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Abstract—Solar energy capacity is continuing to increase. The
key challenge with integrating solar into buildings and the electric
grid is its high power generation variability, which is a function
of many factors, including a site’s location, time, weather, and
numerous physical attributes. There has been significant prior
work on solar performance modeling and forecasting that infers
a site’s current and future solar generation based on these factors.
Accurate solar performance models and forecasts are also a pre-
requisite for conducting a wide range of building and grid energy-
efficiency research. Unfortunately, much of the prior work is not
accessible to researchers, either because it has not been released
as open source, is time-consuming to re-implement, or requires
access to proprietary data sources.

To address the problem, we present Solar-TK, a data-driven
toolkit for solar performance modeling and forecasting that
is simple, extensible, and publicly accessible. Solar-TK’s simple
approach models and forecasts a site’s solar output given only its
location and a small amount of historical generation data. Solar-
TK’s extensible design includes a small collection of independent
modules that connect together to implement basic modeling and
forecasting, while also enabling users to implement new energy
analytics. We plan to release Solar-TK as open source to enable
research that requires realistic solar models and forecasts,and
to serve as a baseline for comparing new solar modeling and
forecasting techniques. We compare Solar-TK’s simple approach
with PVlib and show that it yields comparable accuracy. We
present three case studies showing how Solar-TK can advance
energy-efficiency research.

I. INTRODUCTION

The installed capacity of solar photovoltaic (PV) energy,
which converts the Sun’s light into electricity, has been grow-
ing at near an exponential rate since the early 1990s. Over
this period, the average time required to double the world’s
installed solar capacity has been approximately 2.4 years [1].
At this rate of growth, solar is forecasted to generate more
than half of the world’s electricity by 2050 [2]. However,
achieving such high rates of solar generation requires ad-
dressing numerous research challenges. In particular, the key
complicating factor with integrating solar into buildings and
the electric grid is its high power generation variability, as the
grid must balance electricity’s supply and demand in real time
despite these variations. Balancing the grid under a high solar
penetration may require buildings to shift their energy usage
over time using demand response or energy storage. A high
solar penetration also complicates the grid’s scheduling of con-
ventional generators to offset any deficits in solar generation.
This scheduling typically occurs one day in advance based on
highly accurate forecasts of next-day load, which are largely a
function of the forecasted temperature and the resulting energy
used for heating and cooling. Unfortunately, solar forecasts
are much less accurate than load forecasts, primarily because

cloud cover forecasts, which significantly affect solar output,
are much less accurate than temperature forecasts.

Given its importance, there has been significant prior work
on solar performance modeling [3], [4] and forecasting [5]
that infers a site’s current and future solar generation. Solar
performance modeling infers a site’s average solar power
output at the current (or a past) time (over some interval)
based on known conditions, while solar forecasting predicts a
site’s average solar output at a future time (over some interval)
based on forecasted conditions. Prior work generally separates
solar irradiance estimation and forecasting from solar power
modeling. The focus of the former is accurately estimating the
current and future ground-level solar irradiance. The latter then
typically assumes these solar irradiance estimates as input, and
focuses on determining how much of that irradiance a solar
site converts to electrical power. There have been hundreds of
papers written in both areas, as well as books [6], that develop
highly detailed solar modeling and forecasting methods. Solar
modeling and forecasting remains an active area of research.

Unfortunately, much of the research above is not accessible
to researchers outside the area, either because it has not been
implemented and released as open source, is too complex
and time-consuming to re-implement, or requires access to
proprietary data. A motivation for Solar-TK is that developing
more accurate solar performance models and forecasts is not
an end unto itself. Realistic site-specific solar performance
models and forecasts are a pre-requisite for conducting a wide
range of research in building and grid energy-efficiency that is
only indirectly related to solar energy. For example, accurate
solar models and forecasts are a pre-requisite for developing
better control policies for home batteries [7], [8]. Similarly,
solar models and forecasts can be used to improve building
demand response by shifting its energy consumption to better
align with solar generation [9]. Recent work also requires
accurate solar models and forecasts to assess the potential for
sharing surplus solar energy among neighbors in developing
countries [10]. Importantly, in these cases, solar modeling and
forecasting is not the primary focus of the research, but is
instead simply a tool the researchers require to make forward
progress.

To address the problem, we present Solar-TK, an open
data-driven toolkit for solar performance modeling and fore-
casting that is simple, extensible, and publicly accessible
at http://traces.cs.umass.edu/index.php/main/Solar-TK. A key
goal of Solar-TK is to be simple to use by researchers that
require realistic and accurate solar performance models and
forecasts, but are not experts in these areas. As a result, to



generate its solar model and forecasts, Solar-TK requires users
to supply only a solar site’s location and a small amount of
historical generation data. This approach differs from existing
open source modeling frameworks, such as PVlib [3], which
requires users to supply detailed information about a solar site
to model it, e.g., type of inverter, number of modules, module
tilt, orientation, wiring, etc. Researchers may not have access
to such detailed information, and, even if they do, may not
have the expertise or time to develop and validate an accurate
model.

Solar-TK’s extensible design includes a small collection of
independent executables that connect together using UNIX
pipes to implement basic modeling and forecasting, while also
enabling users to interpose on them to implement new energy
analytics. As we show, these modules are independently useful
and pluggable, enabling users to compose and extend them to
implement a wide range of new and existing energy analytics.
We plan to publicly release Solar-TK as open source to
advance energy-efficiency research that requires realistic solar
models and forecasts. In addition, Solar-TK can also serve as
a useful baseline for benchmarking new and existing solar
modeling and forecasting techniques. The current state of
solar modeling and forecasting is similar, in some sense,
to non-intrusive load monitoring (NILM), in that there has
been decades of research and many proposed techniques, but
few open benchmark implementations and public datasets.
This prevents quantitative algorithmic comparisons. Indeed,
Solar-TK is motivated by NILM-TK, a recent open source
implementation of standard NILM algorithms with accompa-
nying datasets to enable quantitative benchmarking of new and
existing NILM algorithms [11].

