
How Not to Bid the Cloud

Prateek Sharma, David Irwin, Prashant Shenoy
University of Massachusetts Amherst

Abstract
Cloud providers have begun to allow users to bid for sur-
plus servers on a spot market. These servers are allocated
if a user’s bid price is higher than their market price and
revoked otherwise. Thus, analyzing price data to derive
optimal bidding strategies has become a popular research
topic. In this paper, we argue that sophisticated bidding
strategies, in practice, do not provide any advantages over
simple strategies for multiple reasons. First, due to price
characteristics, there are a wide range of bid prices that
yield the optimal cost and availability. Second, given the
large number of spot markets, there is always a market
with available surplus resources. Thus, if resources be-
come unavailable due to a price spike, users need not wait
until the spike subsides, but can instead provision a new
spot resource elsewhere and migrate to it. Third, current
spot market rules enable users to place maximum bids
for resources without any penalty. Given bidding’s irrele-
vance, users can adopt trivial bidding strategies and focus
instead on modifying applications to efficiently seek out
and migrate to the lowest cost resources.

1 Introduction

Cloud platforms now sell surplus idle server capacity
at discounted prices to users to gain additional revenue.
Amazon EC2 uses a market mechanism to sell this capac-
ity where users place a bid for servers, and EC2 allocates
them if the bid is higher than the spot price, which varies
continuously based on supply and demand. When the
spot price rises above a user’s bid price, EC2 revokes
the servers. EC2 determines the spot price by running a
sealed-bid multi-unit uniform price auction [3]. Note that
the underlying supply of surplus servers in the spot pool
also changes, since EC2 may take resources from the spot
pool to allocate new on-demand or reserved instances.
Thus, the spot price changes dynamically both as users
submit new bids, and as the spot pool’s capacity changes.

Amazon conducts a second-price auction for their spot
instances. Users place a single, fixed bid, which repre-
sents the maximum hourly price that they are willing to
pay. The market price is based on all the bids and the
available supply. Importantly, all users pay the same mar-
ket price, which may be lower than the bid. If the market
price increases above the user’s bid, then the spot instance
is revoked after a small (120 second) warning.

Spot price dynamics and the potential of unexpectedly
losing resources introduces additional new complexities,
which applications are typically not designed to handle.
Addressing these complexities is an active research area.
In particular, there has been substantial research on “opti-
mal” bidding strategies for various applications and sce-
narios [12, 13, 18, 20]. In general, a bidding strategy
determines the lowest bid price that ensures an applica-
tion satisfies a performance target with high probability,
e.g., finishing within a deadline. EC2 publishes three
months of spot price history—and there are archives over
multiple years—which prior work analyzes extensively to
model price characteristics [5, 8, 15, 17, 19].

Designing bidding strategies can be highly complex,
especially if a workload is distributed and users have to
bid on many resources. In this case, requesting multiple
units of the same resource with the same bid is risky, since
all resources are governed by the same spot price, such
that if one resource is revoked, they all are revoked. To
reduce the probability of concurrent revocations, users
might either spread their requests across many different
resource types with different spot prices or place many
different bids for different units of the same resource type.
Bidding’s complexity may be one reason why, despite
its extremely low prices (50-90% less than on-demand
instances), the spot market has low utilization [4].

EC2’s cloud has attempted to reduce complexity by
introducing tools, such as SpotFleets, which enable users
to specify bidding policies that apply to large groups of re-
sources from different markets. SpotFleets also includes
default bidding policies for users that do not want to



design their own policy. However, while bidding is a com-
plex problem in theory, we argue that it is not a significant
problem in practice due to at least three reasons.

Wide Range of Optimal Bids. Our spot price data anal-
ysis shows there is a wide band of bid prices that all yield
optimal results, such that any bid within this range has a
similar cost and availability as highly sophisticated bid-
ding strategies. One reason this is not readily apparent is
that prior work often compares the cost and performance
of a bidding strategy to using higher-priced on-demand
servers. However, in today’s market, with low and sta-
ble prices, bidding strategies need not be sophisticated to
reap significant savings compared to on-demand servers.
Related work should instead compare their performance
and cost with “dumb” bidding strategies.

