, bounded-time VM migration is usually
necessary, since the migration must complete before the spot
server terminates. The only exception is for “small" nested
VMs that do not use much memory, such that a live migra-
tion is able to reliably complete within a spot server’s warn-
ing period, e.g.,120 seconds for EC2.

Of course, the shorter the warning period, the smaller the
nested VM memory size that cannot use a conventional live
migration and will require a bounded-time VM migration.
SpotCheck may also perform proactive migrations from a
spot server if it predicts that a revocation is imminent. In this
case, the system has less stringent time constraints on the mi-
gration latency, since it triggers the migration before the IaaS
platform explicitly signals a revocation. Such predictive ap-
proaches make it feasible to employ live migration with spot
servers and avoid the overhead and complexity of bounded-
time VM migration, which requires continually backing up
memory state to a remote disk. However, such optimizations
incur significant risk of losing VM state unless they are able
to predict an imminent revocation with high confidence, e.g.,
by tracking and predicting a rise in market prices of spot
servers that causes revocations.

To support bounded-time VM migration, SpotCheck
must manage a pool of backup servers that store the mem-
ory state of nested VMs on spot servers, and continuously
receive and commit updates to nested VM memory state.
As we show in our experiments in Section [6] each backup
server is able to host tens of nested VMs without degrad-
ing their performance, which makes the incremental cost of
using such additional backup servers small in practice.

3.3 Lazy VM Restoration

Bounded-time VM migration is a form of VM suspend-
resume that saves, or suspends, the VM’s memory state to
a backup server within a bounded time period, and then re-
sumes the VM on a new server. Resuming a VM requires
restoring its memory state by reading it from the disk on the
backup server into RAM on the new server. The VM cannot
function during the restoration process, which causes down-
time until the VM state is read completely into memory.
Since the downtime of this traditional VM restoration is dis-
ruptive to customers, SpotCheck employs lazy VM restora-
tion, as proposed in prior work [20} 23], to reduce the down-
time to nearly zero. Lazy VM restoration involves reading
a small number of initial VM memory pages—the skeleton
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state—from disk into RAM and then immediately resuming
VM execution without any further waiting.

The remaining memory pages are fetched from the
backup server on demand, akin to virtual memory paging,
whenever the VM’s execution reads or writes any of these
missing pages. A background process also runs in parallel
and proactively reads memory pages into RAM to reduce the
frequency of page faults. Lazy VM restoration substantially
reduces the latency to resume VM execution at the expense
of a small window of slightly degraded performance, due to
any page faults that require reading memory pages on de-
mand. Combining lazy VM restoration with bounded-time
VM migration enables a new “live” variant of bounded-time
VM migration that minimizes the downtime when migrating
VMs within a bounded time period upon revocation.

3.4 Virtual Private Networks

While the migration mechanisms above minimize cus-
tomers’ downtime and performance degradation during mi-
grations, maximizing transparency also requires that the IP
address of customers’ nested VMs migrate to the new host to
prevent breaking any active network connections. In a tradi-
tional live migration, the VM emits an arp packet to inform
network switches of its new location, enabling switches to
forward subsequent packets to the new host and ensuring un-
interrupted network connections for applications [[16]. How-
ever, in SpotCheck, the underlying IaaS platform is unaware
of the presence of nested VMs on the host VMs. SpotCheck
currently employs a separate physical interface on the host
VM to provide each nested VM its own IP address, in ad-
dition to the host’s default interface and IP address. Thus,
SpotCheck configures Network Address Translation (NAT)
in the nested hypervisor to forward all network packets ar-
riving at an IP address to its associated nested VM. IaaS plat-
forms, such as EC2, make this feasible by supporting the cre-
ation of multiple interfaces and IP addresses on each host.
However, since the IP address is associated with the host
VM, the address does not automatically migrate with the
nested VM. Instead, SpotCheck must take additional steps
to detach a nested VM’s address from the host VM of the
source and reattach it to the destination host.

While many IaaS platforms still treat IP address creation
and assignment as privileged operations, a few platforms,
including EC2, have introduced virtual private networking
(VPN) functions to provide users control over their own pri-

vate IP address space. EC2 supports VPNs through its Vir-
tual Private Cloud (VPC) feature, which enables users to di-
rectly assign IP addresses to their VMs. SpotCheck creates
a VPC and places all of its spot and on-demand servers into
it. As a result, SpotCheck is able to create a private IP ad-
dress for each nested VM. Upon migration, SpotCheck uses
available VPC functions to deallocate the IP address asso-
ciated with a nested VM on its source server, and reassign
it to a new (unused) network interface on the destination
server, as depicted in Figure[d] This ensures the IP address of
nested VMs remains unchanged after migration. SpotCheck
currently allocates a subnet within a shared data plane, de-
fined by the VPC, to each customer. By default, SpotCheck
assigns one public IP address per customer, attached to a
designated “head” nested VM, to provide access to the pub-
lic Internet from within the private VPC subnet.

3.5 Putting it all together

SpotCheck combines nested virtualization, virtual private
networks, VM migration, and lazy VM restoration to imple-
ment its migration strategies, as summarized below. Upon
initial allocation, SpotCheck assigns a backup server to each
nested VM on a spot server, which stores its memory state,
unless the nested VM’s memory size is small enough to en-
sure a live migration completes within the warning period.
SpotCheck might also not assign a backup server if it de-
cides to migrate nested VMs proactively in advance of a re-
vocation. Nested VMs hosted on on-demand servers do not
require a backup server, since they are always capable of a
live migration. If the underlying IaaS platform revokes a spot
server, SpotCheck must migrate each resident nested VM to
a new destination server via bounded-time VM migration.
The destination server is chosen by a higher-level server
pool management algorithm, discussed in Section 4. Once
the VM’s migration completes, SpotCheck uses VPC func-
tions to deallocate the IP address on the source server,
and then reallocate the IP address on the destination server
and configure the nested hypervisor to forward packets to
the new address. SpotCheck also must detach the VM’s
network-attached disk volume and reattach it to the desti-
nation server before the VM resumes operation. We dis-
cuss SpotCheck’s treatment of storage more in Section [5
If SpotCheck employs bounded-time VM migration, it uses
lazy VM restoration to minimize the migration downtime.