There have been some recent efforts to develop and release
open solar modeling and forecasting software, particularly
PVlib [3]. Solar-TK differs from PVlib in numerous respects,
as we discuss. Most importantly, Solar-TK primarily focuses
on data-driven modeling, while PVlib focuses on physical
modeling. As a result, PVlib’s approach has the potential
for much more accurate models and forecasts, but generally
requires both deep access to a solar site and significant
expertise to configure and implement its physical models. In
contrast, Solar-TK is accessible to non-experts, requiring only
a site’s location and a small amount of historical generation
data to develop its models. Solar-TK leverages many of the
same physical models as PVlib, but calibrates their parame-
ters automatically from historical generation data, rather than
manually.

As we discuss in §II, Solar-TK’s modules leverage the same
well-known physical models of solar generation as PVlib [3],
as well as recent work on data-driven “black box” solar
performance modeling [12], [13], [14]. Thus, Solar-TK’s con-
tribution lies not in its modeling and forecasting approach, but
in its simple, modular, and extensible design. Our hypothesis
is that this design can provide researchers a simple way to
develop accurate solar models and forecasts, and enable the
implementation of new and existing solar energy analytics
that can advance energy-efficiency research. In evaluating our

hypothesis, we make the following contributions.
Solar-TK Design. We present Solar-TK’s data-driven design,
which develops a custom solar performance model using only
a site’s location and small amount of historical generation data.
The design includes a small collection of independent modules
that connect to implement basic modeling and forecasting,
while enabling users to interpose on them to implement new
energy analytics.
Implementation and Evaluation. We implement Solar-TK
as a set of open-source software modules and sample data
repository, and evaluate its accuracy by comparing against
similar models developed using PVlib. We show that Solar-TK
generally yields similar, and in some cases better, accuracy.
Case Studies. To demonstrate Solar-TK’s flexibility, we lever-
age its extensible design to enable or advance recent research
on solar energy analytics [15], disaggregation [12], and energy
sharing [10].

II. BACKGROUND

We briefly summarize many of the factors that affect solar
power generation, and the physical modeling approach used
by tools, such as PVlib [3] and PlantPredict [16],1 to estimate
and forecast it. Our summary is not exhaustive, as there are
numerous physical models for many factors in the literature.
Solar-TK’s modules, which we discuss in §III, use some, but
not all, of these same physical models.
Clear Sky Solar Irradiance. The clear sky solar irradiance—
measured in W/m2 represents the maximum power the Sun
transmits to the Earth’s surface under clear skies with no
clouds. Clear sky irradiance is also referred to as global
horizontal irradiance (GHI), which is the sum of direct normal
irradiance (DNI) and diffuse horizontal irradiance (DHI). DNI
is irradiance from direct rays of light, while DHI is irradiance
from indirect light scattered by the Earth’s atmosphere. Some
physical models require DNI and DHI separately, since they
can have different affects on solar output.

Clear sky solar irradiance is largely (but not entirely) a
function of the Sun’s position in the sky, which dictates
the amount of the Earth’s atmosphere sunlight must pass
through to reach the ground. The more atmosphere sunlight
must pass through, i.e., the lower the Sun’s position in the
sky, the less solar irradiance reaches the ground even under
clear skies. Since the Sun’s position in the sky is itself a
function of location, i.e., latitude and longitude, and time
(of the day and year), there are many simple models that
accurately estimate clear sky solar irradiance for a location
at any time [17]. Nearly all solar performance models and
forecasts use clear sky solar irradiance models as their starting
point, since solar power generation must be strictly less than
the clear sky solar irradiance. There are numerous publicly-
available software libraries that implement simple clear sky
solar irradiance models [18].

Note that the simple models, while generally accurate,
do ignore some important factors, such as the elevation of

1PlantPredict is proprietary solar modeling software.



the location and its surrounding landscape, and variations
(and dynamic changes in) the Earth’s atmosphere at different
locations (even under clear skies). There are more advanced
clear sky models that take these and other factors into account
to improve accuracy, although they often require data sources
that are not widely accessible as input, such as satellite
measurements of the Earth’s atmosphere at a location.
Weather Effects. Weather can reduce the solar irradiance
that reaches the ground. The effect of weather on ground-
level solar irradiance is typically quantified using the clear
sky index, which represents the fraction [0, 1] of the clear sky
solar irradiance that reaches the ground. The primary weather
metric that affects the clear sky index is the presence of clouds
both overhead (which reduces DNI) and nearby (which reduces
DHI). Other weather metrics, particularly temperature, also
affect solar generation, but by decreasing power conversion
efficiency and not ground-level solar irradiance. We discuss
power conversion efficiency separately later.

Cloud cover is likely the most significant source of error in
solar modeling and forecasting, largely because cloud cover
is highly localized and difficult to measure. Unlike rain,
ground-level radars cannot actively sense and track clouds.
While there is work on precisely measuring cloud cover
and forecasting short-term cloud movement using ground-
level (sky) cameras [19], our focus is on solar modeling and
forecasting that does not require physical access to a site.
The clear sky index can be estimated from satellite data, but
the methods are often proprietary [20], [21], and are actively
changing due to upgrades in satellite sensing technology. As
a result, satellite-based modeling is not widely accessible to
researchers. Satellite-based models also have limitations in
accuracy, as they can only measure the tops of clouds, and not
their thickness, which significantly impacts the solar irradiance
that reaches the ground.

The only public data on cloud cover that is widely available
in the U.S. are ground-level cloud measurements taken at
official weather stations. These measurements are in oktas,
which represent how many eighths of the sky are covered
in clouds, ranging from 0 oktas (completely clear sky) to 8
oktas (completely overcast). Okta measurements are typically
made using a circular sky mirror divided into eight slices,
such that when the mirror is placed on the ground, the
oktas are equivalent to the number of slices with a cloud
present [22]. Thus, oktas are a highly imprecise measure of
cloud cover, and also do not account for cloud thickness or
other properties. In addition, coarse okta measurements are
typically translated to even coarser qualitative measurements
when reported by weather stations, such as “Clear”, “Partly
Cloudy,” or “Overcast.” These qualitative measurements map
directly to ranges of oktas [23]. For example, “Mostly Cloudy”
is 5-7 oktas and “Overcast” is 8 oktas.

