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Abstract—A key goal of smart grid initiatives is significantly
increasing the fraction of grid energy contributed by renewables.
One challenge with integrating renewables into the grid is that
their power generation is intermittent and uncontrollable. Thus,
predicting future renewable generation is important, since the
grid must dispatch generators to satisfy demand as generation
varies. While manually developing sophisticated prediction mod-
els may be feasible for large-scale solar farms, developing them
for distributed generation at millions of homes throughout the
grid is a challenging problem. To address the problem, in this
paper, we explore automatically creating site-specific prediction
models for solar power generation from National Weather Service
(NWS) weather forecasts using machine learning techniques. We
compare multiple regression techniques for generating prediction
models, including linear least squares and support vector ma-
chines using multiple kernel functions. We evaluate the accuracy
of each model using historical NWS forecasts and solar intensity
readings from a weather station deployment for nearly a year.
Our results show that SVM-based prediction models built using
seven distinct weather forecast metrics are 27% more accurate
for our site than existing forecast-based models.

I. INTRODUCTION

A key goal of smart grid efforts is to substantially increase
the penetration of environmentally-friendly renewable energy
sources, such as solar and wind. For example, the Renewables
Portfolio Standard targets up to 25% of energy generation
from intermittent renewables [1], while Executive Order S-
21-09 in California calls for 33% of their generation to come
from renewables by 2020 [2]. Substantial grid integration
of renewables is challenging, since their power generation
is intermittent and uncontrollable. The modern electric grid
permits households to consume electricity in essentially arbi-
trary quantities at any time, and is not currently designed for
vast quantities of uncontrollable generation. Instead, the grid
constantly monitors the demand for electricity, and dispatches
generators to satisfy demand as it rises and falls. Fortunately,
electricity demand is highly predictable when aggregating over
thousands of buildings and homes. As a result, today’s grid
is able to accurately plan in advance which generators to
dispatch, and when, to satisfy demand.

The problem with substantial renewable integration is that
the electricity renewables generate is not easily predictable
in advance and varies based on both weather conditions and
site-specific conditions. While utilities may take the time
to manually develop accurate prediction models for large-

scale solar farms that produce multiple megawatts, manually
developing specialized models that predict the power output
from distributed generation at many small-scale facilities at
smart homes and buildings throughout the grid is infeasible.
This fact is evident in current net metering laws for most states,
which allow consumers to sell energy produced from on-site
renewables back to the grid, but typically places low caps on
both the total number of participating customers and/or the
total amount of energy contributed per customer [3]. As one
example, Massachusetts caps the total number of participating
customers at 1% of all customers. Utilities restrict the con-
tribution from renewables, since, unlike electricity demand,
renewable generation is not easily predictable, and complicates
advance planning of the grid’s generator dispatch schedule.

To facilitate better planning and lower the barrier to increas-
ing the fraction of renewables in the grid, we focus on the
problem of automatically generating models that accurately
predict renewable generation using National Weather Service
(NWS) weather forecasts. Specifically, we experiment with a
variety of machine learning techniques to develop prediction
models using historical NWS forecast data, and correlate
them with generation data from solar panels. Once trained
on historical forecast and generation data, our prediction
models use NWS forecasts for a small region to predict future
generation over several time horizons. Our experiments in
this paper use solar intensity as a proxy for solar genera-
tion, since it is proportional to solar power harvesting [4].
Importantly, since we generate our models from historical site-
specific observational power generation data, they inherently
incorporate the effects of local characteristics on each site’s
capability to generate power, such as shade from surrounding
trees. Since local characteristics influence power generation,
individual sites must tune prediction models for site-specific
characteristics. We view automatic model generation as critical
to scaling distributed generation from renewables to millions
of homes throughout the grid.

Our goal is to automate generating prediction models for
smart homes that include on-site renewables. Both the grid and
individual smart homes may use these prediction models for
advance planning of electricity generation and consumption.
The grid can use the models to plan generator dispatch
schedules in advance as the fraction of renewables increases in
the grid. Smart homes can use the models to potentially plan



their consumption patterns to better match the power that they
generate on-site. In both cases, better prediction models are a
prerequisite for increasing efficiency and encouraging broader
adoption of distributed generation from renewables in the grid
and at smart homes. In studying prediction models for solar
energy harvesting, we make the following contributions.