4. Server Pool Management

SpotCheck rents VM servers from native laaS platforms un-
der different service contracts that specify different levels of
price and availability, and then repackages and resells their
resources to its customers. The ability to rent and manage
servers of different types, and intelligently multiplex their re-
sources across multiple customers is central to the design of
any derivative cloud, including SpotCheck. Note that, simi-
lar to traditional virtualization, nested virtualization enables
multiple nested VMs to run on a host VM, such that the
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nested hypervisor in the host VM isolates the nested VMs
and prevents cross-VM attacks. As with a native IaaS plat-
form, SpotCheck controls the nested hypervisor and has full
access to the memory state of each of its customer’s nested
VMs. In this section, we describe the techniques SpotCheck
uses to manage resources from multiple pools of servers.

4.1 SpotCheck Architecture

At an architectural level, SpotCheck maintains multiple
pools of servers, as shown in Figure[5] where each pool con-
tains multiple native VM servers of a particular type, speci-
fying an allotment of CPU cores with specified performance,
memory, network bandwidth, etc. For each server type,
SpotCheck maintains separate spot and on-demand pools,
comprising spot and on-demand servers of the same type, re-
spectively. SpotCheck exposes a user interface similar to that
of a native laaS platform, where customers may request and
relinquish servers of different types. However, SpotCheck
offers its customers the abstraction of non-revocable servers,
despite often executing them on revocable spot servers.
SpotCheck maps its customers’ nested VMs, which may
be of multiple types, to different server pools, as illustrated
in Figure [5} In addition, SpotCheck also maintains a pool
of backup servers, each capable of maintaining checkpoints
of memory state for multiple nested VMs hosted on spot
servers. Thus, SpotCheck assigns each native server from
a spot pool to a distinct backup server, such that any nested
VMs hosted on it write their dirty memory pages to their
backup server in the background. SpotCheck does not assign
native servers in the on-demand pool to a backup server,
since they can live migrate any nested VMs hosted on them
without any time constraints. Given the architecture above,
we next describe the techniques and algorithms SpotCheck
employs to manage server pools and handle pool dynamics.

4.2 Mapping Customers to Pools and Pools to Backups

In the simplest case, when a customer requests a new VM of
a certain type, SpotCheck satisfies the request by allocating
a native VM of the same type from the underlying IaaS
platform, and then configures a nested VM within the native
VM for use by the customer. Since nested virtualization
supports the ability to run multiple nested VMs on a single
host VM, SpotCheck also has the option of i) requesting a

larger native VM than the one requested by the customer, ii)
slicing it into smaller nested VMs of the requested type, and
then iii) allocating one of the nested VMs to the customer.
Slicing a native VM into smaller nested VMs is useful,
since prices for spot servers of different types vary based on
market-driven supply and demand. As a result, the price of
a spot server that is two or four times the size of a requested
nested VM may be less (or more) than two to four times the
price of a smaller spot server of the requested type.

By default, SpotCheck uses a simple greedy policy that
chooses the cheapest spot server, based on the current prices,
to satisfy a request. We exploit the fact that the server size-
to-price ratio is not uniform: a large server, say am3.large,
which is able to accommodate two medium VM servers of
size m3.medium may be cheaper than buying two medium
servers. Thus, if a customer requests a medium server, and
the price of a large server, which can be sliced into two
medium-sized nested VMs, is less than twice the spot price
of a medium server, then SpotCheck allocates a large spot
server from the native IaaS platform. SpotCheck then allo-
cates one nested VM to satisfy the current customer request,
and reserves the additional slot in order to rapidly allocate a
medium VM to fulfill a subsequent customer request. In con-
trast, if market conditions are such that medium spot servers
are the cheapest option, SpotCheck directly allocates them
to satisfy customer requests for medium servers.

Since the pricing of on-demand servers is roughly pro-
portional to their resource allotment, such that a server with
twice the CPU and RAM of another costs roughly twice
as much, under ideal market conditions, the price of spot
servers should also be roughly proportional to their resource
allotment. However, we have observed that different server
types experience different supply and demand conditions. In
general, smaller servers appear to be more in demand than
larger servers because their spot price tends to be closer to
their on-demand price. As a result, larger servers are often
cheaper, on a unit cost basis, than smaller server for sub-
stantial periods of time, which enables SpotCheck’s greedy
approach to exploit the opportunity for arbitrage. However,
note that whenever SpotCheck slices a spot server into multi-
ple nested VMs, it does incur additional risk, as a revocation
requires migrating all of its resident nested VMs.

An alternative to the greedy cheapest-first strategy above
is a conservative stability-first policy that allocates a native
spot server (from the various possible choices) with the most
stable prices to satisfy a customer request. The more volatile
the prices of a particular spot server type, the greater the
chance of a price spike, and the higher the frequency of
revocations. To increase availability, SpotCheck must reduce
both the frequency of revocation events and the impact of
each one, e.g., due to downtime. Allocating a spot server
with a stable market price reduces the probability of a spot
server revocation, which in turn increases availability.