There are not many models for translating cloud cover
measurements to a clear sky index. PVlib by default uses
a simple linear transmittance model that assumes the cloud
cover (in the range 0-100%) has a proportionate effect on
the clear sky irradiance transmitted. It then combines this

linear transmittance module with different models of GHI,
DNI, and DHI to determine the clear sky index. Kasten and
Czeplak proposed an empirical model based on data from
hourly cloud cover observations and GHI measurements in
Hamburg, Germany over a 10 year period (1964-1973) [24].
This model estimates the clear sky index as (1 − 0.75n3.4)
where n represents the fraction of cloud cover in the range
[0 − 1]. Recent work refines this model by analyzing over
78k aggregate years of hourly data from over 11k sites [13].
The refined model empirically estimates the clear sky index
as (0.985 − 0.984n3.4).

Note that n in both models requires a fraction for cloud
cover as input, while weather stations report an okta range.
Solar-TK translates the reported range to a fraction by taking
its average or by selecting a value randomly within the range,
assuming any cloud cover is equally likely, and then dividing
by 8. These inaccurate cloud cover measurements and models
represent by far the largest source of error in solar performance
modeling and forecasting. Note that PVlib only accounts for
the effect of cloud cover in their solar forecasting model,
and not their solar performance model, as some forecast data
sources report cloud cover as a percentage.
Incident Irradiance. The tilt and orientation of a solar panel
also affects the ground-level irradiance incident on it that can
be converted to electrical power. The incident solar irradiance
for a fixed panel is a well-known function of the Sun’s azimuth
and zenith angles, as well as the panel’s tilt and orientation, as
shown below. Here, Ighi is the global horizontal irradiance, β
is the tilt, φ is the orientation, Θ is the Sun’s zenith angle, and
α is the Sun’s azimuth angle. The Sun’s azimuth and zenith
angles are themselves a well-known function of time for any
location [25].

Iincident = Ighi×
[cos(90−Θ)× sin(β)×cos(φ−α)+sin(90−Θ)×cos(β)]

(1)

Functions also exist for panels that track the Sun in one or
both dimensions, although Solar-TK currently only supports
fixed panels.
Solar Panel Type. Different types of solar panels have differ-
ent designs and use different materials that affect their power
conversion efficiency. For example, polycrystalline panels are
slightly less efficient than monocrystalline panels. In addition,
different designs also have different sensitivities to temperature
and light conditions. While the power conversion efficiency
generally decreases linearly with increases in cell temperature,
different panel designs have different temperature coefficients,
which dictate the slope of the efficiency decrease. Wind speed
can also affect the cell temperature, since higher speeds dissi-
pate the panel’s heat more effectively (and can slightly reduce
the cell temperature). PVlib includes detailed physical models
for hundreds of solar panels, which capture their specific
conversion efficiency under different light, temperature, and
wind conditions. Of course, this library is not complete as
new solar panels are frequently being released.
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Fig. 1: A depiction of the pipeline for Solar-TK’s three primary modules.

Electronics and Wiring. The electronics and wiring of a
solar array also impact its power conversion efficiency. The
power generated by a solar panel is a function of its operating
voltage, as dictated by its I-V curve. The current the panel
generates remains largely steady at low voltages, but begins
to decrease sharply at some higher voltage. Since DC power
is the product of current and voltage, there is a voltage that
generates the maximum power. The shape of the I-V curve
changes dynamically based on the incident irradiance and
temperature, which are captured in the detailed solar panel
models mentioned above. To maximize power, solar panels
often include electronics that implement maximum power
point tracking (MPPT) that dynamically adjusts the voltage to
search for the maximum power point as the I-V curve changes.
MPPT can occur in DC optimizers connected to panels or solar
inverters.

Inverters convert DC solar power to grid-synchronous AC
power, and incur some efficiency loss. These efficiency losses
can vary as a function of the inverter’s rated capacity and the
solar power generation (in general, inverters are more efficient
when operating near their rated capacity). Inverter capacity
varies widely: small “micro” inverters may be connected to
each panel, or large “string” inverters may be connected to an
entire solar array wired in series or parallel. The wiring of solar
panels into an array also affects output, as all panels wired in
series are limited to generating the current of the panel with
the minimum current. Note that when many solar panels are
wired to a string inverter that implements MPPT, the tracking
operates on a combination of the I-V curves of the individual
panels based on the wiring. I-V curves of individual panels
wired in series are additive in only the current dimension,
while those wired in parallel are additive in only the voltage
dimension.

PVlib includes physical models that capture the losses of
many specific types of inverters under different conditions,
and enables users to specify the wiring of solar panels to
inverters that account for the relationships above. However,
as above, this library is not complete, since new inverters are
continuously being released.
Shading, Soiling, and Snow. In addition to clouds, shading
from nearby objects, such as trees, buildings, and mountains,
soiling from dust and mud, and snow can also prevent so-
lar irradiance from reaching the panel. Physical models can
capture shading effects given enough detail of a site based
on the position of the objects, the Sun (at a particular time),
and the solar panels. Offline solar models, such as PVlib and
PlantPredict, generally estimate losses due to soiling from

historical data. Online data-driven models, such as Solar-TK,
can learn these effects from the data.

III. SOLARTK DESIGN

A solar performance model that solely uses physical models
in the previous section, such as PVlib and PlantPredict,
requires users to not only specify a site’s location, i.e., its
latitude and longitude, but also virtually configure the site.
This includes identifying the specific type and number of solar
panels and inverters, i.e., the specific brand and model, the tilt
and orientation of each panel, the wiring of the panels together
to one or more inverters (or DC optimizers), and potentially
the characteristics of nearby objects that may shade the panels.
Virtual configurations are time-consuming even for experts,
and generally not possible without physical site access.

Virtually configuring a site is also challenging because any
library of physical models for specific solar panels, inverters,
and DC optimizers is necessarily incomplete given rapidly
advancing technology. The newest components are often not
in the library, which can decrease model accuracy for new
(or proposed) sites that typically use newer components. Of
course, users can always select components in the library that
closely match their actual components. However, this is not
necessarily as simple as selecting a component with a similar
capacity rating, as the underlying physical model and behavior
may be substantially different. As a result, to accurately model
existing sites, users may need to try multiple components and
select the ones that yield the highest accuracy.