Resources Always Available. Due to the large number
of spot markets and their size, there are always many mar-
kets available where prices are low and stable, even when
some markets are experiencing price spikes. Hence, upon
revocation, a simple strategy that provisions a new spot
server in another spot market and migrates an application
to it is better than waiting for a spot price spike to subside.
This migration approach nearly eliminates the unavail-
ability of spot servers and reduces the practical impact of
using bidding as a tool to control availability.

No Penalty for High Bids. Current spot market rules
permit users to bid the maximum allowed bid price within
each market with no penalty. Thus, sophisticated users
can ensure extremely high availabilities on spot instances
by placing maximum bids with little or no probability of
paying a high price if the spot price were to rise.

Finally, not only do different bidding strategies yield
little difference in their performance and cost, but some
of our insights above are reflected in the default bidding
strategies for EC2’s SpotFleets tool [2]. Thus, Amazon
is already nudging users to employ simple bidding strate-
gies [1]. Based on these insights, we argue that users
should ignore the potential complexity of bidding, and
simply procure cheap EC2 spot servers using simple bid-
ding strategies that we outline (or using Amazon’s tools to
employ such strategies). Rather than focusing on bidding,
researchers should instead focus on modifying applica-
tions i) to gracefully handle unexpected resource revo-
cation and allocation and ii) to efficiently seek out and
migrate to the lowest cost resources. Selecting the best
spot server to use at any time, i.e., the one with the lowest
cost and best performance, is the primary problem that
applications must address when using variable-priced re-
sources. That is, if a resource’s price rises significantly,
then applications should be flexible enough to simply mi-
grate to lower cost resources elsewhere in the cloud. For
applications willing to adopt it, this approach can yield
significant cost savings with little performance impact.

2 Background and Related Work

Since EC2 introduced its spot market, there has been sig-
nificant research both on analyzing and modeling spot
prices and developing bidding strategies based on real
data and models. One of the first papers analyzing spot
price data raised questions about whether EC2’s mecha-
nisms for setting the spot price were market driven [3].
However, as the authors note later, the characteristics of
the spot price changed, making it consistent with a market
driven allocation [3]. A number of related papers also
analyze spot price data to better understand its statisti-
cal characteristics [5, 8, 13, 15, 17, 19]. Analyzing and
modeling spot price data is a prerequisite to developing
bidding strategies that select the optimal bid to ensure a
target level of performance at the minimum cost.

Recent work focuses on optimal bidding for MapRe-
duce jobs. In [20], the authors focus on selecting a bid
such that, with high probability, the completion time on
spot instances is less than twice the running time on on-
demand instances. The paper examines multiple scenar-
ios: quitting job execution upon revocation, or making
persistent requests, i.e waiting until price drops to resum-
ing execution. In all variants, the work only considers
bidding in a single spot market: if the price rises too high
and instances are not available the MapReduce job must
either quit or continue processing with fewer resources.

As we discuss, EC2 (and the cloud in general) is large
enough that resources are nearly always available some-
where. Thus, unless an application is highly optimized for
specific types of server architectures (which MapReduce
is not) or has geographical constraints, waiting for the
price of resources to drop is unnecessary. Related work
makes similar assumptions about market constraints but
focuses on different applications. For example, prior work
develops bidding strategies for jobs with deadlines [18],
such that it chooses a bid for a particular spot market so
the job finishes before its deadline with high probability.

Restricting the problem to only a single spot market
has also resulted in prior research focusing on the wrong
price characteristics. Specifically, if restricted to a single
spot market, the only important characteristic is availabil-
ity, or the percentage of time the bid price is below the
spot price. However, if we assume applications should not
restrict themselves to only a single spot market, then avail-
ability is no longer important, as other cloud resources
are available in other markets. In this scenario, the fre-
quency of revocations is the primary attribute that affects
performance, since every revocation incurs an overhead
to request a new instance and migrate to it.

