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The popularity of rooftop solar for homes is rapidly growing. However, accurately forecasting solar genera-
tion is critical to fully exploiting the benefits of locally-generated solar energy. In this paper, we present two
machine learning techniques to predict solar power from publicly-available weather forecasts. We use these
techniques to develop SolarCast, a cloud-based web service, which automatically generates models that pro-
vide customized site-specific predictions of solar generation. SolarCast utilizes a “black box” approach that
requires only i) a site’s geographic location and ii) a minimal amount of historical generation data. Since we
intend SolarCast for small rooftop deployments, it does not require detailed site- and panel-specific informa-
tion, which owners may not know, but instead automatically learns these parameters for each site.

We evaluate the accuracy of SolarCast’s different algorithms on two publicly available datasets, each con-
taining over one hundred rooftop deployments with a variety of attributes, e.g., climate, tilt, orientation,
etc. We show that SolarCast learns a more accurate model using much less data (∼1 month) than prior
SVM-based approaches, which require ∼3 months of data. SolarCast also provides a programmatic API, en-
abling developers to integrate its predictions into energy-efficiency applications. Finally, we present two case
studies of using SolarCast to demonstrate how real-world applications can leverage its predictions. We first
evaluate a “sunny” load scheduler, which schedules a dryer’s energy usage to maximally align with a home’s
solar generation. We then evaluate a smart solar-powered charging station, which can optimally charge the
maximum number of electric vehicles (EVs) on a given day. Our results indicate that a representative home
is capable of reducing its grid demand up to 40% by providing a modest amount of flexibility (of ∼5 hours)
in the dryer’s start time with opportunistic load scheduling. Further, our charging station uses SolarCast to
provide EV owners the amount of energy they can expect to receive from solar energy sources.
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1. INTRODUCTION
Solar generation capacity is experiencing a dramatic increase worldwide, with its peak
capacity having risen five-fold over the past five years from ∼2300 megawatts (MW)
in 2010 to ∼12000MW in 2014 in the U.S alone [Marcacci 2014]. Over 4750MW (or
49%) of this new capacity has been installed in just the last year alone, due, in part,
to a rapid drop in solar panel prices, which have fallen 60% since 2011 [fac 2014].

1A conference version of this work appeared at the ACM Buildsys 2014 conference [Iyengar et al. 2014].
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Solar deployments come in a wide variety of sizes, ranging from the massive solar
farms deployed by utilities (and some datacenter operators [Apple 2013]) to small and
medium-sized deployments deployed by homeowners, farmers, and local businesses.
Overall, nearly half of aggregate solar capacity now derives from small-scale home
deployments (<10kW), many of which rely on net metering to transfer surplus energy
to the grid [Marcacci 2014], thereby eliminating the need for expensive battery-based
energy storage. As the number of home deployments grows, the need for predictive
tools that provide near-term forecasts of solar generation at the time-scales of tens
of minutes to days is becoming increasingly important. Solar energy forecasts have a
wide range of applications. For example, smart buildings could employ forecasts for
opportunistic scheduling of elastic loads, while utilities could use them to estimate
aggregate demand across a customer base with a high penetration of solar energy.

In this paper, we argue that predicting solar generation for small-to-medium-sized
solar deployments raises a different set of challenges than predicting it for massive
solar farms. Specifically, the location of massive solar deployments is carefully chosen
to be in open spaces that minimize occlusions, which enables installers to maximize
solar output by precisely tuning the orientation of the panels or employing “trackers”
that continuously change the tilt of the panels to track the sun. Further, industrial
solar farm operators routinely clean the panels to keep them free from dust or snow
in order to maintain optimal solar output. At the same time, industrial operators also
have the technical expertise and resources to carefully design and tune custom models
to predict future solar output.

Unfortunately, the characteristics above do not hold for most small-to-medium-scale
solar deployments. For instance, the orientation and pitch of a home’s roof constrain
the installation of rooftop solar panels and limits the ability to optimize their place-
ment. As a result, shadows from nearby objects, such as trees or even neighboring
buildings, are common; these shadows complicate solar generation forecasting, as they
change based on the time of the day and season of the year. Roofs are often not eas-
ily accessible, which also limits the ability to clean the panels. Finally, neither the
owners nor the installers of small solar deployments typically have the technical ex-
pertise or the resources to develop custom prediction models that are specific to their
setup. The large number of small-to-medium-scale deployments makes it challenging
for technical experts to manually develop custom models for each site, as is common
with industrial-scale solar farms. In fact, due to the factors above, since the models for
small rooftop solar deployments are actually more complex and dynamic than for large
solar farms, they require even more time and expertise to develop. In addition, the
aggregate amount of solar capacity installed at small residential solar deployments
is expected to exceed that of utility-scale deployments for the first time in 2017 [sol
2016].

Despite the challenges above, accurate near-term predictions, if available, have the
potential to yield numerous benefits. Effective planning is key to maximizing the en-
vironmental benefits of solar energy and enabling it to scale to a significant fraction
of homes. For instance, homes that plan to better align their energy usage with solar
generation can substantially decrease the surplus energy they contribute to the grid
via net metering. Minimizing the energy contributed by net metering is important for
two reasons.

— First, consuming power at the point of production is inherently more energy-efficient
than net metering, since it eliminates transmission losses.

— Second, the increasing stochasticity in demand from net metered solar installations
complicates utilities’ task of balancing supply and demand in real time, since utili-
ties cannot accurately account for home solar generation when planning generator
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dispatch schedules, i.e., when to activate and deactivate generators to ensure the
supply of power matches the grid’s net demand.

As a result, most states place strict limits on both i) the amount of power individual
consumers may net meter and ii) the total fraction of generation contributed by net me-
tering [Barnes et al. 2013]. In addition, there is also a concern that net metering may
actually increase the electricity costs of consumers without solar installations [Petlin
and Wu 2013], since the increased generation costs from satisfying a more stochastic
demand are distributed across all consumers [Kaplan 2008].

Since solar energy today only contributes a small fraction of grid energy (∼1% [Mar-
cacci 2014]), the lack of effective planning does not currently pose a significant prob-
lem. However, as solar penetration rises, effective planning by homes and utilities
will be increasingly important to maintain grid stability. To facilitate better planning
at large scales, we present SolarCast, an open cloud service that accurately forecasts
near-term energy generation for the increasing number of small-scale residential so-
lar deployments. Unlike prior work on solar forecasting, which often relies on detailed
site-specific information to develop forecast models, SolarCast automatically generates
prediction models using a “black box” approach that only requires i) a site’s location
and ii) a minimal amount of historical generation data. Our black box approach fol-
lows from SolarCast’s design as a cloud-based service: since most homeowners do not
know the arcane details of their solar installation required by many models, such as
the efficiency and type of their panels or their orientation, we learn these parameters
when possible, and dynamically adjust predictions to account for their impact, when
not. Since the numerous new solar installations that are rapidly coming online have
little historical data, SolarCast also focuses on reducing the amount of historical data
necessary for accurate modeling, which has not been explicitly addressed in prior work.
Instead, prior work often assumes historical generation data is available for each time
of the year, which implicitly requires multiple years of data, since the maximum solar
generation capacity varies at each time of the day on each day of the year. In addition,
SolarCast is a live service that continuously updates both its i) model based on fresh
data and ii) predictions based on new weather forecasts. In designing SolarCast, we
make the following contributions.
Automatic Model Generation. We develop a system for automatically generating
accurate prediction models customized for each solar deployment, while also minimiz-
ing the amount of i) information about the deployment and i) historical generation
data necessary to generate such models. Our system leverages these techniques and
uses continuous learning to refine the model as new data becomes available.
Black Box Prediction Model. We employ “black box” model for each solar site that
learns important static and dynamic parameters of the installation. Static parame-
ters include the panels’ tilt and orientation, while dynamic parameters include dust
and pollen, snow cover, and shade from leaves or buildings. We present and compare
results from building prediction models using two machine learning techniques: i) a
custom non-linear least square curve fit, and ii) a deep neural network model. These
techniques automatically learn the static site-specific parameters of a deployment, e.g.,
tilt and orientation, while adjusting for errors online due to dynamic parameters.