Solar-TK entirely eliminates such virtual configurations, and
instead automatically creates custom solar performance and
forecast models for a site given its location and a small amount
of historical data as input. Thus, users need not be experts
to develop a solar performance and forecast model, and they
do not require physical site access. Solar-TK’s approach uses
some of the simple physical models from §II, but calibrates
their parameters based on historical data rather than requiring
users to manually supply them. Solar-TK does not use many
of the advanced physical modeling techniques supported by
physical modeling frameworks, such as PVlib and PlantPre-
dict. These advanced models are often too complex to calibrate
from historical data, and, in many cases, the input data they
require is not widely accessible. In addition, the inaccuracy
of solar performance and forecast models is dominated by
the inaccuracy of cloud cover measurements and models.
Advanced physical models generally do not improve enough
on the accuracy of the simple models to significantly improve
overall accuracy.



Last login: Fri Jun 28 11:35:41 on ttys003
$ cd Desktop/screenshots_generation/
$ parameters.py 42 -72 historical_data.csv 
#latitude,longitude,area(m^2),tilt,orientat
ion,c,T_{ref}
42,-72,68,37,186,0.56,0.55
$ parameters.py 42 -72 historical_data.csv 
#latitude(°),longitude(°),area(m^2),tilt(°)
,orientation(°),c,T_base(°C)
42,-72,68,37,186,0.56,0.55
$ Fig. 2: Terminal output for physical parameters module.

Figure 1 depicts Solar-TK’s design, discussed below, which
consists of 3 primary modules that connect together via
pipes to implement basic solar performance modeling and
forecasting. These modules leverage both the physical models
from the previous section, as well as recent work on “black
box” solar modeling [12], [14], [13].

A. Physical Parameters Module

Figure 2 shows the terminal command-line and output of
Solar-TK’s physical parameter module. This module takes as
input a site’s latitude and longitude, as well as a csv file that
includes some historical generation data. The format of the csv
file is simple: the first column is a UNIX timestamp and the
second column is the average power generation, in watts (W),
from the corresponding timestamp to the next timestamp. The
module can support any time resolution, and simply derives it
automatically from the timestamps. However, the timestamps
should represent the same resolution and be equally spaced
in time. The module’s output, as shown, is an estimate of a
solar site’s physical parameters, including its orientation, tilt,
area, temperature coefficient, and a baseline temperature. The
estimated array size (in m2) simply assumes a 16% power
conversion efficiency at 25C, which is an average efficiency
for current solar panels. As discussed below, the approach can
only accurately learn the product of size and efficiency, and
not each individually.

The module leverages an algorithm from recent work to
determine the parameters above [12], [14], which we sum-
marize below. The algorithm computes the average clear
sky irradiance (in W/m2) at each timestamp (for the given
resolution) of the historical data. The algorithm then uses the
physical models from §II that dictate the amount of clear
sky irradiance that is converted to electrical power based on
various physical parameters. Specifically, it adapts Equation 1
from §II to include an unknown constant k that captures the
product of a solar site’s size and efficiency. This equation
assumes that power conversion efficiency is constant (at a
given temperature), and that all panels in an array have the
same tilt and orientation. While these assumptions are not
strictly true, as mentioned above, the resulting inaccuracy is
not significant compared to the inaccuracy of cloud cover
measurements and forecasts.

P (t) = Ighi(t)×k×[cos(90−Θ(t))×sin(β)×cos(φ−α(t))

+ sin(90 − Θ(t)) × cos(β)] (2)

All the known parameters on the right side of the equation
are a function of time, as labeled. The module includes
functions to compute both the clear sky irradiance Ighi (at
the given location and time) and the Sun’s azimuth and zenith
angles (at the given time). The unknown parameters are k,

β (or tilt angle), and φ (or orientation angle). The algorithm
searches for values of these physical parameters such that the
resulting output of the physical model at every timestamp is
greater than or equal to the corresponding historical data. The
algorithm searches for this tight upper bound because the solar
generation should follow this function over time such that its
output never exceeds some (unknown) maximum dictated by
the clear sky irradiance. Ultimately, a single point dictates the
tight upper bound and parameter values across the dataset
(regardless of the amount of data). This point corresponds
to the time with the lowest temperature (yielding the highest
conversion efficiency) when the skies were clearest.

While there are many ways to conduct and optimize the
search, we use an iterative brute force approach. The search
first sets φ and β near their optimal values—180◦ (south)
orientation and β equal to the latitude—and then iteratively
searches for the value of k that yields the tightest upper
bound while minimizing the root mean squared error (RMSE)
with the data. We increase k by some amount (2 in our
implementation) to provide some slack in the function when
searching for the orientation and tilt. The result yields a
function that is strictly “wider” and “higher” than the actual
function due to a higher value of k and the optimistic setting
of orientation and tilt. We then conduct a brute force search
for the orientation angle that yields a tight upper bound but
minimizes the RMSE. We next do the same for the tilt angle.
We repeat this process 10 times or until the RMSE at each
step does not change.

The algorithm above does not take into account the effect
of temperature on power conversion efficiency. Prior work
models this effect as being linear with the the ambient air
temperature [12]. In reality, conversion efficiency is actually a
function of the solar cell temperature, which is typically much
higher than the ambient air temperature. However, the model
assumes the relationship between the cell and air temperature
is also linear, although the constant may differ between solar
panels based on their design and materials. To adjust for
temperature, we replace k above with a linear function k′(t),
which changes over time based on the temperature.

k′(t) = k × (1 + c× (Tbaseline − Tair(t))) (3)

Here, c is the constant linear temperature coefficient and
Tair(t) is the ambient air temperature at time t. The value
of k is from above, while Tbaseline is the corresponding
temperature at the datapoint that dictated the tightest upper
bound, and thus k. Again, as above, we automatically search
for the value of c that yields the tightest upper bound on the
data. Ultimately, the tightest bounding c is dictated by two
datapoints, the bounding datapoint above representing the clear
sky period with the lowest temperature and another datapoint
under clear skies with a different temperature. The module
automatically fetches temperature at each location at the given
time from the Internet, in this case Weather Underground. Note
that the temperature data is hourly, so the module assumes that
the temperature is constant within each hour when the given
data resolution is higher. The module does not account for



the effects of wind speed, which dissipate heat that reduces
the cell temperature. Again, we find the resulting inaccuracy
small compared to the inaccuracy of cloud measurements and
forecasts.