Regardless of the actual policy to determine what type of
native server to use to satisfy a customer request, SpotCheck
spreads the nested VMs belonging to each of its customers
across multiple different server pools. A revocation event
due to a price spike for a particular type of spot server
can cause many concurrent revocations within a single spot
pool. However, different pools are independent, since spot
prices of different server types fluctuate independently of
one another and are uncorrelated, as seen in Figures @c)
and (d). Hence, distributing a customer’s nested VMs across
multiple pools decreases risk by reducing the probability of
a revocation storm. Revocation storms degrade nested VM
performance and increase downtime by overloading backup
servers, which must simultaneously broker the migration of
every revoked nested VM. This policy is akin to managing a
financial portfolio by distributing assets across uncorrelated,
independent asset classes to reduce risk. SpotCheck employs
this policy to reduce the risk of a sudden price spike causing
mass revocations of spot servers of a particular type at one
location (or availability zone in EC2 parlance)

Finally, SpotCheck must assign each nested VM within
a spot pool to a distinct backup server. SpotCheck also dis-
tributes nested VMSs in a spot pool across multiple backup
servers. Since each spot pool is subject to concurrent revo-
cations, spreading one pool’s VMs across different backup
servers reduces the probability of any one backup server ex-
periencing a large number of concurrent revocations. The
approach also spreads the read and write load due to sup-
porting bounded-time VM migration across multiple backup
servers. SpotCheck employs a simple round-robin policy to
map nested VMs within each pool across the set of backup
servers. Once every backup server becomes fully utilized,
SpotCheck provisions a native VM from the IaaS platform to
serve as a new backup server, and adds it to the backup server
pool. Of course, a backup server is not necessary for running
stateless services on nested VMs, e.g., a single web server
that is part of a tier of replicated web servers, since these
services are designed to tolerate failures. However, as with
any laaS platform, SpotCheck does not make any assump-
tions about the applications that run on it. This does mean
that SpotCheck may incur slightly higher costs than neces-
sary for stateless services, since these servers can use spot
servers directly without incurring extra costs for a backup
server or requiring any application modifications.

4.3 Handling Pool Dynamics

After the initial mapping of a nested VM onto a server in
a pool, SpotCheck will likely migrate it to servers in other
pools over the course of its lifetime due to pool dynamics.
There are two types of pool dynamics caused by changing
spot prices that SpotCheck must handle. The first is revoca-
tion dynamics, which cause the sudden revocation of one or
more spot servers within a pool due to prices rising above the
bid price. The second is allocation dynamics, which dictates
when to transition a nested VM back from an on-demand to a

spot server when a price spike abates and the spot price again
drops below the on-demand price. Note that, in EC2, spot
prices often rise substantially above the on-demand price
during a price spike, as depicted in Figure ]

Although SpotCheck has no control over the fluctuating
price of spot servers, it does have the ability to determine a
maximum bid price it is willing to pay for servers in each
of its spot pools. Designing “optimal” bidding strategies in
spot markets in various contexts is an active research area,
and prior work has proposed a number of different poli-
cies [12, 21} [37]. Adapting these policies to SpotCheck’s
context may be possible. However, since our focus is on de-
signing a derivative IaaS cloud, rather than bidding strate-
gies, SpotCheck currently employs one of two simple poli-
cies: either bid the equivalent on-demand price for a spot
server or bid k times the on-demand price. With the first
policy, SpotCheck retains spot servers in a pool as long as
those servers’ spot price remains below the equivalent on-
demand price of the servers. If the spot price rises above the
on-demand price, the TaaS platform revokes the spot servers
in the pool, which forces SpotCheck to migrate them to on-
demand servers. Of course, this revocation only occurs if the
equivalent on-demand servers are now cheaper than the spot
servers, so migrating to on-demand servers at these times is
the cheapest, most cost-effective strategy.

The second policy bids a price that is k times the on-
demand price, where k > 1. In general, the higher the bid
price, the lower the probability of an IaaS platform revoking
the spot servers in a pool. Bidding a high price that exceeds
the on-demand price lowers a pool’s revocation frequency at
the expense of a higher cost. This policy also makes proac-
tive migrations more feasible, since SpotCheck can period-
ically monitor prices and proactively trigger live migrations
to on-demand servers whenever prices rise above the on-
demand price, but are still lower than the bid price. Thus,
SpotCheck currently only uses proactive migrations in con-
junction with this second policy.

In the case of EC2’s spot market, empirical data shows
that the probability of revocation decreases with higher bid
prices, but it flattens quickly, such that the “knee” of the
curve, as depicted in Figure [6[a), is slightly lower than the
on-demand price. Thus, simply bidding the on-demand price
is an approximation of bidding an “optimal” value that is
equal to the knee of this availability-bid curve. This implies
that large price spikes are the norm, with spot prices fre-
quently going from well below the on-demand price to well
above it, as shown in Figure[6{b). Figure[6[a) also shows that
the spot prices are extremely low on average compared to the
equivalent prices for on-demand servers. This is likely due to
the complexity of modifying applications to effectively use
the spot market, which suppresses demand by limiting spot
servers to a narrow class of batch applications.

In either case, in SpotCheck’s current implementation,
all servers within a spot pool have the same bid price. As
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(a) has a long tail, (b) exhibits large price changes, and (c) is uncorrelated across locations and server types (d).

a result, when the market price rises above the bid price, the
TaaS platform revokes all servers within a pool at the same
time, resulting in a revocation storm. A simple approach to
handling concurrent revocations is to request an equivalent
number of on-demand servers from the IaaS platform and
migrate each nested VM to a new on-demand server. An
alternative approach is to request spot servers of a different,
larger type where prices are stable, and then migrate to
new spot servers. However, requesting new servers in a lazy
fashion when necessary is only feasible if the latency to
obtain them is smaller than the warning period granted to
arevoked server. For example, empirical studies have shown
that it takes up to 90 seconds to start up a new on-demand
server in EC2 [27]], while the warning period for a spot server
is two minutes, which leaves only 30 seconds to migrate the
spot server’s state to the new server. If the allocation latency
were to exceed the warning time, such a lazy strategy is not
possible due to the risk of significant VM downtime.

To handle this scenario, SpotCheck is able to maintain
a pool of hot spares to immediately receive nested VMs
from revoked spot servers without waiting for a new server
to come online. Hot spares increase SpotCheck’s overhead
cost, while reducing the risk of downtime. Note that there
is never a risk of losing nested VM state, since the backup
server stores it even if there is not a destination server avail-
able to execute the nested VM. An alternative approach to
using dedicated hot spares is to use existing servers in other
stable pools as staging servers. This approach is attractive
if these existing servers are not fully utilized by the nested
VMs running on them. Here, the staging servers only run the
nested VMs from a revoked spot server temporarily, while
SpotCheck makes concurrent requests for new on-demand
or spot servers to serve as the final destination. Of course,
this strategy doubles the number of migrations and the asso-
ciated overhead, but it also enables the system to reduce risk
without increasing its costs. Hot spares and staging servers
may also serve as a temporary haven for displaced spot VMs,
in the rare case when requests for on-demand servers fail
because they are unavailable from the IaaS platform. While
native laaS platforms attempt to provision resources to stay

ahead of the demand curve, they occasionally run out of on-
demand servers if the demand for them exceeds their supply.