To minimize the need for historical generation data, we normalize each point in time
relative to the ideal cloudless irradiance based on the location and angle of the sun.
Our key insight is that the same weather parameters affect ideal cloudless irradiance
by the same proportion at any time, i.e., the same weather will reduce the ideal irradi-
ance by 50% at both 5pm and 12pm. This normalization enables SolarCast to learn a
single model for any granularity of data, rather than multiple models for different pe-
riods of time. By better modeling of the domain, we are able to prepare a single model
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across different time periods and thus substantially increase the amount of training
data available for predicting solar power at any time period. In contrast, prior work
builds a separate model for each time of the day and day of the year [Sharma et al.
2011]. This insight also enables our technique to be agnostic to data resolution. As we
show, our models can predict solar power at high data resolutions, e.g. every minute
for the next hour, give accurate weather forecasts at those resolutions.
Scalable Cloud Service. We design SolarCast as an open cloud service that provides
customized predictions for each solar site based on models learned from both historical
data and continuously refined using live data. In addition, the service also offers a web-
based API to enable application developers to incorporate SolarCast predictions into
their energy management applications.
Implementation and Evaluation. We evaluate SolarCast’s two prediction models on
two publicly available datasets, each containing over one hundred rooftop deployments
varying in the installation size from different locations (and climates) across the U.S.
In addition, we also evaluate the performance of our models on three utility-scale so-
lar farms. Our results show that SolarCast learns a more accurate model significantly
faster (using less training data) than an approach based strictly on Support Vector
Machines (SVMs), which requires a different model for each time period. In addition,
we present two case studies. Our first case study implements sunny load scheduling
to maximally align a dryer’s operation (typically the largest load in a home) with so-
lar generation. Our second case study examines a solar-powered EV charging station,
which provides EV owners an estimate of the amount of charging they can expect to
receive from green solar energy. In the first case study, we find that a representative
home is capable of reducing its grid energy demand up to 40% by providing a mod-
est amount of flexibility (of ∼5 hours) to defer the dryer’s start time. In the second
case study, we show that SolarCast provides EV owners an accurate measure of solar
charging capacity.

2. BACKGROUND AND MOTIVATION
Our work focuses primarily on rooftop solar deployments for smart homes and build-
ings, although we note that our techniques are applicable to other small-to-medium-
scale solar deployments, e.g., such as ground-based solar arrays. We assume that the
smart home or building uses its locally generated solar energy whenever possible and
net meters any excess solar energy to the grid. The goal of our work is to build a sys-
tem that provides short-term forecasts of solar generation for the next few hours or
days that are customized to each site. Other applications may use these predictions to
optimize a building’s energy usage. To provide customized forecasts, our system auto-
matically learns a custom prediction model for each solar installation that accounts for
many of the factors that influence solar generation. The primary factor that governs
solar output is the solar irradiance, or the amount of sunlight visible by the panels.

As is well known, solar generation is intermittent since solar irradiance itself de-
pends on many factors, including the weather, e.g., a sunny versus cloudy day. Solar
generation also depends on other factors, as shown in Table 1, including: i) panel char-
acteristics, such as their size, type, age, and number, ii) site characteristics, such as
panel placement, tilt, and orientation, as well as the geographic location of the instal-
lation, iii) surrounding characteristics, such as nearby trees, neighboring buildings or
other structures that may cast shadows on panels; the amount of shadows will them-
selves vary by the time of the day, as well as by the seasons and foliage, iv) seasonal
characteristics, such as the season of the year, which determines the length of the
day and the solar intensity, v) weather characteristics which encompass a variety of
weather parameters including cloud cover and temperature, and vi) other dynamic
characteristics such as dust or snow on the panels, which vary over time. In addition,
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electrical characteristics also affect generation for net metered deployments, as solar
output depends on the inverter’s operating voltage and the grid’s voltage. While we
discuss these factors in more detail, we note that many of them are highly specific
to a particular installation. Thus, precisely quantifying them is not practical, or even
possible, for owners of solar deployments having limited technical background.

Thus, for SolarCast, we assume knowledge of only the GPS coordinates of the in-
stallation, specified in the form of a street address, and a minimal amount of training
data, which records recent history of solar generation at a site. We note that, unlike
some prior efforts that require a substantial amount of training data to learn a model,
our goal is to minimize the amount of training data needed to learn an initial model.
We impose this requirement since an explicit goal of our system is to provide accurate
predictions even to new rooftop solar installations that may have only a small amount
of historical data. Since new solar installations are coming online rapidly, many do not
have significant historical data. Since many solar installations provide live generation
data through web-based interfaces, we assume that our system may also use live data,
when available, to continually refine its models and adjust its predictions.

A final design goal is automation and scale. Since there are a large number of small
solar deployments, the model generation process must be automated to scale to many
deployments and provide continuous predictions. Since each site has unique charac-
teristics, each generated model will be different, which requires our system to learn a
unique model for each site. Lastly, we note that the generated models are themselves
likely to be more complex than those for large solar farms which have “better opti-
mized” installations that may permit static models. In contrast, a static model may
not suffice for rooftop installations when accounting for the impact of dynamic param-
eters, such as shade, foliage, dust, and snow. Below we detail how weather conditions
and configuration parameters affect solar power output, as well as our motivation for
considering a black box approach for predicting solar generation.

2.1. Impact of Weather Conditions
The power generated by a solar panel depends on the amount of light, i.e., solar radi-
ation, incident on its surface. The radiation from the sun passes through the earth’s
atmosphere, resulting in some loss of energy due to scattering by atmospheric compo-
nents in the sky, such as cloud cover, vapor, dust, and pollen. The incident radiation,
called insolation, has a direct bearing on the amount of solar power generated. Several
other weather parameters, such as humidity, dew point, temperature, and precipita-
tion, also affect insolation. Sharma et al. [Sharma et al. 2011] discuss how different
weather parameters affect solar generation and quantify their correlation with solar
irradiance. In addition, weather conditions also affect the panel properties. As with
any semiconductor device, solar cells are sensitive to temperature. As the temperature
increases, the voltage across each cell reduces. The cell temperature tends to be higher
than the ambient temperature by ∼20◦C. Also, every 1◦C rise in the cell temperature
above 25◦C reduces the efficiency by 0.5% [Skoplaki and Palyvos 2009]. Further, hu-
midity causes ingression to the solar cell enclosure. Mekhilef et al. [Mekhilef et al.
2012] detail the impact of humidity, air velocity, and dust on the panel’s efficiency.