• Data Analysis. We analyze extensive traces of historical
data from a weather station, as well as the corresponding
NWS weather forecasts, to correlate the weather metrics
present in the forecast with the solar intensity, in watts
per m2, recorded by the weather station. Our analysis
quantifies how each forecast parameter affects each other
and the solar intensity. For solar energy harvesting, we
find that sky cover, relative humidity, and precipitation
are highly correlated with each other and with solar
intensity, while temperature, dew point, and wind speed
are only partially correlated with each other and with
solar intensity.

• Model Generation. We apply multiple machine learning
techniques to derive prediction models for solar intensity
using multiple forecast metrics, and then analyze the
prediction accuracy of each model. We use machine
learning on a training data set of historical solar intensity
observations and forecasts to derive a function that com-
putes future solar intensity for a given time horizon from
a set of forecasted weather metrics. We formulate models
based on linear least squares regression, as well as support
vector machines (SVM). We find that SVM with radial
basis function kernels built using historical data from
seven weather metrics is 27% more accurate than existing
forecast-based models that use only sky condition for
predictions [4] and is 51% better than simple approaches
that only use the past to predict the future.

In Section 2 we analyze forecast metrics and explore how
they affect each other, as well as how they affect solar
intensity, while in Section 4 we describe and evaluate multiple
machine learning strategies for generating prediction models
using our weather station data and NWS forecasts. Finally,
Section 5 discusses related work and Section 6 concludes.

II. DATA ANALYSIS

We collect weather forecast data and observational so-
lar intensity data for 10 months starting from January
2010. We obtain historical forecast data from the NWS at
http://www.weather.gov, which we have been collecting for
the past 2 years. The NWS provides historical textual forecasts
for small city-size regions throughout the U.S., which include
multiple weather metrics for every hour of every day for the
last few years. Each forecast includes predictions of each
metric every 1 hour from 1 hour to 6 days into the future.
Examples of weather metrics include temperature, dew point,
wind speed, sky cover, probability of precipitation, and relative
humidity. Sky cover is an estimate of the percentage (0%-
100%) of cloud coverage in the atmosphere. In addition to
making historical forecasts available, the NWS also operates
a real-time web service that enables applications to retrieve
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Fig. 1. Solar intensity shows seasonal variation with days of a year, although
daily weather conditions also have a significant impact.

forecasts programmatically as they become available. In addi-
tion to these metrics, we include the specific day of the year
and time of the day as metrics, since daylight influences solar
intensity and varies throughout the year for a given location.

We use observational solar intensity data from an extended
weather station deployment on the roof of the Computer Sci-
ence Building at the University of Massachusetts Amherst. The
weather station reports solar intensity in watts/m2 every 5 min-
utes of every day. Traces from the weather station are available
at http://traces.cs.umass.edu. As we show in previous work,
power generation from solar panels is directly proportional to
solar intensity [4]; in general, solar panel inefficiencies result
in power output that is a fixed percentage decrease from the
raw solar intensity readings at the same location. We use NWS
forecasts for Amherst, Massachusetts. In this section, we study
how solar intensity varies with individual forecast parameters
and how these forecast parameters are related to each other.
The purpose of our data analysis is to provide intuition into
how solar intensity and solar panel power generation depends
on a combination of multiple weather metrics, and is not easily
predictable from a single weather metric. The complexity in
predicting solar intensity from one or more weather metrics
motivates our study of automatically generating prediction
models using machine learning techniques in the next section.

Fig. 1 shows how the day of the year affects solar intensity
by charting the average solar intensity reading at noon per
day over our 10 month monitoring period, where day zero
is January 1st, 2010. As expected, the graph shows that the
solar intensity is lowest in January near the winter solstice and
increases into the summer before decreasing after the vernal
equinox. Additionally, the graph also implies that other con-
ditions also have a significant impact on solar intensity, since
many days throughout the spring and summer have low solar
intensity readings. The graph shows that solar intensity and the
day of the year are roughly correlated: most of the time, but
not always, a summer day will have a higher solar intensity
than a winter day. However, other factors must contribute to
the solar intensity, since there are clearly some sunny winter
days that record higher solar intensity readings than some
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Fig. 2. Solar intensity and wind speed show little correlation (a). Solar intensity shows some correlation with temperature at high temperatures (b) and with
dew point at high dew points (c).
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Fig. 3. Solar intensity generally decreases with increasing values of sky cover (a), relative humidity (b), and precipitation potential (c).

cloudy summer days. To better understand correlations with
other weather metrics, we model similar relationships for the
other forecast metrics.

