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Broadly, the lab’s research focuses on designing experimental computer systems with an emphasis on
improving efficiency and sustainability. Specifically, the lab’s research addresses problems with improving
energy-efficiency, carbon-efficiency, and cost-efficiency in two major domains: cloud computing and energy
systems. Modern society’s dependence on massive amounts of, largely “dirty,” energy is not sustainable.
Thus, meeting society’s future energy needs, while mitigating its economic and environmental impact, is
a critical challenge. Computer systems represent both a problem and potential solution to developing a
sustainable society. For example, the cloud data centers and platforms that power our information-based
economy are one of the fastest growing segments of industrial energy usage, and now account for an esti-
mated 1-2% of U.S. electricity consumption. Yet, computer systems are also key to developing a “smart”
grid that optimizes energy-efficiency, minimizes energy costs, and accommodates a high penetration of
renewable energy.

The lab’s research methodology is experimental in nature and focuses on designing, modeling, deploy-
ing, and analyzing system prototypes, as well as collecting and analyzing real-world data, to both identify
and solve problems in the design and operation of existing systems. The importance and prominence of
the lab’s research has steadily increased over time, especially recently, as the impacts of climate change
have become more visible and acute. There is now a broad societal consensus that, moving forward, de-
signing efficient and sustainable cloud and energy systems will be critical to satisfying the strict emissions
targets necessary to mitigate the worst outcomes of a warmer climate, i.e., by preventing earth’s average
temperature from rising more than 1.5-2◦C. Computing research in sustainability is particularly important,
since computer systems increasingly drive the automated operation and management of large-scale societal
infrastructure, e.g., data centers, buildings, electric grids, etc.

The lab’s research approach has been unique in that I have structured it “horizontally” across a wide
range of applications in efficiency and sustainability that span many technical “verticals,” including dis-
tributed systems and networking, operating systems and virtualization, security and privacy, applied data
science and machine learning, sensor networks and the Internet-of-Things, analytical performance model-
ing, and clean energy systems. Our research also often combines domain-specific knowledge from other
disciplines, such as power systems and building science, with the technical computing areas above to im-
prove upon domain-agnostic solutions. We have pursued the research agenda above through a large number
of funded projects of varying size and scope, ranging from small focused projects to large multi-institutional
inter-disciplinary projects. Our results have yielded experimental prototype systems, techniques that have
been deployed at large scales to improve the efficiency of production cloud data centers, widely-used open-
source software and datasets, a large volume of publications in high-quality peer-reviewed conferences and
journals, and significant technical impact on the community by any quantitative measure, including awards
and nominations, funding, citations, and successful Ph.D. students. The following provides a brief overview
of the lab’s recent research contributions and future plans. This overview focuses on our research over
roughly the past 5 years.
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1 Research Overview
A common challenge underlies much of the lab’s work: designing systems that are capable of gracefully
handling uncontrollable resource “dynamics,” which require them to continuously adapt to changes in their
resources’ availability and characteristics. These dynamics arise from uncontrollable aspects of our physical
or economic environment, such as changes in weather, carbon emissions, user behavior, or prices. As one
example, the mix of generators the electric grid uses to satisfy its variable demand both changes over time
and differs by location. Since generators have different carbon-efficiencies, i.e., the amount of carbon they
emit for each unit of energy they produce, the carbon emissions from generating grid power also varies
over time and by location. Thus, systems that manage infrastructure, e.g., for data centers or buildings,
can improve their carbon-efficiency by responding to these dynamics to shift their energy usage to when
and where low-carbon energy is available, e.g., by storing and releasing energy from batteries or migrat-
ing load. Similar types of uncontrollable resource dynamics manifest themselves in numerous other ways,
including variable spot prices for energy and computation, as well as variable renewable energy genera-
tion. Computation is particularly well-positioned to respond to these resource dynamics, since it often has
significant spatial, temporal, and performance flexibility, which enables shifting the location, time, and in-
tensity of its execution to better align with low carbon emissions, low prices, or high renewable generation.
In addition, computation can also leverage numerous software-based fault-tolerance techniques, including
checkpointing, replication, and recomputation, to continue execution despite an unexpected lack of resource
availability, e.g., due to high carbon emissions, high prices, or low renewable generation, which may require
deactivating servers.

Designing systems capable of handling uncontrollable resource dynamics raises many research ques-
tions that have animated, and continue to animate, my research. For example: How much information about
these resource dynamics should systems expose to applications? How should applications respond to rapid,
frequent, and uncontrollable variations in their resources’ characteristics and availability? What abstractions
should systems support to enable applications to better respond to resource dynamics? How well can we
model and predict resource dynamics, even though we cannot control them? How can we use such models
and predictions to improve systems’ performance, and do they have any privacy implications? In addressing
these questions, the lab’s work has made substantial contributions to optimizing the efficiency and sustain-
ability of cloud computing and energy systems. Below, we summarize the lab’s recent contributions in both
areas.