Unfortunately, modeling revocations is not as straight-
forward as modeling availability. Modeling availabil-
ity simply requires fitting a probability density function
(PDF) to a histogram over different spot prices, which

2



0 1 2 3 4 5
Bid

0.0

0.2

0.4

0.6

0.8

1.0
Av

ai
la

bi
lit

y
(a) Availability CDF

0 1 2 3 4 5
Bid

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Co
st

(b) Expected Cost

0 1 2 3 4 5
Bid

0

50

100

150

200

M
TB

R 
(h

ou
rs

)

(c) MTBR

g2.2xlarge c3.xlarge r3.large m3.medium d2.8xlarge

Figure 1: The effect of bidding on availability, expected cost, and MTBR for selected instance types. Bids and the
expected costs are normalized to a factor of the corresponding on-demand price.

gives a probability the spot price is equal to a particular
value. The corresponding CDF then directly gives avail-
ability, which is equal to the probability the spot price
is above a given value. Prior work models availability
using both Pareto and exponential distributions [20]. In
contrast, revocations are discrete events with inter-arrival
times that are not cleanly captured by a single number.
As in any queuing model, the distribution of inter-arrival
times is also important. However, the frequency and dis-
tribution of revocation events is a function of the bid, and
may be different at different bid prices. Even though revo-
cations are the primary attribute that affects performance,
we know of no prior work that models the distribution of
these events at different bid prices in EC2.

Finally, in many cases, as in [12, 18], bidding strategies
are with respect to idealized spot price distributions, e.g.,
mixed Gaussian, exponential, Pareto, etc., and not real
data. These idealized models are often based on exam-
ining only a few markets even though thousands of spot
markets exist, which have vastly different characteristics.
These characteristics are not likely captured by a one-size-
fits-all model. Further, as [3] notes, price characteristics
may change frequently due to changes in EC2’s supply,
demand, or its pricing algorithm, which may render mod-
els based on prior data unreliable. In many cases above,
proposed solutions actually depend on the type and at-
tributes of the particular model used in the analysis. As
we discuss, though, the bidding problem in today’s market
(and possibly in future markets) is a red herring that is not
particularly important for maximizing performance and
minimizing costs using spot instances.

3 Do Optimal Bidding Strategies Matter?
To understand whether (and how much) optimal bidding
strategies matter in EC2, we conduct a data-driven analy-
sis of spot price data over a six month period from March
to August 2015 (and longer periods where stated), as
well as show aggregate statistics from every EC2 spot
market. For ease of exposition, we focus on the most
popular instance types in the most popular region, i.e.,
Linux instances in the us-east-1 region.

Bidding strategies optimize the cost-availability trade-
off for spot instances: as a user increases their bid, they
may pay more per-hour, but their availability also in-
creases. However, spot price data across many markets
shows that there is a wide range of “optimal” bids that
essentially yield the same availability for the same cost.
To illustrate, Figure 1(a) shows a CDF of availability for
instance types in five different markets over our six month
period, where the x-axis is a user’s bid normalized to
the on-demand price, i.e., 1 is 1× the on-demand price,
2 is 2× the on-demand price, etc. As expected, avail-
ability monotonically increases with the bid. However,
in each case, the CDF has a steep incline followed by
an extremely long tail, such that there is little increase in
availability after some bid threshold and only bids that fall
within the steep range of the incline yield different avail-
abilities. As the graph shows, this range of bids is quite
small, providing only a narrow window where changing a
bid will have a significant effect on availability.

Similarly, Figure 1(b) shows the cost a user would
pay for the same instance types and the same bids. In
this case, the cost on the y-axis is a fraction of the on-
demand cost, i.e., 0.5 means the expected cost is 0.5×
the on-demand price. As with availability, the cost is
monotonically increasing with the bid amount. However,
just as with availability, the cost curve has a long tail, such
that higher bids result in little or no increase in cost. The
only exception in these markets is the c3.xlarge instance
type, which experiences two abrupt increases in cost at bid
levels of 1.2× and 4.75× the on-demand price. The other
instance types have nearly the same cost regardless of the
bid level. This occurs because most markets always have
a low and stable spot price, with the average spot price
<0.2× the on-demand price. Just as with availability,
bidding has little effect on the cost of spot instances.