For example, Fig. 2 shows that wind speed, dew point,
and temperature are not highly correlated with solar intensity.
Solar intensity varies almost uniformly from lower to higher
values at any value of wind speed (a). Thus, wind speed
has nearly zero correlation with solar intensity and its value
is not indicative of the solar intensity or solar panel power
generation. Both temperature (b) and dew point (c) correlate
with solar intensity at higher values: if the temperature or dew
point is high, then the solar intensity is likely to be high.
However, if the temperature or dew point is low, the solar
intensity exhibits a more significant variation between high
and low values. The results are intuitive. For example, in the
summer a high temperature is often dependent on sunlight,
while in the winter sunlight contributes less in raising the
ambient temperature.

In contrast, Fig. 3 shows that sky cover, relative humidity,
and chance of precipitation have high negative correlations
with solar intensity. In each case, as the value of the met-
ric increases, the solar intensity reading generally decreases.
However, as with the day of the year, there must be other
factors that contribute to the solar intensity reading, since there
are some days with a high sky cover, relative humidity, and
precipitation probability, but a high solar intensity reading and
vice versa. In addition to exhibiting complex relationships with
solar intensity, each weather metric also exhibits a complex
relationship with other weather metrics. For example, Fig. 4
shows that relative humidity (a) and chance of precipitation

(b) exhibit strong, but not perfect correlations, with sky cover,
while relative humidity is strongly correlated with chance of
precipitation (c). In all three cases, the metrics rise in tandem,
although the relationship is noisy due to the value of other
weather metrics.

Table 1 shows correlation coefficients for each weather
metric using the Pearson product-moment correlation coef-
ficient, which divides the covariance of the two variables
by the product of their standard deviations. The higher the
absolute value of the correlation coefficient, the stronger
the correlation between the two weather metrics—a positive
correlation indicates an increasing linear relationship, while a
negative correlation indicates a decreasing linear relationship.
The complex relationships between weather metrics and solar
intensity shown in this table motivate our study of automated
prediction models using machine learning techniques in the
next section.

III. PREDICTION MODELS

We represent both observational and forecast weather met-
rics as a time-series that changes due to changing weather
patterns and seasons. As the previous section shows, solar
intensity depends on multiple weather metrics, which compli-
cates the task of developing an accurate prediction model. The
high dimensionality of the time-series data motivates our study
of regression methods to develop solar intensity prediction
models. To generate each model we provide eight months
of training data (January to August) as input, which includes
solar intensity readings as well as NWS forecasts for 6 weather
metrics. The machine learning techniques automatically output
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Fig. 4. Relative humidity (a) and precipitation % (b) positively correlate with sky cover. Relative humidity also increases with increasing precipitation % (c).

TABLE I
CORRELATION MATRIX SHOWING CORRELATION BETWEEN DIFFERENT FORECAST PARAMETERS.

Day Temp. Dew Wind Sky cover Pcpn. Humidity
Day 1.0000 0.7022 0.7007 -0.0711 -0.1034 -0.0571 0.0645
Temp. 0.7022 1.0000 0.9212 -0.1994 -0.2582 -0.1279 -0.0791
Dew point 0.7007 0.9212 1.0000 -0.2251 0.0455 0.1491 0.3081
Wind -0.0711 -0.1994 -0.2251 1.0000 -0.0192 0.0340 -0.1025
Sky cover -0.1034 -0.2582 0.0455 -0.0192 1.0000 0.7067 0.7525
Precipitation -0.0571 -0.1279 0.1491 0.0340 0.7067 1.0000 0.7475
Humidity 0.0645 -0.0791 0.3081 -0.1025 0.7525 0.7475 1.0000

a function that computes solar intensity from the 6 weather
metrics, as well as the day of the year. We use the remaining
2 months of our data set to test the model’s accuracy. One
benefit of using machine learning to automatically generate
prediction models is that, in general, the more training data
that is available, the more accurate the model.

We focus our study on short-term forecasts three hours
in the future. For our experiments, we develop models that
determine a relationship at any time t between the solar
intensity and the forecast weather metrics three hours in the
past (t− 3). Note that we are able to apply our techniques to
forecasts of any length; we choose three hours as a simple
illustration. Using our models and the three hour forecast,
we are able to compute a prediction for the solar intensity
three hours in the future. The models we generate are simple
functions, of the form below, that compute solar intensity from
multiple weather metrics including the day of the year. We
could also add time of the day as an additional metric, but
for ease of exposition our experiments focus on predictions
at noon. We compare the accuracy of our models with each
other, as well as against a simple model we developed in
prior work [4] based solely on the sky condition metric
and against a simple past-predicts-future model. Our previous
model multiplies the maximum power a solar panel is able to
generate at a given time (of the day and year) by (1-SkyCover),
since sky cover represents an estimate of the percentage of the
atmosphere the sun is covering.