We evaluate the accuracy of the physical parameter module
in §V as a function of the amount of historical data.

B. Maximum Generation Module

Figure 3 shows the terminal command-line and output of
Solar-TK’s maximum generation model. This modules takes
as input the output of the physical parameter module above,
specifically the site’s location (latitude and longitude), k,
Tbaseline, c, φ, and β, as well as a start time, end time, and time
resolution. The output, which is written to standard output, is
a time-series (formatted the same as the csv file above) that
estimates the maximum clear sky solar generation at those
times. The module can support any time resolution. Note that
output, by default, is UTC time.

The standard output of the physical parameter module can
be piped directly to the maximum generation module as shown
in Figure 3, or these parameters can be specified manually
on the command-line. In the latter case, the parameters need
not be generated by the physical parameter module based
on historical data, and could just as well be derived from a
physical site inspection (similar to a purely physical modeling
approach). Size, tilt, and orientation parameters could also be
inferred from satellite imagery, either manually as we do in
§V or automatically [26], [27]. Alternatively, researchers could
also supply their own parameter values to generate realistic,
albeit synthetic, solar generation data for experiments.

The start time, end time, and time resolution must be
specified on the command-line. The maximum generation
module also supports a couple of options. Since the maximum
generation is dependent on temperature, by default the module
assumes the ambient temperature is always 25C. The module
also supports a “-temperature” option that enables users to set
a different static temperature. In this case, users may set the
start time to any past or future value.

The module also supports using historical and forecasted
temperature data. To use historical data, the “-real” option
must be set, and the start time must be equal to or before
the current time. In this case, the module fetches historical
temperature data at each respective time from the Internet,
i.e., Weather Underground. The module also accepts a “-
forecast” option that instead fetches the temperature data that
was forecasted at the start time from the National Digital
Forecast Database (NDFD) [28]. If the start time is in the
past, the module still retrieves the forecasted temperature data
at that past start time and not the historical temperature data.
NDFD forecasts only up to 7 days in advance. As a result, if
the end time is more than 7 days past the start time, the module
will only generate 7 days of forecasted values. Note that the
resolution of forecasted weather data is every 3 hours. As
above, we assume temperature is constant within each interval
at higher resolutions.

Last login: Fri Jun 28 21:48:49 on ttys004
$ cd Desktop/screenshots_generation/
$ parameters.py 42 -72 historical_data.csv |
 maxgen.py '2015-01-02 00:00:00' '2015-01-02
 23:00:00' '1h' 
#latitude(°),longitude(°)
#42,-72
#time,max_generation
2015-01-02 05:00:00,0.0
2015-01-02 06:00:00,0.0
2015-01-02 07:00:00,0.0
2015-01-02 08:00:00,0.0
2015-01-02 09:00:00,0.0
2015-01-02 10:00:00,0.0
2015-01-02 11:00:00,0.0
2015-01-02 12:00:00,0.0
2015-01-02 13:00:00,0.0
2015-01-02 14:00:00,3167.490670450223
2015-01-02 15:00:00,6329.773863309609
2015-01-02 16:00:00,8285.330977204278
2015-01-02 17:00:00,9099.006104253323
2015-01-02 18:00:00,8887.269659227184
2015-01-02 19:00:00,7629.933318453599
2015-01-02 20:00:00,5506.951432379013
2015-01-02 21:00:00,2606.1217794935164
2015-01-02 22:00:00,8.27981536762782
2015-01-02 23:00:00,0.0
2015-01-03 00:00:00,0.0
2015-01-03 01:00:00,0.0
2015-01-03 02:00:00,0.0
2015-01-03 03:00:00,0.0
2015-01-03 04:00:00,0.0
$ Fig. 3: Terminal output for the max generation module.

The module’s implementation is straightforward, as it sim-
ply uses the combination of Equations 2 and 3 below to
directly compute an estimate of the maximum generation at
each time t, given the parameters passed to it by the physical
parameter module.

P (t) = Ighi(t) × k × (1 + c× (Tbaseline − Tair(t)))×
[cos(90−Θ(t))×sin(β×cos(φ−α(t))+sin(90−Θ(t))×cos(β)]

(4)

As we discuss in §VI, the maximum generation module
is useful independently of the weather-adjusted module we
discuss below.

C. Weather-adjusted Generation Module

Figure 4 shows the terminal command-line and output of the
Solar-TK’s weather-adjusted generation module. This module
takes as input the time-series output of the maximum gener-
ation module (via a pipe) and adjusts it based on the cloud
cover. To make this adjustment, the module simply multiplies
each of the power values provided as input by the clear sky
index. We estimate the clear sky index C using the reported
cloud cover n measured in oktas as (0.985−0.984n3.4) based
on recent work [13].

The module’s output is similar to Figure 3 with the first
column being the UNIX timestamp, but with the second
column being the weather-adjusted estimate of solar generation
at the corresponding time. As above, the module also supports
some optional parameters. The “-index” option adds a third
column that is the clear sky index used to adjust the data.
The “-forecast” option is the same as above, and outputs the
forecasted weather-adjusted solar generation at the start time.