1.1 Optimizing Cloud Computing

As noted above, the lab’s research has addressed improving cloud data center efficiency and sustainability.
Efficiency. The installed capacity of cloud data centers is continuing to grow rapidly. Thus, improving
data center efficiency is important in maximizing the benefit of the existing capacity, as well as delaying the
need to build new capacity. The lab has made significant contributions to improving the cost- and energy-
efficiency of cloud data centers and applications. Note that cost- and energy-efficiency are related metrics,
since energy is a major cost in operating a data center. Much of the lab’s work has focused on enabling
cloud users to optimize their costs by leveraging the different resource purchasing options offered by cloud
platforms, which differ in their cost, performance, and availability. In particular, we have designed many
systems and applications that exploit “transient” virtual machines (VMs), which have a low price but are
highly unreliable [25, 24, 27, 45, 33]. For example, we designed TR-Kubernetes, a modified version of
Kubernetes, a popular software framework for managing data centers, that optimizes the cost of executing
mixed interactive/batch workloads on transient VMs, while also enforcing arbitrary availability requirements
specified by interactive services despite transient VM unavailability. This work showed that TR-Kubernetes
required minimal extensions to Kubernetes, and was capable of lowering the cost (by 53%) and improving
the availability (99.999%) of representative workloads on a cloud platform when using transient compared
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to on-demand VMs [25].
While transient VMs are highly unreliable, cloud platforms also enable users to reserve VMs for long

periods of time, i.e., multiple years, which offers higher reliability. Cloud platforms sell these “reserved”
VMs at discount, e.g., 40-60%, relative to “on-demand” VMs, which users can rent on-demand on a per-
hour basis. As a result, optimizing cloud costs also requires users to determine how many fixed reserved
resources to buy versus rent based on their workload. In recent work, we introduced the concept of a waiting
policy for cloud-enabled schedulers, which is the dual of a scheduling policy, and showed that optimizing
cloud cost depends on it. While a scheduling policy determines which jobs run when fixed resources are
available, a waiting policy determines which jobs wait for fixed resources when they are not available (rather
than run immediately by renting on-demand resources). Waiting policies are important for cloud-enabled
schedulers because they dictate the tradeoff between job performance and cost. In initial work [28, 29],
we defined multiple waiting policies and developed analytical models to reveal their tradeoff between fixed
resource provisioning, cost, and job waiting time. We evaluated the impact of these waiting policies on a
year-long production batch workload consisting of 14M jobs run on a 14.3k-core cluster, and showed that
a compound waiting policy decreases the cost (by 5%) and mean job waiting time (by 7×) compared to
the current cluster. In subsequent work, we showed that our waiting policies could be applied in practice
without a priori knowledge of job running and waiting times [30]. As part of this work, we also collected,
analyzed, and publicly released nearly two years of data on Amazon’s Reserved Instance Marketplace [26].

Finally, we have also designed techniques for improving data center efficiency from a cloud operator’s
perspective. In particular, as part of a collaboration with Google, we designed multiple policies for “over-
committing” data center resources, i.e., by allocating resources that exceed the physical capacity, and showed
that these policies increase machines’ usable CPU capacity by 10-16% [17]. Variants of these policies have
since been deployed in production in Google’s data centers. We have also been active in many projects devel-
oping systems for managing academic cloud and network research testbeds, including GENI [4], CloudLab,
and, most recently, the Open Cloud Testbed [46]. These testbeds are effectively smaller-scale versions of
commercial clouds that enable a higher level of resource visibility and control that is necessary for research.
Sustainability. While improving data center efficiency is important, even highly efficient data centers may
not be sustainable if they consume a significant fraction of their energy from carbon-intensive sources. As
the negative impacts of climate change have become more visible, improving cloud data centers’ sustainabil-
ity by reducing their carbon emissions has become an increasingly important focus of research in academia
and industry, especially recently. The lab has been working on improving data center sustainability for over
a decade, long before its recent increase in prominence, and have made substantial contributions both over
that time and recently. For example, we published some of the first papers in major conferences, including
ASPLOS and NSDI, on managing server clusters and applications on intermittent power from renewable
energy sources and demand response programs [11, 12, 32, 34, 37, 44].