Of course, regardless of the risk mitigation strategies
above, SpotCheck cannot provide higher availability than the
underlying IaaS platform. For example, if the IaaS platform
fails or becomes disconnected, as occasionally happens to
EC2 [17], SpotCheck would also fail. Since we do not have
access to long-term availability data for EC2 or other [aaS
platforms, in our experiments, the term “availability” refers
to relative availability with respect to the underlying IaaS
platform, which we assume in this paper is 100% available.

4.4 Cost and Availability Analysis

SpotCheck’s goal is to provide resources, in the form of
nested VMs, with high availability that resembles that of on-
demand servers, but at low prices that resembles those of
spot servers. In this section, we analyze the costs incurred by
SpotCheck’s server pool management and migration strate-
gies, and their resulting availability.

Given n customers, each with C; servers, SpotCheck must
provision a total of V =Y/ C; nested VMs. Since SpotCheck
maps these V nested VMs onto multiple pools, the total cost
L of renting native servers from the IaaS platform is equal
to the cost of the necessary spot servers plus the cost of the
necessary on-demand servers plus the cost of any backup
servers. Thus, the amortized cost per nested VM is L/V. We
represent the expected cost E(c) of an individual nested VM
as E(c) = (1 — p)E(cspor (1)) + p - coa» Where p denotes the
probability of a revocation when it resides on a spot server,
cspat(t) denotes the variable price of the spot server, and
coq denotes the price of the equivalent on-demand server.
We note that p is simply the probability of the spot price
rising above the bid price, i.e., p = P(cspo (t) > bid), which
is given by the cumulative distribution shown in Figure [6{a)
that we derive empirically for different spot pools.

To compute a nested VM’s availability, assume that the
market price of a spot server changes once every 7 time
units, such that the server will be revoked once every T/p
time units, yielding a revocation rate of R = p/T. Here, we
assume live migration does not result in significant down-
time, while bounded-time VM migration incurs the down-
time required to i) read sufficient memory state after a lazy



restoration, ii) attach a networked disk volume to the new
server, and iii) reassign the IP address to the new server. If D
denotes the delay to perform these operations, the downtime
experienced by the nested VM is D - R per unit time, i.e.,
D p/T. Thus, our expected cost equation above allows us
to analyze different pool management and bidding policies.
This expected cost includes the cost of running the nested
VM on either a spot or on-demand server, and the cost of any
backup servers. We also assume that nested VMs use an as-
sociated EBS volume in EC2 to provide persistent network-
attached storage. However, we do not include storage costs,
since they are negligible at the backup server, and thus the
same when using SpotCheck or the native IaaS platform.
Similarly, our analysis does not include costs associated with
external network traffic, since these costs are the same when
using SpotCheck or the native IaaS platform. Note that there
is no cost in EC2 associated with the network traffic between
nested VMs and their backup server, since network traffic
between EC2 servers incurs no charge.

One caveat in our analysis is that we do not consider the
second-order effects of our system on spot prices and avail-
ability. While it is certainly possible that widespread use of
SpotCheck may perturb the spot market and affect prices,
our analysis assumes that the market is large enough to ab-
sorb these changes. Regardless, our work demonstrates that a
substantial opportunity for arbitrage exists between the spot
and on-demand markets. Consumers have a strong incentive
to exploit this arbitrage opportunity until it no longer exists.
SpotCheck also benefits EC2, since it should raise the de-
mand and price for spot servers by opening them up to a
wider range of applications. Thus, there is no incentive for
EC2 to hinder (or prevent) SpotCheck by reducing (or elim-
inating) the warning notification for spot servers.

The increasing popularity and demand of derivative
clouds might also incentivize IaaS platforms to increase their
pool of spot servers. However, our analysis assumes that
on-demand servers of some type will always be available.
While on-demand servers of a particular type may become
unavailable, we assume the market is large enough such that
on-demand servers of some type are always available some-
where. As we discuss, SpotCheck’s pool management strate-
gies operate across multiple markets by permitting the unre-
stricted choice of server types and availability zones (within
a region). These strategies protect against the rare event
where one type of on-demand server becomes unavailable.

5. SpotCheck Implementation

We implemented a prototype of SpotCheck on EC2 that
is capable of exercising the different policy options from
the previous section, allowing us to experiment with the
cost-availability tradeoffs from using different policies.
SpotCheck provides a similar interface as EC2 to its cus-
tomers for managing virtualized cloud servers, although the
servers are provisioned in the form of nested VMs.

SpotCheck Controller. The controller, which we implement
in python, is SpotCheck’s main component, and interfaces
between customers and the underlying native laaS platform.
The controller is centralized, runs on a dedicated server, and
maintains a global and consistent view of SpotCheck’s state,
e.g., the information about all of its provisioned spot and on-
demand servers and all of its customers’ nested VMs and
their location. While we do not expect the controller’s per-
formance to be a bottleneck, if it is, replicating it by par-
titioning customers across multiple independent controllers
is straightforward. In addition, we do not include controller
costs in our estimates, since we expect them to be negligible,
as they are amortized across all the VMs of all the customers.

Customers interact with SpotCheck’s controller via an
API that is similar to the management API EC2 provides
for controlling VMs. Internally, the controller uses the EC2
REST APIs to issue requests to EC2 and manage its server
pools. The controller monitors SpotCheck’s state by tracking
the cloud server each nested VM runs on, the IP address
associated with the nested VM, and the customer’s access
credentials, and stores this information in a database.