2.2. Impact of Configuration Parameters
Apart from atmospheric conditions, installation parameters, such as tilt and orien-
tation of the panels, also affect the power generation. If the tilt and orientation of a
panel is known, a simple trigonometric formula exists, as discussed in the next section,
to derive insolation incident on the panel for the given tilt, orientation, and location of
the installation. Unfortunately, while large solar farms may know the precise tilt and
orientation of their panels, owners of rooftop installations may not know the precise
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Table I. SolarCast employs different techniques to capture panel and configuration parameters.

Parameters Variability Our Mechanism
Panel Parameters Static ML Regression
Tilt Static Optimization Parameter
Orientation Static Optimization Parameter
Temperature Coefficient Static Optimization Parameter
Tree Shade Dynamic Adaptive Learning
Snow/Dust/Pollen Dynamic Adaptive Learning

value of the tilt and orientation. In addition, rooftop tilt and orientation is rarely ideal,
and is often dictated by site-specific issues, such as avoiding nearby tree shadows and
optimizing roof space. As a result, these parameters tend to vary widely for different
sites. Further, other site specific factors, such as the inverter efficiency, battery capac-
ity and condition, and grid connectivity, also affect the power generated from a solar
panel. Technical manuals for photovoltaic (PV) systems [inverter 2014] discuss these
issues in detail. As with tilt and orientation, a typical homeowner is also not likely to
know these more detailed parameters for a typical rooftop installation.

2.3. Our Black Box Approach
Prior work [Sharma et al. 2011] has focused on using machine learning techniques
to automatically learn the impact of weather conditions, while assuming that panel
properties and configuration parameters are known in advance. However, for resi-
dential rooftop installations, it is often difficult to obtain the panel properties and
installation-specific configuration parameters because homeowners generally do not
know these technical details. Further, it is even more challenging to know dynamic
factors, such as shade, foliage, and pollen, which vary either seasonally or irregu-
larly. Consequently, designing prediction models for residential rooftop installations
requires a new approach that should automatically learn panel properties and con-
figuration parameters with limited historical power data. Additionally, these models
should automatically adapt to the dynamic parameters that vary over time, such as
tree shade and snow, dust, and pollen. Table 1 shows which panel properties are static
and which are dynamic.

To generate solar power prediction models at scale, for any solar installation in the
country, we design a black box model that only requires a site’s location and minimal
historical generation data to generate a customized prediction model, tailored to that
particular site. Our black box model automatically learns static parameters, such as
tilt and orientation, using a grid search technique, and then uses a machine learning
technique to predict power from weather forecasts. In addition, our black box model
also employs an adaptive learning algorithm to account for dynamic properties, and to
continue refining the model as and when new data becomes available.

3. AUTOMATED BLACK-BOX MODEL GENERATION
While there has been significant work in predicting solar generation, our approach
differs from prior work in three significant respects. First, SolarCast automates the
model generation process—it requires minimal initial inputs from the user and re-
quires no manual intervention by the user to generate a model. Second, SolarCast
uses a black-box modeling approach to learning the value of unspecified parameters.
Third, SolarCast continuously retrains and refines the model using live data, while
also using live data to adjust for the impact of dynamic site-specific factors that are
impossible to learn.

Similar to prior work on machine learning-based solar predictions, SolarCast also
employs machine learning techniques to derive its model. However, the primary dif-
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ference from prior work is that SolarCast automates the process of learning the model
itself, which we refer to as automated model generation. Such an automated model
generation approach is key to scaling SolarCast to large numbers of small-sized de-
ployments. At the heart of SolarCast’s automated model generation is a black-box
modeling approach, which represents another departure from prior work that typi-
cally uses white box techniques. To better understand the differences between the two,
consider the following canonical white box modeling approach based on machine learn-
ing. In this case, the solar deployment is a “white box,” which means that all important
parameters of the deployment, such as its panel type, tilt, orientation, efficiency, etc.,
are assumed to be known. Further, a history of past generation data at different times
of the day and seasons of the year is given, along with the observed weather conditions
at those times. The machine learning approach then simply learns a map between the
specified inputs and the observed solar output.

The learned model is then a “function” that, given certain inputs, such as weather
and time of day, will compute the expected solar output under those conditions. Much
of the prior work, including some of our own [Sharma et al. 2011], takes such an ap-
proach. In contrast, in a black box approach, the solar deployment is assumed to be a
“black box” where site-specific parameters, such as the number and type of panels, tilt,
orientation, shadows, etc., are all unknown. Instead, a past history of weather data
and the observed solar generation (inputs and outputs of the black box) are given and
all unknown parameters must be learned. Intuitively, this is done by searching for the
combination of these unknown parameters that best explains observed outputs. Some
dynamic parameters that are challenging to learn in advance are accounted for by ad-
justing the predictions dynamically based on live data. In this manner, a black box
method is more complex than white box methods, but also requires fewer inputs and
less training data (since the models are continually refined as more live data becomes
available).
Accuracy Metric. Note that we use the Mean Absolute Percentage Error (MAPE) as
our preferred statistical metric to measure a model’s accuracy. Though the Root Mean
Squared Error (RMSE) is a well-known statistical metric, we prefer the MAPE because
it is capacity agnostic, which allows us to directly compare accuracy across panels with
widely different capacities. Such comparisons are not possible with RMSE. Further,
since weather forecasts are occasionally erroneous, the MAPE is less sensitive than
the RMSE to occasional large errors. Thus, MAPE is a better metric to illustrate the
forecast prediction error. The MAPE for n samples is expressed as:

MAPE =
100

n
·

n∑
t=1

∣∣∣∣At − Pt

At

∣∣∣∣ (1)

Here, At and Pt are the instantaneous actual and the predicted generation value at
time t. Unfortunately, problems can occur when calculating the MAPE using a series
of small denominators, as they will substantially increase the MAPE. Instantaneous
generation can vary significantly, briefly dropping to low values even during near ideal
conditions. To circumvent this ‘divide by zero’ problem, we change the denominator in
the original formula from At to A

′
, which is the average value over the entire time

interval t. Further, MAPE values calculated this way are insensitive to the inclusion
of nighttime actual and predicted values as both would be zero. We use the below
formula to report prediction errors.

MAPE =
100

n
·

n∑
t=1

∣∣∣∣At − Pt

A′

∣∣∣∣ (2)
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Below, we start our discussion with the description of the process of model genera-
tion for predicting solar power. This essentially outlines the various inputs to the func-
tion of the learned model. After which, we move on to describe two distinct machine
learning techniques to build our custom site-specific model to predict solar power while
learning the hyperparameters. First, we present a constrained least-squares curve-fit
method, which uses training data to learn hyperparameters and the linear combina-
tion of features presented in the previous section. Then, we present the deep neural
network architecture which is capable of learning complex relationship that exists
between weather parameters and the solar power. Following this, we show how our
models can generate a site-specific model for a solar installation in an online setting
where fresh solar generation data is available to continuously refine our models with
diminishing prediction error.

3.1. Model Generation
To generate our model, we first prepare a forecast → power model that predicts so-
lar power from weather forecasts for a sun-tracking solar installation that always
keeps its panels facing the sun, e.g., oriented towards the equator. Next, we extend
the model to automatically learn the static configuration parameters, such as tilt and
orientation. As photovoltaic (PV) panels use semiconductor-based P-N junctions, an
increased temperature also increases the resistance and thus reduces the overall cur-
rent (and power) generated. However, different PV panels have a different tolerance to
high temperatures. For example, amorphous silicon solar cells are more resilient than
mono and polycrystalline cells. Thus, we also need to learn an adjustment factor for a
given installation for different ambient temperature changes. We then further extend
the model to create an adaptive version that not only automatically learns the config-
uration parameters, but also accounts for the dynamic environmental factors, such as
snow, dust, and pollen.