Finally, as we discuss in the previous section, the fre-
quency of revocations, as indicated by their mean-time-
between-revocations (MTBR), is another important met-
ric, since revocations incur overhead for applications that
migrate to other available resources. Thus, Figure 1(c)
shows the MTBR for different bids. The figure shows that

3



Avail. Cost MTBR
4

5

6

7

8

9

10

Bi
d 

ra
ng

e 
le

ng
th

Figure 2: Range of bids for which availability, cost, and
MTBR is within 10% of optimal across 1500 markets.

MTBRs range from tens to hundreds of hours. In addition,
the MTBRs also have a long tail in all but one market,
such that bidding high does not significantly increase the
MTBR and there is a wide range of bids that effectively
yield the same MTBR.

While the analysis above uses only five spot markets as
illustrative examples, we analyzed these properties in over
1500 spot markets over our six month period. Figure 2
plots the range of bids such that any bid within the range
is within 10% of the optimal bid for availability, cost,
and MTBR. The optimal bid is simply the bid that yields
the highest availability and MTBR for the lowest cost.
Thus, we consider every bid within the range as effectively
optimal that yields near the same result. As above, the
y-axis is the length of the bid range as a factor of the
on-demand price. Thus, a bid range length of 2 indicates
a range of [b,b+(2∗D)] for some bid b where D is the
on-demand price. A smaller range indicates higher bid
sensitivity, where an application should carefully select a
bid from a small range of near-optimal bids. In contrast,
a larger range indicates a low bid sensitivity.

We see from Figure 2 that the bid ranges for the avail-
ability, cost, and MTBR are generally quite large, with a
bid range near 9. Note that EC2 imposes a maximum bid
of 10× the on-demand price. These results suggest that
picking nearly any bid within the range of allowed bids
yields the same optimal result. Put another way, users
would need to “try hard” to make a “bad” bid by select-
ing a bid price that is exceedingly low compared to the
average spot price. Thus, in today’s market, due to low
prices (resulting in high availability) and price stability
(resulting in long MTBRs), spot revocations are rare, but
unavoidable, regardless of a user’s bid.

4 Beyond Bidding
Based on our analysis in the previous section, we argue
that users should focus less on bidding and instead adopt
the following simple strategy when using spot instances:
i) employ a simple bidding strategy that selects a high
bid price equal to the on-demand price, when requesting
one or more spot servers; ii) if a server is revoked, simply
seek out a different spot market with a lower price and re-

0

5

10

15

20

0 5 10 15 20
Spot Market

S
po

t M
ar

ke
t

0

200

400

600

Revocation
Gap(Hours)

Figure 3: Revocation gap between different EC2 avail-
ability zones and instance types in the us-east-1 region.

quest new servers (and if no spot markets have low prices,
request an on-demand instance); iii) migrate application
state to the newly acquired server and resume. We ex-
amine the feasibility and benefits of this simple strategy
above as an alternative to sophisticated bidding.

As mentioned in Section 1, SpotFleets partially en-
codes our simple bidding strategy, as its default policy
is to bid the on-demand price. If users are willing to mi-
grate applications, bidding above the on-demand price
is not cost-effective, as users can simply migrate to an
on-demand instance once the spot price rises above the
on-demand price. The only reason to bid above the on-
demand price would be to gain advance notification and
additional time to migrate to an on-demand instance.

Interestingly, under current spot market rules, users can
actually bid the maximum bid price without penalty by
simply monitoring the spot price and migrating to an on-
demand instance once the price exceeds the on-demand
price. Since EC2 only charges based on the spot price at
the start of each hour, a user would never incur their high
bid price, and, even if EC2 charged at a finer granularity,
the user would only incur the high price for the small
time window required to vacate the spot instance. The
only way to prevent such gaming is to hide real-time spot
prices from users, and only publicly release them much
later. However, hiding spot prices would likely further
discourage users from using the spot market.
Market Correlations. We examined the correlations of
price variations between markets by studying price histo-
ries for the same spot server across different availability
zones within a region, as well as across different types of
servers within the same availability zone. We found that
price of the same server type across availability zones and
those across server types is largely uncorrelated. A conse-
quence of the lack of price correlation is that revocation
events are separated in time across spot markets—when
one spot market experiences price volatility and price
spikes, other markets are often unaffected. This is demon-
strated in Figure 3, which shows the average revocation
gaps between pairs of markets for the us-east-1 region.