The controller also implements the various pool man-
agement strategies from the previous section, e.g., by de-
termining the bids for spot instances and triggering nested
VM migrations from one server pool to another. Finally,
the controller monitors the load of nested VMs, the map-
ping of nested VMs to backup servers, and the current spot
price in each spot pool. Our prototype implementation uses
the XenBlanket [35] nested hypervisor running on a modi-
fied version of Xen 4.1.1. The driver domain (dom-0) runs
Linux 3.1.2 with modifications for supporting XenBlanket.
XenBlanket is compatible with all EC2 instance types that
support hardware virtual machines (HVM). SpotCheck as-
sumes that the customer-provided disk image used to boot
the nested VM resides on a network-attached disk volume
in EBS. Due to the use of Xen as the nested hypervisor, the
image must support Xen’s paravirtualization extensions.

Since network-attached storage is the primary storage
medium in many laaS platforms, including EC2, our current
prototype requires the VM to use one (or more) network-
attached EBS volumes to store the root disk and any per-
sistent state, and does not support backing up local storage
to a remote disk. However, since the speed of the local disk
and a backup server’s disk are similar in magnitude, EC2’s
warning period permits asynchronous mirroring of local disk
state to the backup server, e.g., using DRBD [19], without
significant performance degradation. Our experiments pri-
marily focus on memory-intensive workloads, since using a
backup server to store the live in-memory state of multiple
nested VMs imposes a significantly larger cost and perfor-
mance overhead than maintaining disk backups.

To implement SpotCheck, we modified XenBlanket to
support bounded-time VM migration in addition to live mi-
gration. For the former, we adapt a version of the bounded-



time VM migration technique implemented in Yank [30] for
use with nested virtualization and implement additional op-
timizations to reduce downtime during migration. In particu-
lar, the continuous checkpoints due to bounded-time VM mi-
gration guarantee that during the last checkpoint the nested
VM is able to transfer the stale state within the warning time.
In Yank [30], the VM pauses execution and incurs downtime
when transferring the stale state after receiving a warning.
To reduce this downtime, our implementation increases the
checkpointing frequency after receiving a warning, which
reduces the amount of dirty pages the nested VM must trans-
fer. By gradually increasing the checkpointing frequency, we
reduce downtime at the cost of slightly degrading VM per-
formance during the warning period.

SpotCheck configures nested VMs mapped to a spot
server pool to use bounded-time VM migration, while it con-
figures those mapped to an on-demand pool to use live mi-
gration. Nested VMs mapped to a spot server pool are also
mapped to a backup server, which must process a write-
intensive workload during normal operation and must pro-
cess a workload that includes a mix of reads and writes dur-
ing revocation events, e.g., to read the memory state of a
revoked nested VM and migrate it. As a result, we opti-
mize each backup server’s file system and kernel memory
management options for write-heavy traffic. Specifically, we
use the ext4 filesystem, and avoid costly metadata updates
by using the write-back journalling mode and the noatime
option. This is safe, since the backup server stores a small
number of large files, representing the memory state of each
nested VM it backs up, with no read/write concurrency, i.e.,
the files storing VM memory state are either being written
or read but not both. To maximize the use of the page cache
and absorb write storms, we set a high dirty_ratio and
dirty_background_ratio, which retains file data in the
page cache for a long period, allowing the I/O scheduler to
increase batching of write requests.

During revocations, the backup server prepares for nested
VM restoration by loading images into memory using
fadvise, setting the WILL_NEED flag, and using the ap-
propriate RANDOM or SEQUENTIAL access flags, depending
on whether SpotCheck is lazily restoring the VM or not.
In addition, we also implement bandwidth throttling using
tc on a per-VM basis to limit the network bandwidth used
for each migration/restoration operation, and to avoid affect-
ing nested VMs that are not migrating. Thus, we optimize
our backup server implementation for the common case of
efficiently handling a large number of concurrent revoca-
tions without degrading performance for long durations. Our
SpotCheck prototype uses the m3.xlarge type as backup
servers, since they currently offer the best price/performance
ratio for our workload mix. Our prototype uses a combina-
tion of SSDs and EBS volumes to store the memory images.

Lazy restoration requires transferring the “skeleton” state
of a VM, comprising the vCPU state, all associated VM page

tables, and other hardware state maintained by the hypervi-
sor, to the destination host and immediately beginning exe-
cution. This skeleton state is small, typically around SMB,
and is dominated by the the size of the page tables. The
skeleton state represents the minimum amount of state suf-
ficient for the hypervisor on the destination host to create
the domain for VM and begin executing instructions. To al-
low the hypervisor to trap accesses to missing memory pages
during execution, our implementation of lazy restoration en-
ables shadow paging during the restore process. As a re-
sult, the missing memory pages, which reside on the backup
server’s disk, are mapped to the domain’s memory when
available and the VM resumes execution. A background pro-
cess concurrently reads all other unrestored pages without
waiting for them to be paged in by the executing VM.

We conducted extensive measurements on EC2 to pro-
file the latency of SpotCheck’s various operations. Ta-
ble [1| shows the results for one particular server type, the
m3.medium. We conducted these experiments when there
was no explicit documentation of a revocation warning for
spot servers on EC2. Our measurements found that, at that
the time, EC2 provided an opportunity to gracefully shut-
down the VM, by issuing a shutdown command, before
forcibly terminating the VM two minutes after issuing the
shutdown. Thus, we replaced the default shutdown script
with our own script, which EC2 would invoke upon revoca-
tion to notify SpotCheck of the two minute warning. How-
ever, as we mention previously, as of January 2015 [10], EC2
now provides an explicit two minute notification of shut-
down through the EC2 management interface.

When employed natively our live bounded-time VM mi-
gration incurs a brief millisecond-scale downtime similar to
that of a post-copy live migration. However, Table [T shows
that EC2’s operations also contribute to downtime. In partic-
ular, SpotCheck can only detach a VM’s EBS volumes and
its network interface after the VM is paused, and it can only
reattach them after the VM is resumed. From Table[I] these
operations (in bold) cause an average downtime of 22.65
seconds. While significant, this downtime is not fundamen-
tal to SpotCheck: EC2 and other IaaS platforms could likely
significantly reduce the latency of these operations, which
would further improve the performance and availability we
report in Section 6. Even now, this ~23 second downtime is
not long enough to break TCP connections, which generally
requires a timeout of greater than one minute.