3.1.1. Solar Model. Much of the prior work focuses on predicting solar irradiance from
weather forecasts and then using the irradiance→ power formula to predict the solar
power. Since designing both the forecast → irradiance model and irradiance → power
model require historically observed irradiance, this approach is not scalable to millions
of rooftop installations because the historical irradiance data is generally not available
for these sites. So, instead, we focus on designing a prediction model that directly
predicts solar power from weather forecasts for any solar installation at any location
on earth. We first assume the optimal configuration for the solar panel, i.e., the panel
is always facing the Sun and is normal to the solar radiation.

As described in prior work [Sharma et al. 2011], weather metrics exhibit complex re-
lationships with solar intensity, which can be captured by advanced techniques, such
as high-dimensional machine learning regressions. Feature selection and feature en-
gineering play an important role in machine learning. Similar to prior work [Sharma
et al. 2011], we consider all weather parameters included in National Weather Service
forecasts, including sky cover, temperature, humidity, dew point, precipitation poten-
tial, and wind speed, as input parameters, but unlike prior work, we create a new
feature set by normalizing all weather parameters by the cloudless irradiance (e.g.,
by multiplying by the cloudless irradiance). This normalization of features is based on
our intuition that the same weather parameter always affects the solar irradiance in
the same proportion, regardless of the time. For example, if at 6pm a certain weather
parameter causes cloudless irradiance to be cut in half, then if the weather parameter
is the same at 12pm, it will also cause the cloudless irradiance to be cut in half (even
though cloudless irradiance at 12pm is different than at 6pm). Additionally, since the
cloudless irradiance depends on the altitude and azimuth angles of the sun, by mul-
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tiplying the cloudless irradiance by the weather parameters our model also captures
the seasonal and diurnal variations of the sun’s position. Consequently, we formulate
the power prediction regression model as:

Pt = f
(
Scloudless
t ·Wt

)
(3)

Here, Pt and Scloudless
t are predicted power and cloudless irradiance, respectively, at

time t, Wt is a vector of size i containing the forecast of the weather parameter at
time t, and f is the function that we determine using machine learning regression.
This novel feature engineering enables prediction of solar power at any time of the
day without learning a separate model for different hours, a drawback of the proposed
model by [Sharma et al. 2011]. Our insight and the normalization above is the key to
enabling our techniques to use all historical generation data as training data for the
same model. Prior work has had to learn different models for different time periods,
e.g., one model per month, since the maximum solar generation varies throughout the
year. These prior approaches require more time to collect training data, e.g., multiple
years, and are significantly less accurate, as even the maximum solar capacity each
day within a given month will vary.

3.1.2. Black-box Learning of Static Parameters. The above model assumes the optimal con-
figuration of solar panels and might work well for a sun-tracking solar installation.
However, a typical rooftop installation does not have the optimal configuration, since
its configuration is dictated by the tilt and orientation of the roof. Further, panel prop-
erties and configuration parameters vary widely across different sites and are often
unknown to owners. Thus, to automatically learn these static parameters and gener-
ate site-specific prediction models we modify the above regression model as follows:

Pt = f ′
(
Smodule
t · νt ·Wt

)
(4)

Pt andWt are the same as in the previous section. In addition, Smodule
t is the perpendic-

ular component of the cloudless irradiance on the panel, νt is the adjustment factor due
to the changes in the ambient temperature, all at time t. We then learn the function f ′,
for given values of static parameters, using the machine learning regression technique
from the previous section. Since the component of the cloudless irradiance perpendic-
ular to the surface of the panel depends on - (i) the panel’s tilt and orientation, and (ii)
the Sun’s altitude and azimuth, Smodule

t , is expressed as:

Smodule
t = Scloudless

t · (cosαt sinβ cos(ψ − θt) + sinαt cosβ) (5)

Here, αt and θt are the altitude and azimuth of the Sun at time t, respectively, whereas
β and ψ are the tilt and orientation of the panel, respectively (see Figure 1). The details
involved in deriving this equation can be found in [Sproul 2007]. For simplicity, we as-
sume the panel’s orientation to be same as the sun’s azimuth in the figure. In addition
to tilt and orientation, ambient temperature has a direct bearing on the power output
from a photovoltaic panel.

To account for the impact of temperature on the panel output, we must calculate νt
for different time periods t. As noted earlier, different panels have a varying amount of
resilience to increased temperature. This depends on the type of panel, e.g., monocrys-
talline, polycrystalline, amorphous, etc., and the distinct manufacturing processes fol-
lowed by panel manufacturers. For our black-box model, we assume information, such
as the type of panel and manufacturer information, is unavailable. However, based on
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Fig. 1. Tilt of panel (β) and solar elevation (α)

different adjustment factors discussed in the literature, we have the following general
equation to account for temperature changes with hyperparameters a and b:

νt = a · (T cell
t − b) (6)

We learn the hyperparameters, such as tilt (β), orientation (ψ) with a and b for tem-
perature adjustment, using the parameter optimization techniques detailed below. In
summary, SolarCast automatically learns static configuration parameters such as tilt,
orientation, temperature adjustment factor, and generates a custom site-specific pre-
diction model for any solar installation ranging from a single panel rooftop installation
to a large solar farm; it only requires the location and historical power data from the
site.

3.2. Constrained Least-Squares Curve-Fit
We apply the constrained least-squares curve-fit technique on a training dataset to
determine the function f , i.e. a linear combination of different features discussed in
the previous section. Least squares regression is a simple and commonly-used tech-
nique to estimate a value to be predicted from a set of variables. Here, we leverage
this technique to predicting solar power from weather forecasts. This regression tech-
nique minimizes the sum of the squared differences between the observed solar power
and the power predicted by a function approximation of forecast parameters. Using
this technique, we initially use historical solar power data (also referred as training
data), to learn optimal coefficients for the different features. Essentially, as we have
few unknowns, in the form of features and hyperparameters, limited training data
(more than the number of features and hyperparameters) is sufficient to build a rea-
sonable model. Next, with the help of these learned parameters, we can make future
predictions when we are supplied with expected feature values.

3.2.1. Hyperparameter Learning. While learning the function f , we apply constraints on
tilt and orientation to reflect the realistic range of values, such as the tilt of a panel can
only range from 0◦ to 90◦. Thus, apart from learning the coefficients for the combination
of individual features, this technique can also learn the hyperparameters that best fit
the training data. The learned hyperparameters with the coefficients together help in
predicting solar power.

3.2.2. Model variation. The function f , described in Equation 4, can be used to learn
the static parameters and to predict the solar power. Hereinafter, use of constrained
least-squares curve-fit on the function f defined by Equation 4 is referred as Black

ACM Transactions on Cyber-Physical Systems, Vol. 000, No. 000, Article 00, Publication date: 2016.