The revocation gap is on the order of hundreds of hours

4



between some markets—thus they are effectively indepen-
dent, and can be treated as independent failure domains.
This observation has two important consequences. First,
if a single node application running on a spot server sees
a revocation, it is feasible to find another spot server type
(of equal or greater size) at a low price with high proba-
bility. The application can then be resumed on the new
server. Second, for distributed applications that run on
multiple nodes, it is beneficial to distribute the applica-
tion components across different (and uncorrelated) spot
server types. Doing so ensures a revocation event only
results in the application losing a fraction of the nodes,
rather than all of its nodes with homogeneous servers.
The distributed application can procure new servers from
other spot markets while continuing to execute on the
unrevoked servers.
Migration Strategies. Migration strategies are key in
the light of our proposed strategy to request new spot
servers in a different market and to resume the applica-
tion on the new servers. We can treat these revocation
events as fail-stop failures. By periodically checkpoint-
ing state to network storage, the application can resume
from the most recent checkpoint [9, 6, 7, 14]. Migration
strategies are also feasible using live [10] or bounded-
time migration [11] of nested VMs [16]. Thus, research
should instead focus on determining efficient checkpoint-
ing and migration strategies, rather than optimal bidding
strategies, to exploit cheap revocable spot servers.

Since job completion time can increase substantially
due to frequent revocations, research should also focus on
reducing revocation frequency by judiciously choosing
between several different markets and choosing one (or
more) with a low volatility. The expected completion time,
revocation frequency, and cost can be estimated based on
spot price data and bid prices, enabling applications to
minimize revocations by determining how to optimally
use the mechanisms above.
Exploiting Arbitrage. Our analysis also shows that cur-
rent spot markets are “inefficient” at pricing resources.
For example, we observe long periods where larger
servers have normalized spot prices that are lower than
smaller servers (presumably since demand in the lat-
ter market is greater than the former). From Figure 1,
r3.large spot instances are about 0.15× their on-
demand price, whereas the d2.8xlarge spot servers
are about 0.25× their on-demand price. This price differ-
ential can serve as an arbitrage opportunity, enabling the
use of more powerful spot servers at low cost. Judicious
selection and migration to spot servers with the lowest
cost are important in exploiting such arbitrage.

5 Future of Spot Markets
Will markets get more volatile? We have examined price
data over the past six years (in addition to our six month

2010 2011 2012 2013 2014 2015
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sp
ot

 p
ric

e 
di

st
rib

ut
io

n

7.71
3.31

4.27

4.94

6.40
1.03

Figure 4: Spot price distribution for m1.large over
the years. The number above each boxplot denotes the
skewness of the distribution.

traces) and found that bidding has never been a significant
problem throughout the history of EC2’s spot market. For
example, as shown in Figure 4, while the average spot
price of the m1.large instance type since its inception
has decreased (in accordance with decreasing on-demand
prices), the spread of spot prices has not increased sig-
nificantly either. However, while our analysis of histori-
cal spot price data leads us to conclude that bidding has
never been an important problem, it is possible that it
may become an important problem in the future if price
characteristics change.
Will prices rise? A substantial increase in demand will
undoubtedly cause an increase in average spot prices and
any substantial price increase will cause price-sensitive
spot users to become “priced out” of the market (which in
turn may reduce demand and cause prices to drop). The
second-order effects due to widespread adoption of the
migration strategies we propose remains unclear, and a
rigorous analysis, through game-theoretic or other means,
is an open question. However, anecdotal evidence sug-
gests that such effects may not come to pass—due to the
significant capacity additions being made by all cloud
providers on a regular basis, implying that there may al-
ways be some surplus capacity despite increasing demand
in both the spot and on-demand markets.