Finally, SpotCheck’s implementation builds on our prior
work on Yank [30] by including the performance opti-
mizations above. In particular, these optimizations enable 1)
SpotCheck’s backup servers to support a much larger num-
ber of VMs and ii) lazy on-demand fetching of VM memory
pages to drastically reduce restoration time, e.g., to <0.1
seconds. We quantify the impact of these optimizations on
cost, performance, and availability in the next section.



Median(sec) | Mean(sec) | Max(sec) | Min(sec)

Start spot instance 227 224 409 100
Start on-demand instance | 61 62 86 47
Terminate instance 135 136 147 133
Unmount and detach EBS | 10.3 10.3 11.3 9.6
Attach and mount EBS 5 5.1 9.3 4.4
Attach Network interface | 3 3.75 14 1

Detach Network interface | 2 35 12 1

Table 1. Latency for various SpotCheck operations on EC2
for the m3.medium server type based on 20 separate mea-
surements executed over a one week period.

6. Evaluation

Our evaluation consists of a mix of end-to-end experiments
and simulations. For our end-to-end experiments, we quan-
tify SpotCheck’s performance under different scenarios us-
ing a combination of EC2 servers and our own local servers.
For our simulations, we combine performance measure-
ments from our end-to-end experiments with historical spot
pricing data on EC2 to estimate SpotCheck’s cost savings
and availability at scale over a long period. As mentioned
previously, SpotCheck uses Virtual Private Clouds (VPCs) in
EC2 to create and assign IP addresses to nested VMs. We run
all the microbenchmark experiments in a single EC2 avail-
ability zone, while our simulations include cross-availability
zone experiments within a single region. Since XenBlanket
is only compatible with servers that have HVM capabili-
ties, SpotCheck is only capable of using HVM-enabled EC2
servers. Thus, for our experiments, we primarily use m3. *
server types. In particular, we use m3.xlarge server types
for our backup servers, and, by default, host nested VMs
on m3.medium server types. The m3.medium is the small-
est HVM-enabled server. We evaluate SpotCheck using two
well-known benchmarks for interactive multi-tier web appli-
cations: TPC-W [3] and SPECjbb2005 [2]. We are primarily
interested in memory-intensive workloads, since the contin-
uous checkpointing of memory pages imposes the most per-
formance overhead for these workloads.
TPC-W simulates an interactive web application. We use
Apache Tomcat (v6.26) as the application server and
MySQL (v5.0.96) as the database. We configure clients to
perform the “ordering workload” in our experiments.
SPECjbb is a server-side benchmark that is generally more
memory-intensive than TPC-W. The benchmark emulates
a three-tier web application, and particularly stresses the
middle application server tier when executing the test suite.
All nested VMs run the same benchmark with the same
30 second time bound for bounded-time migration, which
we choose conservatively to be significantly lower than the
two minute warning provided by EC2. Thus, our cost and
availability results are worse than possible if using a more
liberal time bound closer to the two minute warning time. In
our experiments, we compare SpotCheck against i) Xen’s
pre-copy live migration, ii) an unoptimized bounded-time
VM migration that fully restores a nested VM before start-
ing it (akin to Yank [30]), (iii) SpotCheck’s optimized Full
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Figure 7. Effect on performance as the number of nested
VMs backing up to a single backup server increases.

restore, iv) an unoptimized bounded-time VM migration that
uses lazy restoration, and finally v) SpotCheck’s optimized
bounded-time VM migration with lazy restoration.

6.1 End-to-End Experiments

SpotCheck uses a backup server to checkpoint VM state
and support bounded-time VM migration. SpotCheck’s cost
overhead is primarily a function of the number of VMs each
backup server multiplexes: the more VMs it multiplexes on
a backup server, the lower its cost (see Section[d.4)). Figure[7]
shows the effect on nested VM performance for SpecJBB
and TPC-W as the load on the backup server increases.

First, we evaluate the overhead of continuously check-
pointing memory and sending it over the network to the
backup server. The “0” and “1” columns in Figure [7] repre-
sent performance difference between no checkpointing and
checkpointing using a dedicated backup server, respectively.
By simply turning checkpointing on and using a dedicated
backup server, we see that TPC-W experiences a 15% in-
crease in response time, while SpecJBB experiences no no-
ticeable performance degradation during normal operation.
With an increasing number of nested VMs all backing up
to a single server, saturation of the disk and network band-
width on the backup server leads to a decrease in nested
VM performance after 35 VMs, where SpecJBB through-
put decreases and TPC-W response time increases signif-
icantly, e.g., by roughly 30% each. Note that the nested
VM incurs this performance degradation as long as it is
running on a spot server. Thus, to ensure minimal perfor-
mance degradation during normal operation, SpotCheck as-
signs at most 35-40 VMs per backup server. As a result,
SpotCheck’s cost overhead for backing up each nested VM
is roughly 1/40 = 2.5% of the price of a backup server. For
our m3.xlarge backup server, which costs $0.28 per hour
in the East region of EC2, the amortized cost per-VM across
40 nested VMs is $0.007 or less than one cent per VM.

In addition to performance during normal operation, spot
server revocations and the resulting nested VM migrations
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and restorations impose additional load on the backup server.
Figure [8] shows the length of the period of downtime or
performance degradation when migrating nested VMs via
the backup server. In this case, we compare migrations that
utilize lazy restoration with those that use a simple stop-
and-copy migration. A stop-and-copy approach results in
high downtime, whereas a lazy restore approach results in
much less downtime but some performance degradation
when memory pages must be fetched on-demand across the
network on their first access. Since lazy restore incurs less
downtime, it reduces the effect of migrations on interactive
applications. Figure 8| shows that when concurrently restor-
ing 1 and 5 nested VMs the time required to complete the
migration is similar for both lazy restoration and stop-and-
copy migration, which results in performance degradation or
downtime, respectively, over the time window.