Last login: Fri Jun 28 21:57:44 on ttys004
$ cd Desktop/screenshots_generation/
$ parameters.py 42 -72 historical_data.csv |
$ parameters.py 42 -72 historical_data.csv |
 maxgen.py '2015-01-02 00:00:00' '2015-01-02
 23:00:00' '1h' | weather.py 
#time,adjusted_generation
2015-01-02 05:00:00,0.0
2015-01-02 06:00:00,0.0
2015-01-02 07:00:00,0.0
2015-01-02 08:00:00,0.0
2015-01-02 09:00:00,0.0
2015-01-02 10:00:00,0.0
2015-01-02 11:00:00,0.0
2015-01-02 12:00:00,0.0
2015-01-02 13:00:00,0.0
2015-01-02 14:00:00,75.84828650106284
2015-01-02 15:00:00,454.9143394032858
2015-01-02 16:00:00,722.4368854360703
2015-01-02 17:00:00,1044.2585273864622
2015-01-02 18:00:00,553.3818215991138
2015-01-02 19:00:00,6663.886529266351
2015-01-02 20:00:00,5424.343097076968
2015-01-02 21:00:00,2567.0299204095663
2015-01-02 22:00:00,8.155526468940131
2015-01-02 23:00:00,0.0
2015-01-03 00:00:00,0.0
2015-01-03 01:00:00,0.0
2015-01-03 02:00:00,0.0
2015-01-03 03:00:00,0.0
2015-01-03 04:00:00,0.0
$ Fig. 4: Terminal output for the weather-adjusted module.

Since cloud cover readings translate to an okta range, by
default, the module use the average of this range. However,
the module supports a “-seed” parameter that, if specified,
selects an okta value within the range uniformly randomly.
This is useful for supporting Monte Carlo simulations. Setting
the seed to 0 causes the module to use a dynamic seed value
based on the current time.

D. Shade-adjustment Modules

Solar-TK’s current implementation includes the 3 primary
modules above. As we show in §V, these modules have com-
parable accuracy to existing physical modeling approaches.
However, they do not account for artificial shading from
surrounding buildings, trees, and hills. These effects are unique
to each site, and thus cannot be estimated using general one-
size-fits-all physical models. As a result, we have a preliminary
implementation of shade-adjustment modules that use machine
learning (ML) to learn the unique shading effects of each site
from historical data. We base our approach on one from recent
work, which we summarize below [13]. This approach requires
2 modules: one for training and one for testing.

The shade training module takes as input the output of the
weather-adjusted module above, as well as the site’s location
and a csv file with historical generation data covering the same
time periods at the same resolution (similar to the physical
parameter model above). The module checks to ensure the
timestamps and resolution are consistent, and then transforms
the data into a set of input features and a dependent output
variable for model learning.

The input features are the Sun’s azimuth and zenith angle at
each datapoint, which, as discussed above, are a well-known
function of location and time. The dependent output variable
is the shading ratio of the observed solar generation at each

time to the solar generation estimated by the weather-adjusted
module. Thus, if there is no shading and the weather-adjusted
module is accurate, the ratio should be 1. The more artificial
shading, the lower the ratio. Assuming fixed objects, the
degree of shading should be a function of the Sun’s position.
Unlike the previous modules, the training module requires a
significant amount of data—up to a year or more—to learn an
accurate model. Based on prior work [13], we use a support
vector machine (SVM) with a radial basis function kernel to
train the model. The training module writes the ML model’s
parameters to standard output, which can be redirected to a
file.

The shade testing module takes as input the output of
the weather-adjusted module, as well as a command-line
parameter specifying a file that includes the model parameters
(generated from the output of the training module). For each
datapoint in the output of the weather-adjusted module, the
module computes the Sun’s azimuth and zenith angles at
the respective time and feeds them to the ML model, which
returns the shading ratio above. The module then multiplies the
estimated average solar power at the datapoint with the shading
ratio, and writes to standard output the UNIX timestamp and
the shading-adjusted average solar generation.

E. Dynamic Factors

Many dynamic factors, such as dust and snow, can also
affect solar generation that are not accounted for in the mod-
ules above. Since Solar-TK’s modules are not computationally-
intensive, they can be periodically re-run based on recent
data to account for changing conditions. Note that the shade-
adjustment module above is intended for semi-permanent
shading from objects, and not highly dynamic shading from
snow and dust. Thus, users should only need to train the shade-
adjustment module once. Dynamic factors instead would affect
the estimate of a site’s size/efficiency, as Solar-TK would
interpret dust and snow as a less efficient/smaller site.

IV. SOLARTK IMPLEMENTATION

We implement Solar-TK in python. The implementation
includesfive binary executables—parameters.py, maxgen.py,
weather.py, shadetraining.py, and shade.py—that implement
the modules discussed in the previous section. Our imple-
mentation extensively uses the pandas python data analysis
library [29], and the NumPy scientific computing python
library [30]. We use the clear sky irradiance library from
the Pysolar python library [18], as well as an implementation
of the PSA algorithm that computes the Sun’s azimuth and
zenith angles given a location and time [25]. We use weather
data from Weather Underground and forecast data from the
NDFD [28]. Finally, we use the pytz [31] and tzwhere [32]
python libraries to adjust timestamps to the same timezone.
Reference Dataset. In addition to open-source code, SolarTK
also includes a sample data repository, which include sample
datasets for use with the software. A key aspect of Solar-TK
is standardizing the data formats for our modules: this enables
users to easily convert their internal datasets into formats



suitable for data ingestion by our modules and also enables
other researchers to contribute open datasets to Solar-TK’s
data repository. Presently, Solar-TK’s sample data repository
contains historical solar generation for 150 solar sites in North
America as well as historical weather and cloud cover for
hundreds of locations. We plan to release the code and our
sample data repository prior to publication.

V. EVALUATION

We evaluate the accuracy of the physical parameter, maxi-
mum generation, and weather-adjusted generation module by
comparing with both ground truth and PVlib [3]. Given its
preliminary implementation, and that PVlib does not support
shading, we do not evaluate the shade-adjustment modules.
Our evaluation also focuses on solar performance modeling
accuracy based on known conditions, and not forecasting. Both
Solar-TK and PVlib use the same approach for modeling and
forecasting, just that the forecasts use forecasted weather data
rather than historical weather data. Thus, the solar forecast
accuracy is largely a function of this forecasted weather’s
accuracy, and not the underlying approach.