6 Conclusion
In this paper, we dispel the notion that bidding signifi-
cantly affects the availability and cost of spot instances. In
particular, we show that the availability, cost, and revoca-
tion rate of spot instances based on spot price history are
largely constant across a wide range of bids. Thus, instead
of optimizing bidding strategies, we argue users should
focus instead on modifying applications to efficiently seek
out and migrate to the lowest cost resources.
Acknowledgements. We thank all the reviewers for their
insightful comments. This work is supported in part by
NSF grants #1422245 and #1229059 and by a Google
faculty research award.

5



References
[1] Ec2 Spot Bid Advisor. https://aws.amazon.com/ec2/

spot/bid-advisor/, September 2015.

[2] Ec2 Spot-fleet. http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/spot-fleet.html,
September 2015.

[3] BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER, A., AND
TSAFRIR, D. Deconstructing Amazon EC2 Spot Instance Pricing.
ACM TEC 1, 3 (September 2013).

[4] HIGGINBOTHAM, S. Bidding Strategies? Arbitrage? AWS Spot
Market is where Computing and Finance Meet. Gigaom, October
8th 2013.

[5] JAVADI, B., THULASIRAM, R., AND BUYYA, R. Statistical
Modeling of Spot Instance Prices in Public Cloud Environments.
In UCC (December 2011).

[6] KHATUA, S., AND MUKHERJEE, N. Application-centric Re-
source Provisioning for Amazon EC2 Spot Instances. In EuroPar
(August 2013).

[7] MARATHE, A., HARRIS, R., LOWENTHAL, D., DE SUPINSKI,
B. R., ROUNTREE, B., AND SCHULZ, M. Exploiting Redun-
dancy for Cost-effective, Time-constrained Execution of HPC
Applications on Amazon EC2. In HPDC (2014).

[8] MIHAILESCU, M., AND TEO, Y. M. The Impact of User Ratio-
nality in Federated Clouds. In CCGrid (2012).

[9] SHARMA, P., GUO, T., HE, X., IRWIN, D., AND SHENOY, P.
Flint: Batch-Interactive Data-Intensive Processing on Transient
Servers. In EuroSys (April 2016).

[10] SHARMA, P., LEE, S., GUO, T., IRWIN, D., AND SHENOY,
P. SpotCheck: Designing a Derivative IaaS Cloud on the Spot
Market. In EuroSys (April 2015).

[11] SINGH, R., IRWIN, D., SHENOY, P., AND RAMAKRISHNAN, K.
Yank: Enabling Green Data Centers to Pull the Plug. In NSDI
(April 2013).

[12] SONG, Y., ZAFER, M., AND LEE, K. Optimal Bidding in Spot
Instance Market. In Infocom (March 2012).

[13] TANG, S., YUAN, J., AND LI, X. Towards Optimal Bidding
Strategy for Amazon EC2 Cloud Spot Instance. In CLOUD (June
2012).

[14] VOORSLUYS, W., AND BUYYA, R. Reliable Provisioning of Spot
Instances for Compute-Intensive Applications. In AINA (2012).

[15] WEE, S. Debunking Real-Time Pricing in Cloud Computing. In
CCGrid (May 2011).

[16] WILLIAMS, D., JAMJOOM, H., AND WEATHERSPOON, H. The
Xen-Blanket: Virtualize Once, Run Everywhere. In EuroSys
(2012).

[17] XU, H., AND LI, B. A Study of Pricing for Cloud Resources.
Performance Evaluation Review 40, 4 (March 2013).

[18] ZAFER, M., SONG, Y., AND LEE, K. Optimal Bids for Spot VMs
in a Cloud for Deadline Constrained Jobs. In CLOUD (2012).

[19] ZHANG, Q., GÜRSES, E., BOUTABA, R., AND XIAO, J. Dy-
namic Resource Allocation for Spot Markets in Clouds. In Hot-
ICE (March 2011).

[20] ZHENG, L., JOE-WONG, C., TAN, C. W., CHIANG, M., AND
WANG, X. How to Bid the Cloud. In SIGCOMM (August 2015).

6

https://aws.amazon.com/ec2/spot/bid-advisor/
https://aws.amazon.com/ec2/spot/bid-advisor/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html

	Introduction
	Background and Related Work
	Do Optimal Bidding Strategies Matter?
	Beyond Bidding
	Future of Spot Markets
	Conclusion