00:11

box (Static) model. However, apart from the static configuration parameters, dynamic
environmental factors, such as tree shade, foliage, pollen, snow, and dust, also affect
the power output. A few of these parameters, such as foliage and pollen, have seasonal
variations, while others, such as leaves and dust, vary irregularly. Since, unlike large
solar farms, rooftop installations are not cleaned regularly, we must account for the dy-
namic factors in our prediction model. Our intuition is that power output in the recent
past contains some information about the impact of dynamic factors. To compensate
for prediction errors due to the dynamic factors we add a new feature P output

t−24h , which is
essentially the power output at the same time the previous day, in the feature set. So,
the predicted power at time t can be expressed as:

Pt = f ′
(
Smodule
t · νt ·Wt, P

output
t−24h

)
(7)

Notations Pt, Smodule
t , νt and Wt have been introduced earlier. Since P output

t−24h is a dy-
namic parameter that changes every day, we can account for surrounding characteris-
tics such as tree shade and dynamic characteristics such as snow, dust, pollen etc.

Hereinafter, use of constrained least-squares curve-fit on the function f defined by
Equation 7 is referred as the Black box (Adaptive) model as it can adapt to account for
dynamic environmental factors, that vary seasonally or irregularly, by automatically
correcting the model to account for effects due to them.

3.3. Deep Neural Network with Custom Input Layer
A Neural Network is a model based on the human brain and nervous system. Similar
to the biological model, the neural network model in machine learning consists of a
network of neurons. Each neuron has multiple inherent parameters associated with
each neuron that includes a weight term and a bias term. These terms are applied
to one or more inputs received by the neurons. A layer of the neural network might
contain one or more such neurons. Each layer has an activation function, which will
fire the neurons in it depending on the values of the input along with the weight and
the bias term. There are various activation functions which can be used in a neural
network model. The weights and the biases for the different neurons in each layer are
learned using backpropogation algorithm. This algorithm uses training data to tune
these terms. The power of the neural networks lies in their ability learn arbitrary
functions to map the inputs to the output. Further, one can use multiple layers of neu-
rons stacked one top of the other with each of these activated using different activation
functions. The resultant model renders even greater power to learn complex functions.
These layered neural networks are called deep neural nets.

Deep neural nets have been applied in recent years to several domains, such as
computer vision, natural language processing, and speech recognition. Theoretical ad-
vances in training deep architectures with the advent of GPUs have now made deep
neural nets the technique of choice for solving challenging problems in artificial intel-
ligence.

In our case, we build a 4-layer deep neural network as shown in Figure 2 to learn
the function defined by Equation 4. This deep neural network produces an expressive
model that is capable of learning the complicated relationship between their inputs
(features) and output (solar power). As shown in the figure, each layer, except the last,
consists of an equal number of neurons. This number is equal to the number of features
used in our model. The first layer receives the raw features discussed earlier, as inputs.
The subsequent layers receive all the outputs of the previous layer as inputs. For the
first two layers, we use a Rectified Linear Units (ReLU), the most popular activation
function for deep neural networks. As we have formulated solar power prediction as a
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Fig. 2. SolarCast’s Deep Neural Network Architecture

regression problem, we use a linear activation function for the next two layers. Clearly,
as the solar power generated at a given time is a scalar, the last layer contains just one
neuron that outputs the prediction. As with any machine learning model, its complex-
ity needs to be controlled to avoid overfitting, which is typically caused by parameters
taking extreme values. Deep neural nets have multiple neurons, each containing a
weight and a bias term. These parameters could take large at the end of training and
could perform poorly while making predictions. To avoid this, we use L2 regularizers
on the layer parameters. Hereinafter, this model is referred as a Black box (Deep).

3.3.1. Hyperparameter Learning. We use a grid search technique to automatically find
the tilt and orientation of a solar panel installation. The grid search algorithm finds
the tilt and orientation that minimizes the MAPE value by cross-validating over train-
ing data. Firgure 3 shows the MAPE values for the different combination of tilt and
orientation for a solar installation. Here, the tilt of 20 degrees and orientation of 180
degrees (panel facing south) has the lowest MAPE.

3.4. Online Learning
Like any regression model, SolarCast also requires historical data (of several months)
for training, which increases the barrier to using its services. Gathering sufficient his-
torical data is especially challenging for new installations or existing installations that
have not been continuously monitoring and archiving power generation since deploy-
ment. Further, not all homeowners install sophisticated monitoring devices, which can
store data for several months or years. With limited training data, the machine learn-
ing models discussed earlier might generate poor results as with few examples the
generalization error is higher.

To address issues with insufficient historical data, SolarCast employs an online al-
gorithm that starts generating site-specific prediction models from as little as one to
two days of historical data. Further, SolarCast stores the past data for each site and
retrains (and refines) the model as it gets more recent data from the site. This step in-
volves using the machine learning algorithms described earlier to be used repeatedly
as and when new data is available. Albeit poor in the beginning, the error associated
with the SolarCast’s predictions will trend lower with more data available to correctly
train the machine learning model.

To see how quickly our online approach achieves a prediction accuracy of the static
or adaptive model generated with sufficiently large training data, we start the online
model with just one day of training data. As shown in Figure 4, the online model
rapidly converges, within 10%, to the static model within one month. This illustrates
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that any new or old installation can start using SolarCast service with just a few
weeks of historical data. Further, we compare our online approach with the online
version of the machine learning prediction model from [Sharma et al. 2011] using a
Support Vector Machine (SVM) with a linear kernel, hereinafter referred as the SVM-
ML model. The figure shows that our adaptive model requires much less training data
than the SVM-ML model to create site-specific prediction models. As SVM-ML learns
a separate model for each time of the day, essentially leveraging only (1/24)th of the
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training data, the MAPE improves more slowly over time. Also, notice MAPE for both
approaches stabilizes with more data. This graph uses the constrained least-squares
curve-fit technique described below for learning the model. As we show in Section 5,
the deep neural network model performs even better.

In summary, SolarCast’s online learning technique can generate site-specific predic-
tion models with as little as a few weeks of historical data and keeps on refining the
models as and when it gets new data from the sites.

4. SOLARCAST CLOUD SERVICE
In this section, we first describe the high-level architecture of SolarCast, followed by
our prototype implementation.

4.1. Architecture
SolarCast provides a web-based service (see http://solarcast.cs.umass.edu) that house-
holds can use to predict solar power generation from their own installations for short-
to-medium timescales ranging from tens of minutes to a few days. Unlike prior ser-
vices [pvwatts 2016], which are either proprietary or require knowing installation-
and panel-specific parameters, SolarCast does not require any panel or configuration
parameters from the user. Instead, its black-box service automatically learns these
parameters, as discussed in the previous section.