SolarIntensity = F(Day, Temperature, DewPoint, WindSpeed,
SkyCover, Precipitation, Humidity)

F is the function that we determine using different re-
gression methods. We preserve the units of each metric: we
represent each day as a value between 0 and 365, temperature

in degrees Fahrenheit, wind speed in miles per hour, sky cover
in percentage between 0% and 100%, precipitation potential in
percentage between 0% and 100%, and humidity in percentage
between 0% and 100%. However, before applying any regres-
sion techniques below we normalize all feature data to have
zero mean and unit variance. To quantify the accuracy of each
model, we use the Root Mean Squared Error (RMS-Error)
between our predicted solar intensity at any time and the actual
solar intensity observed. RMS-Error is a well-known statistical
measure of the accuracy of values predicted by a time-series
model with respect to the observed values. An RMS-Error of
zero indicates that the model exactly predicts solar intensity
three hours in the future. The closer the RMS-Error is to zero
the more accurate the model’s predictions.

A. Linear Least Squares Regression

We first apply a linear least squares regression method to
predict solar intensity. Linear least squares regression is a sim-
ple and commonly-used technique to estimate the relationship
between a dependent or response variable, e.g., solar intensity,
and a set of independent variables or predictors. The regression
minimizes the sum of the squared differences between the
observed solar intensity and the solar intensity predicted by a
linear approximation of the forecast weather metrics. Applying
the linear least squares method to the eight months of training
data yields the prediction model below, with coefficients for
each metric.

SolarIntensity = 1.18*Day + 77.9*Temp + 33.11*DewPoint +
22.8*WindSpeed - 96.9*SkyCover - 49.15*Precipitation -

43.4*Humidity

We verify the prediction accuracy using our test dataset
for the remaining months of the year. We observe the cross
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Fig. 5. Observed and predicted solar intensity using linear least squares
regression for September and October 2010.

validation RMS-Error and prediction RMS-Error in the solar
intensity as 165 watts/m2 and 130 watts/m2, respectively. We
cross validate the regression model with the training dataset
(from Jan. to Aug. 2010) and verify its prediction accuracy
using the testing dataset (Sept. and Oct. 2010). The cross
validation RMS-Error quantifies how well the model predicts
values in the training data set, while the prediction RMS-Error
predicts how well the model predicts values in the testing data
set. Fig. 5 shows the observed and predicted solar intensity for
September and October 2010. As the figure shows, the model
tracks the solar intensity prediction reasonably accurately,
albeit with a few deviations.

B. Support Vector Machines

We next look at multiple classes of supervised learning
methods using Support Vector Machines (SVM) [5]. SVMs,
which construct hyperplanes in a multidimensional space, have
recently gained popularity for classification and regression
analysis. The accuracy of SVM regression depends on the
selection of an appropriate kernel function and parameters.
In our work, we studied three distinct SVM kernel functions:
a Linear Kernel, a Polynomial Kernel, and a Radial Basis
Function (RBF) kernel. An SVM uses the kernel function to
transform data from the input space to the high-dimensional
feature space. We chose SVMs over other supervised learning
methods due to its sparsity property and its ability to handle
non-linearity in the data. We use the LibSVM library, which
includes a multitude of SVM regression techniques, to im-
plement SVM regression with the linear kernel function on
our training data set [6]. We found that both the linear and
polynomial kernel performed poorly with RMS-Errors of 201
watts/m2 and 228 watts/m2, both of which were worse than
the linear least squares approach above. As a result, we focus
on results using the RBF kernel.

We tested the RBF kernel and SVM using the LibSVM
library on our eight months of training data. In order to find
the optimal parameters for the RBF kernel we ran a grid
search tool from the LibSVM library on the training dataset.
We found the optimal parameters of the RBF kernel to be
cost = 256, γ = 0.015625, and ε = 0.001953125. Using
these parameters, we found that the RBF kernel using all
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Fig. 6. Observed and predicted solar intensity, using SVM regression with
an RBF kernel, for the months of September and October 2010.

seven dimensions for the seven weather metrics provides a
better regression model than the other regression methods, as
indicated by its low cross validation and prediction errors,
both of which are significantly lower than either the linear
or the polynomial kernels. Fig. 6 also reflects this fact in the
time-series graph of observed and predicted values. The results
show that the RBF kernel also performs better than the linear
least squares method, having a slightly lower cross validation
RMS-error (164 watts/m2) and a slightly higher prediction
RMS-Error (163 watts/m2).