However, when executing 10 concurrent restorations, the
length of the lazy restoration is much longer than that of the
stop-and-copy migration. This occurs because lazy restora-
tion uses random reads that benefit less from prefetching
and caching optimizations than a stop-and-copy migration,
which uses sequential reads. This motivates SpotCheck’s
lazy restoration optimization that uses the fadvise system
call to inform the kernel how SpotCheck will use the VM
memory images stored on disk, e.g., to expect references
in random order in the near future. The optimization results
in a significant decrease in the restoration time for lazy re-
store. Thus, SpotCheck’s optimizations significantly reduce
the length of the period of performance degradation during
lazy restorations. Of course, SpotCheck also assigns VMs to
backup servers to reduce the number of revocation storms
that cause concurrent migrations. We evaluate SpotCheck’s
bidding and pool assignment policies below.

Finally, in addition to the time to complete a migration,
SpotCheck also attempts to mitigate the magnitude of perfor-

Policy Description

1P-M VMs mapped to a single m3.medium pool

2P-ML VMs equally distributed between two pools :
m3.medium and m3.large.

4P-ED VMs equally distributed to four pools consist-
ing of four m3 server types

4P-COST | VMs distributed based on past prices. The lower
the cost of the pool over a period, the higher the
probability of mapping a VM into that pool.

4P-ST VMs distributed based on number of past mi-
grations. The fewer the number of migrations
over a period, the higher the probability of map-
ping a VM into that pool.

Table 2. SpotCheck’s customer-to-pool mapping policies.

mance degradation during a migration and lazy VM restora-
tion. During the lazy restoration phase the VM experiences
some performance degradation, which may impact latency-
sensitive applications, such as TPC-W. Since the first access
to each page results in a fault that must be serviced over the
network, lazy restoration may cause a temporary increase in
application response time. Figure[0]shows TPC-W’s average
response time as a function of the number of nested VMs
being concurrently restored, where zero represents normal
operation. The graph shows that when restoring a single VM
the response time increases from 29ms to 60ms for the pe-
riod of the restoration. Additional concurrent restorations do
not significantly degrade performance, since SpotCheck par-
titions the available bandwidth equally among nested VMs
to ensure restoring one VM does not negatively affect the
performance of VMs using the same backup server.

Note that SpotCheck’s policies attempt to minimize the
number of evictions and migrations via pool management,
and thus the performance degradation of applications during
the migration process is a rare event. Even so, our evaluation
above shows that application performance is not adversely
affected even when the policies cannot prevent migrations.
Result: SporCheck executes nested VMs with little perfor-
mance degradation and cost overhead during normal oper-
ation using a high VM-to-backup ratio and migrates/restores
them with only a brief period of performance degradation.

6.2 SpotCheck Policies and Cost Analysis

As we discuss in Section 4, SpotCheck may employ a variety
of bidding and VM assignment policies that tradeoff perfor-
mance and risk. Here, we evaluate SpotCheck’s cost using
various bidding policies based on the EC2 spot price his-
tory from April 2014 to October 2014. In particular, Table 2]
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Figure 10. Average cost per VM under various policies.

describes the policies we use to assign VMs to spot pools.
The simplest policy is to place all VMs on servers from a
single spot market (1P-M); this policy minimizes costs if
SpotCheck selects the lowest price pool, but increases risk,
since it may need to concurrently migrate all VMs if a price
spike occurs. We examine two policies (2P-ML and 4P-ED)
that distribute VMs across servers from different spot mar-
kets to reduce risk, albeit at a potentially higher cost. We also
examine two policies (4P-COST and 4P-ST) that probabilis-
tically select pools based on either their weighted historical
(rather than current) cost or their weighted historical price
volatility. The former lowers cost, while the latter reduces
performance degradation from frequent migrations.
Figure[I0]shows SpotCheck’s average cost per hour when
using each policy. As expected, the average cost for running
a nested VM using live migration, i.e., without a backup
server, is less than the average cost using SpotCheck, since
live migration does not require a backup server. Of course,
using only live migration is not practical, since, without a
backup server, SpotCheck risks losing VMs before a live mi-
gration completes. In this case, 1P-M has the lowest average
cost, since SpotCheck maps VMs to the lowest priced spot
pool. Distributing VMs across two (2P-ML) and then four
(4P-ED) pools marginally increases costs. The two policies
that probabilistically select pools based on either their histor-
ical cost or volatility have roughly the same cost as the policy
that distributes across all pools. Note that the average cost
SpotCheck incurs for the equivalent of an m3 . medium server
type is ~$0.015 per hour, while the cost of an m3.medium
on-demand server type is $0.07, or a savings of nearly 5x.
While reducing cost is important, maximizing nested VM
availability and performance by minimizing the number of
migrations is also important. Here, we evaluate the unavail-
ability of VMs due to spot server revocations. For these ex-
periments, we assume a period of performance degradation
due to detaching and reattaching EBS volumes, network re-
configuration, and migration. We seed our simulation with
measurements from Table [Tl and the microbenchmarks from
the previous section. In particular, we assume a downtime
of 23 seconds per migration due to the latency of EC2 op-
erations. Based on these values and the spot price history,
Figure |1 1| shows nested VM unavailability as a percentage
over the six month period from April to October for each of
our policies. As above, we see that live migration has the

Figure 11. Unavailability for live migration and SpotCheck
(with and without optimizations and lazy restore).