SolarCast consists of five primary components, which we detail below: (a) Profile
Manager, (b) Visualization Engine, (c) Predictive Model Generator, (d) Power Predic-
tor, and (e) Storage Engine. First and foremost, a user needs to create an account with
SolarCast, and then create an installation profile. The installation profile contains the
site location and any other optional information provided by the user. The installation
profile is the key information for all other components; they operate on a per-profile
basis. A user can then have multiple installation profiles, where a profile may be asso-
ciated with multiple users.
Profile Manager. The profile manager is responsible for managing users and associ-
ated profile information. When a user logs in, the profile manager gets the associated
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profile(s) and other information from the storage engine and calls the visualization
engine to display the required information on the user’s browser.
Visualization Engine. The visualization engine interacts with the profile manager
and power predictor to get the necessary information, such as point forecast, average
forecast, and predicted power generation, to render and display on the user’s browser.
The graphical and intuitive display enables the user to easily grasp the historical, as
well as predicted power generation, for any time interval in the future or past.
Storage Engine. The storage engine is responsible for formatting and storing raw
historical, as well as forecast, data into a relational database. Further, it also stores
customized site-specific forecast models in the database. All other components contact
the storage engine for retrieving information, such as historical/forecast data and fore-
cast models. When a user uploads historical power data it also pulls corresponding
forecast data from Forecast.io to store in the database.
Model Generator. The adaptive model generator and power predictor are the core
components of SolarCast. Whenever a user uploads historical power data for an in-
stallation profile, the profile manager first calls the storage engine to store the data
and then triggers the adaptive model generator. The model generator gets the stored
data for that profile from the storage engine and runs the ML-based adaptive algo-
rithm to generate a custom prediction model for that installation profile. Moreover,
the model generator automatically refines the prediction model if the user uploads
any new information.
Power Predictor. The power predictor is called when a user sends a request to gen-
erate a prediction report for a selected time interval. The power predictor gets the
forecasting model from the storage engine, pulls real-time forecast data from Fore-
cast.io, and predicts power generation for the selected interval. The web service calls
the visualization engine to format the results and display them to the user; it provides
point-by-point predictions as well as average prediction of the weather condition and
power output from the installation.

4.2. Implementation
We use many open source libraries to build SolarCast and its black box prediction
model. We use Django [django 2016], an open source web application framework writ-
ten in Python, to build SolarCast’s web service. The visualization engine uses dy-
graph [dygraph 2015], a Javascript charting library specifically designed to display
time series data, to display solar power predictions to users. We use scikit-learn to de-
sign our black box prediction model, which is an open source machine learning library
for Python. The deep neural network architecture was implemented using Keras [Chol-
let 2015], an open source deep learning library in python. In addition, we use libraries
– SciPy, NumPy, Pandas – from the SciPy stack [scipy 2016] for data processing. To
store users’ profiles, prediction models, and dataset we use SQLite, a lightweight disk-
based relational database.

Since sensors used by many households report power readings in their local time
zone, accounting for daylight savings time in the prediction model is challenging. For
this purpose, we convert local time readings to standard Unix time using the Python
pytz library [pytz 2016], which automatically handles the daylight saving issues. To get
weather forecasts for any location we use the Forecast API from Forecast.io[forecast
2016]. Forecast.io provides simple RESTful APIs to retrieve both historical as well
as future forecasts of several weather parameters, such as cloud cover, temperature,
humidity, precipitation potential, dew point, wind speed, and wind direction, etc. It re-
turns data in the JSON format. Furthermore, we use the National Renewable Energy
Laboratory recommended Masters’ Algorithm to get the Sun’s altitude and azimuth,
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Table II. Details of the different datasets used in the evaluation

Name Installations Duration Granularity Size
Pecan Street 116 2 years Hour + Minute level 5-20kW
Utility 3 2 years Hour .8 to 3.5 MWlevel
3rdParty 116 1 year Hour level 5-150 kW

and the cloudless irradiance at a particular time for a given location. We use the PySo-
lar library [pysolar 2007] that implements the Masters’ algorithm.

5. EVALUATION
We evaluate our black box prediction model on three geographically diverse datasets.
Table 5 describes them in terms of their number of installations, duration, data gran-
ularity and installed capacity. All the installations in the Pecan Street dataset [pecan
2015] are located in Austin, Texas. The 116 sites from a third-party site are spread
across 16 different states in the U.S., whereas the three medium-sized installations
are managed by a utility located in the Northeast U.S. Each dataset contains the loca-
tion – latitude and longitude – and historical power generation readings collected for
12 to 24 months using energy meters (the accuracy is discussed in prior work [Barker
et al. 2012]). In each case, we use the first half of the dataset for training and the next
half for testing. For the three sites from the utility dataset and one from the third-
party dataset, we had access to real-time data. For these installations, accounts were
created on the SolarCast web service to visually validate our predictions.

We first learn the configuration parameters – i.e. the tilt and the orientation – for
each site using an optimization for the constrained least squares curve fit technique
and grid search for the deep neural networks. Next, we use the site-specific config-
uration parameters in our black box models for each site. For each site, the static
model built using constrained least squares curve fit, leverages features developed us-
ing prevalent weather forecasts, whereas the adaptive approach (again built using con-
strained least-squares curve-fit) additionally uses immediate past generation data to
get a more refined model to predict the next day power generation. The neural network
based approach uses features similar to the static approach for deriving a deep neural
architecture to learn the complex relationship between the weather parameters and
power generation. To compare with an existing machine learning based forecasting
technique, we use the SVM-ML model discussed earlier which uses a support vector
machines (SVM) [Sharma et al. 2011]. We experimented with 3 different kernels - 1)
Linear, 2) Polynomial, and 3) RBF. Of these three kernels, linear kernel performed the
best for our problem with the datasets we had. Thus, we have only included the results
with the linear kernel. As opposed to predicting irradiance, we directly predict power
based on weather forecasts for each day.

5.1. Learning Configuration Parameters
As discussed earlier, our method relies on learning configuration parameters, such as
the tilt and orientation of the different sites, to build a solar power prediction model.
These parameters are learned directly in the optimization function used in the con-
strained least-squares curve-fit, and using the grid search routine for the deep neural
network. These parameters are constrained to be between 0◦ to 60◦ and 140◦ to 220◦
for tilt and orientation respectively in case of the curve fit method. For the deep neural
network, we employ grid search by varying the tilt between 0◦ and 40◦ and the orien-
tation between 150◦ and 210◦, both with a step of 10◦, to find the values that minimize
the average MAPE over the training data.
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Fig. 6. Tilt and orientation for different solar installation in the Pecan Street dataset.

Figure 6 shows the tilt and orientation for the three different algorithms for each site
in the Pecan Street dataset, where the x-axis is the tilt and the y-axis is the orientation.
As the figures show, the tilt and orientation vary greatly across different sites, which
highlights the importance of an automatic technique like our black box model to learn
the configuration parameters rather than assuming fixed values for all sites.

5.2. Model Comparison
5.2.1. Hourly predictions. In this section, we compare the prediction accuracy of three

models—our black box static model, our black box adaptive model, our black box neu-
ral network model—with the SVM-based prediction model from prior work [Sharma
et al. 2011]. We use MAPE to measure the prediction accuracy of each model. Fig-
ure 7(a) plots MAPE for all four models for 116 rooftop installations for the third-party
dataset, while Figure 7(b) plots the same for the three open-space medium-sized utility
solar farms, each with over .8MW capacity. In Figure 7(a), we see that the adaptive ap-
proach performs best as it adapts to the dynamic parameters, such as dust, leaves, or
pollen, and is slightly better (∼2-3%) than the static model, which only learns the static
configuration parameters and is oblivious to the dynamic factors. The Neural Network
based approach outperforms the adaptive approach for a few sites by (∼3-5%) but over-
all seems to produce inferior results. In Figure 7(b), we find that the neural network
approach performs the best for all three locations by (∼.5-2%). For both graphs, the
SVM-ML model performs worse because it constructs a separate model for each time
of the day, thereby using just part of the training data. Further, it does not capture the
yearly variation in the position of the sun for the same time of the day. For example,
at noon, the Sun is closer to zenith during summer than during winter for a given
location. By normalizing the features using the cloudless irradiance, we address both
these shortcomings.

Figure 8(a) shows the comparison between our three black box approaches on the
Pecan Street dataset with hour-level forecasts. For almost half the sites the deep neu-
ral network based approach outperforms the static and the adaptive approach by (∼3-
5%). In most other cases, the performance is (∼1-3%) better.