C. Eliminating Redundant Information

As we show in the previous section, many weather met-
rics show a strong correlation with each other. As a result,
our SVM regression models contain redundant information,
which often decreases the prediction accuracy of each model.
Principal component analysis (PCA) is a popular method
for removing redundant informations from an input dataset,
thereby reducing its dimensionality [7]. Thus, we use the
principal component analysis algorithm to remove redundant
informations from our feature dataset. The PCA algorithm uses
an orthogonal transformation to convert a set of, potentially
correlated, input variables into a set of uncorrelated vari-
ables called principal components. The number of principal
components is less than or equal to the number of original
variables. The first principal component has the maximum
possible variance, and the second principal component has
the maximum possible variance under the constraint that it
be orthogonal to the first component, etc.

We choose the first four principal components correspond-
ing to first four (highest) eigenvalues and run the RBF SVM
regression method on the reduced feature-set. The results
(Fig. 7(a)) show that the RBF kernel performs better after
PCA analysis than when using the full feature-set with a cross
validation RMS-Error of 159 watts/m2 and a prediction RMS-
error of 128 watts/m2, both of which outperform the linear
least squares model. We also ran experiments that further
reduced the dimensionality of the feature set from 4 to 2.
However, we found that all three SVM regression techniques
performed worse compared to the 4-dimentional feature set.
The performance degradation is the result of the additional
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Fig. 7. Observed and predicted solar intensity, using three different prediction techniques — (a) SVM-RBF kernel with 4 dimensions, (b) cloudy computing
model using sky condition forecast, (c) past predicts future prediction model — for the months of September and October 2010.

reduction in dimensionality eliminating information that aids
in prediction and is not redundant.

D. Comparing with Existing Models

Finally, we compare our regression-based prediction models
with existing models. First, we compare with a past-predicts-
future model (PPF), which uses the previous day solar intensity
to predict the next day solar intensity. Past predicts future
models are typically used when forecasts are not available,
since the past is a reasonably good indicator of the future if
the weather does not change. While they are highly accurate if
weather conditions do not change, the models are not able to
predict drastic changes in the weather. Second, we compare
with a simple model that uses only the sky condition as a
basis for prediction, called cloudy, which we developed in
prior work [4]. We have shown that the cloudy model is more
accurate than existing variants of PPF in the literature [8].
While the model is able to predict changes in weather, it does
not incorporate information from multiple weather metrics and
their impact on solar intensity.

Fig. 7(b) and (c) show how well cloudy and PPF predict
weather in our testing data set, respectively. The results show
that while the cloudy model follows the general trend of the
weather it frequently exhibits wrong predictions. As expected,
PPF’s results are inaccurate whenever weather changes, which
happens nearly every day. By contrast, Fig. 7(a) shows that
SVM-RBF with the reduced feature provides a much more
accurate model. The RMS-Errors for each model highlight this
result: the RMS-Error for SVM-RBF with four dimensions is
128 watts/m2, while the RMS-Error for cloudy and PPF is 175
and 261, respectively. Thus, SVM-RBF with four dimensions
is 27% more accurate than the simple cloudy model and 51%
more accurate than the PPF model.

IV. CONCLUSION

Prior prediction models for solar energy harvesting have
been based primarily on the immediate past [9], [10], [11].
Unfortunately, these methods are unable to predict changes in
weather patterns in advance. Since weather forecasts from the
NWS are based on aggregations of multiple data sources from
across the country, they are able to provide advance warning.
The NWS generates forecasts from multiple sophisticated
forecast models that synthesize a multitude of observational

data. We show that the relationship between these forecast
weather metrics and solar intensity is complex. Thus, we
automatically derive prediction models from historical solar
intensity and forecast data using machine learning techniques.

Our results indicate that automatically generating accurate
models that predict solar intensity, and hence energy harvest-
ing of solar arrays, from weather forecasts is a promising
area. We find that models derived using SVMs with RBF
kernels and linear least squares outperform a past-predicts-
future models and a simple model based on sky condition
forecasts from prior work [4] and is a promising area for
increasing the accuracy of solar power generation prediction,
which is essential to increasing the fraction of renewables in
the grid. Moving forward, we plan on using our prediction
models to better match renewable generation to consumption
in both smart homes and data centers that utilize on-site solar
arrays to generate power.
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