lowest unavailability, since it incurs almost no downtime,
but is not practical, since it risks losing VM state. We also
examine both an unoptimized version of bounded-time VM
migration requiring a full restoration before resuming (akin
to Yank) and our optimized version that also requires a full
restoration. The graph demonstrates that the optimizations
in Section 5 increase the availability. The graph also shows
that, even without lazy restoration, SpotCheck’s unavailabil-
ity is below 0.25% in all cases, or an availability of 99.75%.
However, we see that using lazy restore brings
SpotCheck’s unavailability close to that of live migration.
Since the m3.medium spot prices over our six month period
are highly stable, the 1P-M policy results in the highest avail-
ability of 99.9989%, as well as the lowest cost from above.
This level of availability is roughly 10X that of directly using
spot servers, which, as Figure @a) shows, have an availabil-
ity between 90% and 99%. The other policies exhibit slightly
lower availability ranging from 99.91% for 2P-ML to 99.8%
for 4P-ED. In addition to availability, performance degrada-
tion is also important. Figure[I2]plots the percentage of time
over the six month period a nested VM experiences perfor-
mance degradation due to a migration and restoration. The
graph shows that, while SpotCheck with lazy restoration has
the most availability, it has the longest period of performance
degradation. However, for the single pool 1P-M policy, the
percentage of time the nested VM operates under degraded
performance is only 0.02%, while the maximum length of
performance degradation (for 4P-ED) is only 0.25%. For
perspective, over a six month period, SpotCheck using the
1P-M policy has only 2.85 combined minutes of degraded
performance due to migrations and restorations.
Result: SpotCheck achieves nearly 5x savings compared to
using an equivalent on-demand server from an laaS plat-
form, while providing 99.9989% availability with migration-
related performance degradation only 0.02% of the time.
The cost-risk tradeoff between choosing a single pool
versus two pools versus four pools is not obvious. While,
in the experiments above, 1P-M provides the lowest cost
and the highest availability, the risk of SpotCheck having
to concurrently migrate all nested VMs at one time is high,
since all VMs mapped to a backup server are from a single
pool. For the six month period we chose, the spot price
in the m3.medium pool rarely rises above the on-demand
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Figure 12. Performance degradation during migration.

price, which triggers the migrations and accounts for its
high availability. The other policies mitigate this risk by
increasing the number of pools by distributing the VMs
across these pools. Since the price spikes in these pools
are not correlated, the risk of losing all VMs at once is
much lower. Table [3] shows the probability of concurrent
revocations of various sizes as a factor of the total number of
VMs N. We note that the probability of all N VMs migrating
in a single pool scenario is higher compared to the two-pool
scenario and nearly non-existent in the case of the four-pool
policy. Also, by distributing VMs across pools, SpotCheck
increases the overall frequency of migration, but reduces the
number of mass migrations.

Result: Distributing nested VMs mapped to each backup
server across pools enables SpotCheck to lower the risk
of large concurrent migrations. For example, comparing
1P-M to 4P-ED, the average VM cost in 4P-ED increases
by $0.002 and the availability reduces by 0.15%, but the
approach avoids all mass revocations.

Policy Comparison. Our results demonstrate that each
of SpotCheck’s policies provide similar cost savings
(Figure [T0) and availability (Figure [TT). Performance
degradation is lowest for single-pool policy (1P-M), but
negligible even for the worst-performing policy (4P-ED as
shown in Figure[I2)), while the four-pool policies drastically
reduce the risk of mass migration events (from Table[3).

7. Related Work

Designing Derivative Clouds. Prior work on inter-
clouds [13]] and superclouds [24 [36] propose managing re-
sources across multiple TaaS platforms by using nested vir-
tualization [11} 35} 41] to provide a common homogeneous
platform. While SpotCheck also leverages nested virtualiza-
tion, it focuses on exploiting it to transparently reduce the
cost and manage the risk of using revocable spot servers on
behalf of a large customer base. Our current prototype does
not support storage migration or inter-cloud operation; these
functions are the subject of future work. Cloud Service Bro-
kers [29]], such as RightScale [6]], offer tools that aid users
in aggregating and integrating resources from multiple IaaS
platforms, but without abstracting the underlying resources
like SpotCheck. PiCloud [J5] abstracts spot and on-demand
servers rented from IaaS platforms by exposing an interface

Max. num. of concurrent revocations

N/4 N2 3N/4 N
1-Pool 0 0 0 1.74x107%
2-Pool 0 3.75x 1073 0 2.25%x 1073
4-Pool | 74x1073 | 771x 1075 | 1.92x 1075 0

Table 3. Probability of the maximum number of concurrent
revocations for different pools. N is the number of VMs.

to consumers that allows them to submit batch jobs. In con-
trast, SpotCheck provides the abstraction of a complete [aaS
platform that supports any application. Finally, SpotCheck
builds on a long history of research in market-based resource
allocation [[14]], which envisions systems with a fluid map-
ping of software to hardware that enable computation and
data to flow wherever prices are lowest.

Spot Market Bidding Policies. Prior work on optimizing
bidding policies for EC2 spot instances are either based on
analyses of spot price history [12} 21} 37] or include varying
assumptions about application workload, e.g., job lengths,
deadlines [28} 132} 133} 39, 140], which primarily focus on
batch applications. By contrast, SpotCheck’s bidding strat-
egy focuses on reducing the probability of mass revocations
due to spot price spikes, which, as we discuss, may signifi-
cantly degrade nested VM performance in SpotCheck.
Virtualization Mechanisms. Prior work handles the sud-
den revocation of spot servers either by checkpointing ap-
plication state at coarse intervals [22l 34, 38]] or eliminat-
ing the use of local storage [[15| 25]]. In some cases, applica-
tion modifications are necessary to eliminate the use of local
storage for storing intermediate state, e.g., MapReduce [15,
25]]. SpotCheck adapts a recently proposed bounded-time
VM migration mechanism [30} 31]],which is based on Re-
mus [18] and similar to microcheckpointing [1]], to aggres-
sively checkpoint memory state and migrate nested VMs
away from spot servers upon revocation. Our lazy restore
technique is similar to migration mechanisms, such as post-
copy live migration [20] and SnowFlock [23].

8. Conclusion

SpotCheck is a derivative IaaS cloud that offers low-cost,
high-availability servers using cheap but volatile servers
from a native laaS platforms. To do this, SpotCheck must
simultaneously ensure high availability, reduce the risk of
mass server revocations, maintain high performance for ap-
plications, and keep its costs down. We design SpotCheck to
balance these competing goals. By combining recently pro-
posed virtualization techniques, SpotCheck is able to pro-
vide more than four 9’s availability to its customers, which
is more than 10X that provided by the native spot servers. At
the same time, SpotCheck’s VMs cost nearly 5x less than
the equivalent on-demand servers
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