5.2.2. Minute-level predictions. The experiments above were based on hour-level predic-
tions of solar generation based on forecasts released by the National Weather Service
each hour. However, our techniques are agnostic to the data resolution: as long as we
have a forecast available at a particular resolution, we can apply our techniques to
predict future solar output at that resolution. Forecast.io provides basic minute-level
forecasts one hour into the future for each specific location in the U.S., e.g., as a speci-
fied longitude and latitude. These forecasts only predict rain (and its intensity) and do
not include the multiple metrics in a typical National Weather Service weather fore-
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Fig. 7. Prediction error for various prediction models over 6 months for 3rd Party and Utility dataset

0 20 40 60 80 100

Solar installations sorted by MAPE for Black-box (Deep)

0

10

20

30

40

50

M
A

P
E

Black-box (Static)
Black-box (Adaptive)
Black-box (Deep)

0 20 40 60 80 100

Solar installations sorted by MAPE for Black-box (Deep)

0

10

20

30

40

50

M
A

P
E

Black-box (Static)
Black-box (Adaptive)
Black-box (Deep)

(a) Hour level forecasts (b) Minute level forecasts

Fig. 8. Prediction error for various prediction models for each site in Pecan Street dataset over 1 years.

cast. As a result, minute-level predictions may not capture reduced solar generation
due to clouds that do not produce rain.

However, we apply our techniques to them to demonstrate the flexibility of apply pre-
dictions at high data resolutions. Such predictions might be useful for utility operators,
which have to balance grid supply and demand in real time, e.g., second-to-second and
minute-to-minute. Figure 8(b) shows the comparison between our three black box ap-
proaches on the Pecan Street dataset with minute level forecasts. The error is slightly
higher for all sites compared to the hour level forecasts due to the inclusion of only a
single forecast parameter (rain intensity). However, we again find that the deep neu-
ral network-based approach performs better than the static and the adaptive black box
approaches. In most cases, the difference in performance is (∼5-7%).

5.3. Case Studies
In this section, we explore how households can leverage our black box prediction model
in two case studies: scheduling elastic background loads to reduce electricity bills, and
providing accurate predictions of charging profiles to customers at a solar-powered EV
charging station.

5.3.1. SolarCast in Smart Homes. To maximize green energy penetration homeowners
can schedule certain elastic loads, such as plug-in EVs, washing machines, or clothes
dryers, to run when solar energy is abundant. We experiment with sunny scheduling of
a dryer in a smart home located in the state of Massachusetts. The home’s power usage
varies from 0 to 18.88 kW with an average of 1.38 kW. The solar power generation
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Fig. 9. Frequency distribution for hour of day when the dryer is run (a) and grid demand for start time
flexibility (b).

varies from 0 to 9.71 kW with an average of 1.43 kW. Thus, the house is a net generator
of electricity. We have per-hour data with average power for the solar generation, total
electricity usage (excluding the dryer) and an additional load of a dryer. The dryer is
running for 652 hourly intervals out of the overall 8258 hours (49 weeks). Note that
a single load can run for multiple hourly timeslots. Figure 9(a) shows the frequency
distribution for the hour of the day when the dryer runs. The figure demonstrates that
the dryer is typically operational in the afternoon.

For this case-study, we make an assumption that the magnitude of all loads, includ-
ing that of the dryer, is known beforehand. We employ an online scheduling algorithm
that allocates loads to the earliest contiguous timeslots where the minimum load from
the grid is drawn based on solar predictions that have been learned online using day-
ahead forecasts. In this algorithm, we bring flexibility in scheduling by running the
load in a timeslot of ±k hours to the actual time. While allocating dryer loads, we en-
sure multiple loads are not scheduled during the same timeslot. We compute excess
power for timeslot j by subtracting the grid electricity from the predicted solar power.

The overall energy consumed by the dryer is 863.54 kWh. With the existing schedule,
the total power drawn from the grid is 508.63 kWh. In Figure 9(b), we show the results
of running the algorithm with observed and predicted solar power generation values
with varying flexibility. Even though most of the dryer loads are scheduled during
afternoons when solar intensity is strong, there is a substantial reduction in electricity
drawn from the grid by having a flexibility of few hours.
Result: Smart homes can leverage SolarCast’s predictions to better schedule elastic
loads to align with solar generation. In this case, our smart home reduces its grid energy
demand by 40% by providing flexibility of ∼5 hours to a dryer’s startup time.

5.3.2. SolarCast in Smart EV charging. Over the past few years, EVs have gained popu-
larity because of their appeal as an environmentally-friendly mode of transportation.
EVs have a tremendous potential to reduce our carbon footprint and our dependence
on fossil fuels. However, as discussed in prior work [Zehner 2013], these EVs can be
more detrimental to the environment as they require charging batteries with low ef-
ficiency from the grid, which primary consists of carbon-based power plants. To offset
the environmental impact of these cars, we must ensure that they are charged with
green energy sources, such as solar. However, as discussed earlier in the paper, solar
energy is intermittent and at many times unreliable due weather changes.

In this case study, we explore the possibility of a solar-powered EV charging station
equipped with an array of panels that can help customers by providing an estimate
on the amount of energy that can be provided using SolarCast’s power predictions.
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Table III. Details of the different EVs used in the case-study

EV Name Overall Yearly Demand (kWh) Max Charging rate (kW)
Tesla1 1651.31 6.68
Tesla2 2185.87 6.83
Volt1 1260.26 3.37
Volt2 1469.98 3.39
Leaf1 1218.02 3.77
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Fig. 10. Solar energy produced by the smart charging station over the year 2015

This station could be a parking lot in a company where employees can park their vehi-
cles for the day. Here, we simulate a charging station by using multiple solar rooftop
installations at houses from the Pecan Street dataset [pecan 2015]. We selected five
different EVs containing two Teslas, two Chevrolet Volts and one Nissan Leaf from
the Pecan Street dataset, which uses the solar power from our simulated charging sta-
tion. Initially, the user provides the charging required for their EVs at the start of the
day. Based on SolarCast’s power predictions, we provide an estimate on the amount of
charging for that day.

Our aim is to provide best-effort charging, where we provide equal access to the
available solar power to all parked EVs, while maintaining following constraints - i)
the car batteries have a certain limit and cannot be overcharged, and ii) the EVs can-
not draw more energy than the amount generated by the solar installation. Further,
as we do not have access to battery charging levels, we assume that the maximum
charging allowed is equal to the amount of demand shown in the data (see Figure 11).
We assume that we have EVs over the entire duration of the day when the sun is
above the horizon. We ran the experiment for charging these EVs over the period of a
whole year from 1st January to 31st December 2015 using minute level forecasts for the
smart charging station (rooftop installation). Figure 10 shows the energy produced by
the solar charging station over the period of a year. Table 5.3.2 describes the maximum
charging rate and the energy consumed over the period of a year by the EVs. Figure 11
shows the demand profile of the different EVs over the same period.