We use data from 14 solar sites from a variety of re-
gions, including in California, Colorado, Florida, Hawaii,
Massachusetts, Texas, and Washington. For all the graphs,
we use a one hour data resolution, since our weather and
forecast data sources report an hourly resolution. Since we
have physical access to only one solar site, only this site’s
virtual configuration in PVlib is accurate. Since PVlib did not
have the solar panel type for this site in its library, we tried
multiple different panels and selected the one that yielded the
best results. For the other sites, we performed “best effort”
PVlib modeling using satellite imagery and inferences from
the data. Note that SolarTK’s goal is not to improve upon
PVlib’s accuracy, but to achieve comparable accuracy with
much less information.
Physical Parameter Module. Figure 5 shows the accuracy of
the size (a), tilt angle (b), and orientation angle (c) estimated
by Solar-TK’s physical parameter module from one year of
historical generation data. Note that we have physical access to
Site 1 and thus directly measured its ground truth size, tilt, and
orientation. For the other sites, the ground truth is an estimate
of the size, orientation, and tilt from satellite and street view
imagery. We do not compare with PVlib here, since it requires
these physical parameters as input. These solar sites are single
planes that do not connect panels with different tilts and
orientations. Solar sites on complex roofs with different angles
may decrease accuracy. As the graph shows, the estimated size,
tilt, and orientation are highly accurate to within a few m2 for
size and to within a few degrees for the angles.

We also evaluate the accuracy of the estimates as the amount
of historical generation data used as input increases, in this
case only for Site 1 where we have ground truth. Figure 6
shows the number of days included in the input historical data
(starting from July 1st) on the x-axis, and the Mean Absolute
Percentage Error (MAPE) between the inferred metric and the
ground truth for that metric on the y-axis. The graph has three

lines, one for the size, tilt, and orientation. The graph shows
that the parameters converge quickly within a few days, which
is due to the first few days of July that year being sunny. The
estimated size remains nearly unchanged when using more
than a few days data. The tilt and orientation angles also
converge to low MAPEs after using a few days of data, and
continue to improve slightly as more data is used.
Maximum Generation Module. Figure 7 evaluates the accu-
racy of the maximum generation module for each site using
both Solar-TK and PVlib. The y-axis is the MAPE between the
site’s estimated clear sky generation and the site’s actual clear
sky generation only during daytime hours. In computing the
MAPE, we remove the sunrise and sunset hours, as these are
effected the most by shade. In general, MAPE is a harsh metric
when evaluating solar modeling accuracy, as it can result in
high percentages for low absolute errors during periods of
minimal solar generation. As a result, much of the prior work
in this space does not use MAPE.

To derive the actual clear sky generation, we filtered out
all time periods that were not under a clear sky. In this case,
we defined a clear sky as those datapoints each month where
the generation was within 90% of the maximum generation
observed for that month at that time. This criteria assumes
that within each month, every time of day observes at least
one clear sky period, which is generally true for each of these
sites. We also filter out the first and last hour of sunlight each
day, as these hours only receive partial sunlight. After this
filtering, each site had an average of 430 hourly datapoints.

The graph shows that, for each site, the MAPE under clear
skies varies between 2% to, in the worst case, 18%. In most
cases, the MAPE is well under 10%. Solar-TK’s accuracy is
comparable, and in many cases better than, PVlib’s, although
we reiterate that our PVlib virtual configurations for Sites 2-
14 are best effort and not informed by physical access to the
site. For Site 1, where we have physical access, the accuracy
is comparable at ∼2%.
Weather-adjusted Module. Figure 8 evaluates the accuracy
of our weather-adjusted generation module for each site using
both Solar-TK and PVlib. For PVlib, we configured it to use
its clearsky-scaling function, which does a linear adjustment
of the clear sky irradiance to account for cloud cover. We
evaluate the accuracy over one year of hourly data. In this case,
we compute the MAPE between the actual solar generation
each hour and the inferred generation from Solar-TK and
PVlib’s modules. The figure shows that the presence of clouds
significantly decreases model accuracy in both cases compared
to the maximum generation module. Again, Solar-TK and
PVlib generate results with comparable accuracy, and in some
cases, Solar-TK’s accuracy is actually better.

VI. CASE STUDIES

Since Solar-TK’s underlying physical models and ap-
proaches are well-known and have been proposed in prior
work [12], [14], [13], its primary contribution lies in its ease
of use and modular design that researchers can interpose on
or extend to implement new applications. In this section, we
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describe 3 case studies of using different elements of Solar-TK
to advance energy-efficiency research.

A. Computing the Clear Sky Index

Recent work proposes a clear sky photovoltaic (PV) index
(Kpv) that uses solar generation data to estimate the clear sky
index, which captures the fraction of the clear sky solar irradi-
ance that reaches the ground (due to cloud cover) [15]. Recall
that Solar-TK’s weather-adjusted module simply multiplies the
power estimated by the maximum generation module by this
clear sky index, which it estimates from coarse cloud cover
measurements. As Figure 8 shows, cloud cover introduces
significant inaccuracy to the model.

Due to this inaccuracy, another recent approach has been
to estimate a solar site’s power based on the power generated
by a nearby solar proxy site. Since the sites are nearby, their
clear sky index should be similar. Thus, in this case study,
we replace Solar-TK’s weather-adjusted module with another
similar module, which has the same input and output, but
adjusts the maximum generation based on the Kpv computed
at a nearby solar site. Computing a solar site’s Kpv at any
time using Solar-TK is simple, as it is just a solar site’s actual
solar output each time period divided by the output estimated
by the maximum generation module.

Figure 9 shows the MAPE of this approach for three of
our sites where we could find data from a nearby solar site
within 50 miles. As shown, the MAPEs are significantly lower
than those reported in Figure 8 and generally under 10%,
indicating (unsurprisingly) that solar sites are a much better
cloud sensor than cloud cover measurements in oktas. The
accuracy is near that of the maximum generation model under
clear skies. Recent work also uses data from nearby sites to
detect solar anomalies [33]. Solar-TK with this approach could
also be used for anomaly detection by detecting when the clear
sky index (Kpv) at nearby sites was substantially different.
This may indicate a fault at the site with lower Kpv .