More recently, with the increasing focus on this area, we have co-led two large related successful projects
on i) developing new software systems and applications that manage carbon emissions as a first class metric
(in collaboration with VMware), and ii) leveraging these systems to design a testbed for enabling research
on carbon-efficient applications. The foundation of both projects relies on new system software for virtu-
alizing energy resources, similar to how current data centers virtualize computing resources. Our work on
both developing this energy virtualization layer, and demonstrating how applications can leverage it was
published at ASPLOS 2023 [36]. In addition, we have also published papers at prominent venues on our
vision for sustainable computing research moving forward based on current trends in computing and our
experience from working in this area [19, 23]. Indeed, the lab’s research focus is centered on sustainable
computing because we believe that academic research in this area is particularly important, as industry lacks
strong financial incentives to address problems in this area.
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1.2 Optimizing Energy Systems

As summarized below, the lab’s research has also made significant contributions to sensing, modeling, and
optimizing the operation of energy systems to improve their efficiency and sustainability.
Sensing. Society’s energy system, primarily the electric grid, is essentially a massive distributed system
spread across each continent that delivers power from tens of thousands of energy producers to millions of
energy consumers. As a result, accurate and fine-grained monitoring of environmental and operational data
at large-scales and low-cost is challenging. Thus, we have designed a number of approaches for indirect,
low-cost, at-scale sensing that are useful for improving infrastructure efficiency and sustainability. In gen-
eral, these approaches have focused on leveraging data analytics to infer valuable, but hard-to-get, sensor
data from other more readily available data sources. For example, since the dominant energy consumer in
buildings is Heating, Ventilation, and Air Conditioning (HVAC), providing access to fine-grained spatial in-
formation about a building’s interior temperature can enable HVAC optimizations that ensure comfort while
using minimal energy. To provide such data, we developed approaches for inferring ambient temperature
using a smartphone’s CPU temperature sensor [39, 38, 7], which effectively transforms every smartphone
in a building into a sensor that provides location-specific temperature data. Similarly, we also developed an
approach to inferring the real-time power usage of individual devices from a building-wide energy meter
by leveraging device power signatures. We used this approach to define “virtual” power meters for devices
without requiring the installation of many physical power meters [31]. Finally, while the approaches above
sense raw data, we have also developed “virtual” sensors for detecting higher-level criteria, such as system
faults. For example, we have leveraged techniques developed from the modeling work, discussed below, to
develop data analytics approaches for detecting and classifying faults in solar farms [9, 10].
Modeling. We have also done substantial work in data-driven modeling of energy systems, particularly
for solar arrays and buildings. Specifically, we developed Solar-TK, an open-source publicly-available
toolkit for data-driven solar performance modeling of solar sites [18]. Solar-TK produces accurate solar
performance and forecast models from a small amount of generation data, and captures the impact of solar
geometry, location, and weather on solar output. Solar-TK incorporates much of my prior work on solar
modeling, such as modeling the impact of snow on solar generation [21]. In addition, we have also de-
veloped Peak-TK, a similar type of open-source toolkit for predicting peak usage in energy systems [6],
since knowing peak usage is important for energy system operations [35]. The primary source of error in
Solar-TK’s performance models is quantifying the impact of cloud cover on solar output. To address this
issue, we have recently focused on leveraging high-resolution, fine-grained multispectral data from the latest
generation of GOES-R satellites, which is made publicly available in near real-time [1, 3]. This work has
shown that satellite data can substantially improve the accuracy of solar performance models and near-term
solar forecasts. Finally, we have also made contributions in modeling the energy-efficiency of buildings.
For example, WattScale analyzes energy usage data from a large population of buildings to identify both
the least energy-efficient buildings and the underlying cause of the inefficiency [14]. In recent work, we
have also analyzed the socioeconomic profiles of energy-efficient and energy-inefficient buildings to better
understand how efficiency relates to income, which can enable more equitable programs for subsidizing
energy-efficiency improvements [40].
Operations. Finally, we have made substantial contributions to optimizing the operation of energy systems,
in many cases, by leveraging the underlying sensing and modeling work above. For example, we lever-
aged Solar-TK’s probabilistic forecasts to determine the amount of solar energy to commit in day-ahead
electricity markets that maximizes revenue [20, 22]. We also leveraged Solar-TK in evaluating the poten-
tial benefits of interconnecting solar home systems in developing countries with an unreliable electric grid,
which showed that interconnecting existing homes could increase electrification rates by more than 25% and
reduce average costs by up to 30% per household [8]. Similarly, we leveraged Peak-TK to design VPeak, an
approach that uses residential loads volunteered by their owners for coordinated control by a utility for grid
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optimizations [5]. Since the use of volunteer resources often comes with hard limits on how frequently they
can be used by a remote utility, we leveraged Peak-TK’s techniques for carefully selecting which days to
operate these loads based on expected peak demand. Our results show that VPeak was able to reduce up to
26% of the total demand when selectively shaving peaks at local hotspots and up to 46.7% of the demand for
grid-wide peak shaving. In addition, we have also made contributions to scheduling grid energy storage to
reduce carbon emissions [15], managing shared community solar and energy storage [16], analyzing the in-
centives for grid defection [2], inferring optimal thermostat schedules from energy data [13], quantifying the
potential for solar-powered electric bikes to reduce carbon emissions [41, 43], and analyzing the potential
for reducing carbon emissions by replacing gas-powered heating with heat pumps [42].
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