We observed that there was a demand of 7785.46 kWh from the five EVs. Through
our best effort charging, we were able to satisfy 5423.38 kWh of the EV demand. Fur-
ther, Figure 12 shows the difference in energy between the promised charging provided
by SolarCast estimates and the delivered charging using the available solar power for
the whole year for each of the 5 EVs. For the two Teslas, we were able to completely
satisfy the demand for approximately 240 days. For the other EVs, we were able to
satisfy the energy demand for around 300 to 330 days in a year. The solar charging
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Fig. 11. Energy demand profile of the different EVs in our study over the period of the year 2015
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Fig. 12. Mismatch between the promised and the delivered energy for the different EVs over the whole year

station had an average of 1.21 kWh of the absolute difference between the promised
and the delivered energy over the average daily charge of 14.86 kWh per day.

Result: Of the total demand of 7785.46 kWh from the five EVs, our simulated solar
charging station was able to satisfy 5423.38 kWh of the EV demand using best effort
charging. Further, the EVs were completely charged for approximately 230 to 330 days
in a year. The mismatch (absolute difference) between promised and delivered energy
for the solar charging station was on average 1.21 kWh per day over the average daily
charge of 14.86 kWh per day

6. LIMITATIONS OF THE MODEL AND FUTURE DIRECTIONS
In this section, we discuss the limitations of our models due to inaccuracies in weather
forecasts. As our models are a function of weather forecasts, any inaccuracy in them
will result in errors in solar power prediction.

Cloud cover is a major contributor to the intermittency of solar power. To present the
impact of inaccuracies in cloud cover, we looked at two set of days - i) clear sky days
with no cloud cover (according to weather forecasts), and ii) overcast days having simi-
lar cloud cover levels. While constructing these sets, we ensured that the other weather

ACM Transactions on Cyber-Physical Systems, Vol. 000, No. 000, Article 00, Publication date: 2016.



00:22

parameters, such as precipitation, visibility, and temperature, are also not very differ-
ent for days within the set. Further, all the days in a given set were chosen such that
they are within 25 days of each other. Figure 13 shows the recorded solar power and
our predictions for the four clear sky days and the three overcast days. Furthermore,
to evaluate our predictions, we also plot ground truth irradiance with average cloud
cover for that day. The data shown in the figure is from a rooftop installation in the
Pecan Street dataset. The irradiance data for Austin (location of the site) is collected
from a wunderground [wunder 2016] weather station.

Clear Sky days: Figure 13(a) shows the four clear sky days. Apart from the second
day, our algorithm has MAPE between ∼6-10%. However, on the second day, as corrob-
orated by the irradiance data, the second half of the day has reduced irradiance, which
was missed by our weather forecasts. In this case, our MAPE increased to 22.5%.

Overcast days: Figure 13(a) shows the three cloudy days. According to our forecast
data, all the three cloudy days were had similar cloud cover throughout the day with
increased cloud cover in the middle of the day. For the first two days, we observe that
increased cloud cover in the late morning causes a dip in solar production which was
partially captured by our model resulting in a MAPE of ∼25-31%. However, on the
third day our model over-predicts, resulting in a large MAPE value. The ground truth
irradiance shows that the day was more overcast than suggested by weather forecasts.

Observations:
(1) As our models are a function of weather forecasts, any error in them would trans-

late to prediction error in solar power.
(2) Even with correct cloud cover information, the MAPE values associated with over-

cast days was higher than those for the clear sky days. This clearly suggests that
cloud cover is not a reliably accurate predictor of solar power (e.g., 50% cloud cover
could mean light uniform clouds or scattered clouds covering half the sky).

Future Directions: In this work, we focussed on rooftop installations. Unlike these
installations, utility scale installations leverage additional ground sensors such as sky
imagers or photo sensors [Achleitner et al. 2014] to predict future power generation.
With these systems becoming more ubiquitous, we can leverage these to make better
predictions. Further, as mentioned earlier, cloud cover values are inadequate to model
solar power. However, with increasing number of on ground sensors, we would benefit
from more detailed weather forecasts such as the direction of clouds (to know if this
will block the sun or not), the thickness of clouds etc.

7. RELATED WORK
Prior work on solar forecasting focuses on predicting solar power for a particular solar
panel installation or only a few installations with well-known characteristics. They ei-
ther predict solar irradiance and get power from the irradiance or directly predict the
power. In both cases, they assume all panel and configuration parameters are known
in advance. However, these are often unknown for a typical rooftop installation. Lorenz
et al. [Lorenz et al. 2009] and Huang et al. [Huang et al. 2012] provide a comprehen-
sive comparison of different solar irradiance and power prediction techniques, respec-
tively. These techniques can be classified as persistence method, satellite data/imagery
method, numeric weather prediction (NWP) method, statistical method and hybrid
method. Each of these methods is suitable for different time horizons. For example,
the persistence model is ideal for short-term forecasting (1 hour ahead), whereas sta-
tistical methods are more effective for medium-term forecasting (1 to 36 hours ahead).
Yona et al. [Yona et al. 2007] use a neural network model to forecast solar irradiance;
they then use a site-specific irradiance→ power model to forecast power generation.
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Fig. 13. Error analysis for the two sets of days

Tao et al. [Tao et al. 2010] propose a nonlinear autoregressive exogenous model that
uses installation parameters, such as tilt and orientation, to forecast day-ahead power
generation. The input layer of the model includes cloudless irradiance for the next day
from 6am to 6pm. To predict power at any arbitrary time it further requires additional
input nodes with adequate training. These restrictions exist for [Chupong and Plangk-
lang 2011] that uses Elman Neural Networks with an input layer very similar to that
of related work [Tao et al. 2010]. Mandal et al. [Mandal et al. 2012] presents a hy-
brid model that uses wavelets and Neural Networks. Moreover, all of these techniques
have used a single site and limited dataset (∼4 days) for evaluation. Apart from neu-
ral network models, machine learning (ML) based statistical techniques [Sharma et al.
2011; Goiri et al. 2011; Liu et al. 2012] are also gaining popularity in the past decade.
These techniques typically use weather forecasts and historical data, to predict power
generation at short time scales.

Unlike prior work, SolarCast does not require panel and configuration parameters;
it automatically learns these parameters from minimal historical data. Further, its
black box architecture allows it to scale across a number of sites, ranging from rooftop
installations to large solar farms. To our knowledge, we are the first to evaluate our
black box model on datasets with many solar sites with different characteristics.

8. CONCLUSION
In this paper, we present a black box approach for forecasting solar power generation.
Our black box model only needs the location and minimal historical data from any
solar panel installation to design a custom site-specific prediction model. We evaluate
this approach using two different machine learning approaches—one based on a least-
squares curve-fit and one based on a deep neural network—-across multiple datasets
that include more than one hundred solar deployments each (spread across multiple
geographic locations). Importantly, our approach learns much faster than prior ap-
proaches by normalizing each data point at each point in time relative to the weather,
e.g., 50% cloud cover at 12pm and 6pm has the same affect on the percentage of solar
output. This normalization enables our approach to applying all the data to a single
model. In addition, unlike prior techniques, our adaptive black box model also accounts
for the dynamic factors, such as snow, dust, and pollen, which is evident from its low
prediction error compared to prior machine learning based prediction model. Finally,
we present two application case studies. Our first application case study shows how a
smart home can exploit SolarCast’s services to schedule elastic loads and reduce elec-
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tricity bills. As an example, we show that by simply providing a little flexibility for a
dryer’s start time, the homeowner can reduce grid energy demand by up to 40%. We
then evaluate a smart solar-powered charging station, which can optimally charge the
maximum number of electric vehicles (EVs) on a given day, and show that SolarCast
can provide EV owners the amount of energy they can expect to receive from solar
energy sources.
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