B. Disaggregating Solar from Net Meter Data

There have been multiple different methods recently pro-
posed that “disaggregate” solar generation from net meter data
that is the sum of energy consumption and solar generation
data [12], [34], [35]. These proposed methods are complex
and generally require a significant amount of training data
from either the solar site being disaggregated or other solar
sites. Solar-TK’s modeling approach leverages aspects of some
prior work on solar disaggregation and thus enables a straight-
forward implementation using Solar-TK given some historical
net meter data from a site [12].

In the historical net meter data, we first find the minimum
power consumption at night and assume this is a home’s base
power consumption. Assuming power generation is positive,
and power consumption is negative, we add this minimum
power consumption to the net meter data to offset the effect of
the base power consumption on the maximum solar generation
that dictates our model. We then simply run the physical
parameter module on this modified historical net meter data.
The physical parameter module is able to derive accurate
parameters as long as there is at least two points in the data
under clear skies with a temperature difference, and where
consumption is near the base consumption. The extra condition
increases the historical data required to derive an accurate
model.

After deriving the physical parameters, we simply use the
maximum generation and weather-adjusted models as normal
to estimate the site’s solar generation, and then subtract it from
the net meter data to estimate energy consumption. We could
also replace the weather-adjusted module with the module
above that estimates solar output based on a nearby site to
improve accuracy, as done by a recent approach to solar
disaggregation [35]. Figure 10 shows the MAPE of the solar
power disaggregated from the 14 solar sites (which are all
homes that also consume power) using our weather-adjusted
module. As the graph shows, the MAPE using net meter data
is similar to when using pure solar data across the 14 sites.

C. Estimating Solar Energy Sharing Potential

Our last case study focuses on recent work that analyzes
the potential for solar energy sharing between neighbors in
developing regions [10]. In these regions, small-scale solar-
battery kits that include a single solar panel and a small car-
sized battery have become popular for providing supplemental
power, especially given the instability (or lack) of grid in-
frastructure. Unfortunately, given its small size, the battery
often fills to capacity early in the day, at which point it
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wastes the additional solar power. The work explores the
potential benefits of being able to share, rather than waste,
this surplus energy with nearby neighbors by analyzing a large
solar generation dataset from a solar-battery kit manufacturer.

The problem is that the data only reports the battery
charging rate: when the battery charge is below capacity, it
reveals solar generation, but when the battery is at capacity its
charging rate is 0 (and thus does not reveal solar generation).
As a result, the dataset does not convey the unrealized solar
potential available for sharing. Thus, the work estimated the
solar potential at each time period based on the average
historical weather at that time period (over the past 20 years).
Instead, Solar-TK can accurately model the incomplete data
to enable an estimate of the actual solar potential at each time
period. Doing so is straightforward, and simply requires feed-
ing each site’s data through the physical parameter, maximum
generation, and weather-adjusted generation modules.

Figure 11 shows the MAPE between the ground truth
data, and using Solar-TK to estimate potential, as well as
using the 20-year average historical potential at that time
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Fig. 11: MAPE using 20-year historical potential and Solar-
TK for the 36 solar sites in Western Kenya.

(regardless of the actual real-time weather) for 36 solar-battery
kit deployments. The ground truth only includes periods where
the battery is not at capacity and we know the actual solar
generation. As expected, the figure shows that using Solar-TK
significantly reduces the MAPE and improves the accuracy
of this data analysis. Since the dataset includes many nearby
sites, the accuracy could be further improved by computing the
Kpv , as described above, across all sites for periods when the
battery is not at capacity. The weather-adjusted module could
then be replaced by one that used that estimated potential when
the battery was full based on the Kpv of the nearest site that
did not have a full battery.

VII. RELATED WORK

There have been many decades of research on solar mod-
eling and forecasting using physical and empirical models.
Solar-TK builds on and leverages much of this work. The
underlying insights and algorithms that it uses are not novel.
In particular, it implements elements of a variety of data-driven
solar modeling approaches described in recent work [12], [13],
[14], as well as uses many of the same physical models as
PVlib [3] and PlantPredict [16]. SolarTK’s novelty lies in
both its simple design and decomposition of its basic modules,
which, as we show in our case study, enables researchers to
interpose on or extend them in useful ways. Solar-TK is usable
by non-experts, and intended to advance energy-efficiency
research that requires solar modeling and forecasting.



Solar-TK does not utilize as many of the physical models
used by PVlib and PlantPredict. As a result, its accuracy
potential is likely not as high. However, one insight of our
work is that the inaccuracy is dominated by coarse and
imprecise cloud cover measurements. Of course, SolarTK’s
weather-adjusted generation module uses very simple cloud
cover reports. In §VI, we show how to replace this module
with one that uses nearby solar sites to more accurately infer
cloud cover. This module could also be replaced with one that
infers the clear sky index using solar radiation data gathered
from ground-level sensors or satellite measurements [6].

Solar-TK also supports solar forecasting using the same
model, but using forecasted temperatures and cloud covers.
We do not evaluate weather forecast accuracy here, as it can
vary widely at different locations, but note that it is often
another major source of inaccuracy (along with cloud cover
measurements) that dwarf the inaccuracy from many advanced
physical models. Of course, there is also a significant body
of work on solar forecasting, which uses a wide variety of
techniques at different time resolutions and horizons [5]. We
do not claim that Solar-TK’s forecasts are more accurate than
these prior techniques. Our evaluation only shows that, given
perfect weather forecasts, Solar-TK’s accuracy should be no
worse than the model accuracy presented in §V.

VIII. CONCLUSIONS

This paper presents Solar-TK, a data-driven toolkit for solar
performance modeling and forecasting that is simple, exten-
sible, and publicly accessible. Solar-TK’s goal is to advance
energy-efficiency research that requires accurate solar models
and forecasts. We describe Solar-TK’s design, which consists
of independent modules that connect together to implement
basic solar modeling and forecasting. We compare Solar-
TK’s approach with PVlib’s pure physical modeling approach
both qualitatively and quantitatively, and show that it yields
comparable, and sometimes better, accuracy. We also use
Solar-TK as part of three case studies to show how it could be
used and extended by researchers. We plan to publicly release
Solar-TK in the near future.
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