Automated and On-Demand Provisioning of Virtual
Machines for Database Applications

Piyush Shivam, Azbayar
Demberel, Pradeep
Gunda

David Irwin, Laura Grit,
Aydan Yumerefendi

Shivnath Babu, and Jeff
Chase

Dept. of Computer Science,
Duke University
Durham, NC, USA

{shivam,asic,pradeep,irwin,grit,aydan,shivnath,chase}@cs.duke.edu

ABSTRACT

Utility computing delivers compute and storage resources
to applications as an ‘on-demand utility’, much like elec-
tricity, from a distributed collection of computing resources.
There is great interest in running database applications on
utility resources (e.g., Oracle’s Grid initiative) due to re-
duced infrastructure and management costs, higher resource
utilization, and the ability to handle sudden load surges.
Virtual Machine (VM) technology offers powerful mecha-
nisms to manage a utility resource infrastructure. However,
provisioning VMs for applications to meet system perfor-
mance goals, e.g., to meet service level agreements (SLAs),
is an open problem. We are building two systems at Duke—
Shirako and NIMO—that collectively address this problem.

Shirako is a toolkit for leasing VMs to an application from
a utility resource infrastructure. NIMO learns application
performance models using novel techniques based on active
learning, and uses these models to guide VM provisioning in
Shirako. We will demonstrate: (a) how NIMO learns per-
formance models in an online and automatic fashion using
active learning; and (b) how NIMO uses these models to do
automated and on-demand provisioning of VMs in Shirako
for two classes of database applications—multi-tier web ser-
vices and computational science workflows.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Modeling Techniques

General Terms: Measurement, Performance, Management

Keywords: Active Learning, Modeling, Virtual Machines

1. MOTIVATION

Utility computing delivers compute and storage resources
to applications as an ‘on-demand utility’, similar to an elec-
tricity grid. The utility computing model is enabled by dis-
tributed collection of compute and storage resources spread
over a local or a wide area network, i.e., networked utilities.
Examples include scientific workflows running on computa-
tional grids and multi-tier web services (e.g., an ecommerce
website) operating in data centers.

The utility setting offers several benefits for database ap-
plications: reduced infrastructure and management costs,
higher resource utilization, and the ability to allocate re-
sources on-demand to support dynamically changing de-

Copyright is held by the author/owner(s).
S GMOD’ 07, June 11-14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

mands. Oracle’s Grid initiative is one recent example pro-
moting utility resources for database applications.

Virtual machine (VM) technology offers powerful mecha-
nisms for efficient management of networked utilities. After
a decade of advances in VMs, robust and efficient VM sys-
tems are widely available and and are fast becoming ubiqui-
tous. The leading VM systems (e.g., VMware, Xen) support
live migration, checkpoint/restart, and fine-grained alloca-
tion of server resources as a measured and metered quan-
tity [1]. These capabilities create a rich decision space for
utility resource management: How should an intelligent in-
frastructure “turn the knobs” to map workload and resource
requests onto a server network?

Intelligent provisioning of VMs is necessary to meet sys-
tem performance goals such as meeting application SLAs,
optimizing application execution time, and maximizing over-
all resource usage. However, provisioning VMs to meet such
goals is challenging because application behavior is dictated
by the interaction of several factors such as:

e Resources. The number of VMs assigned to the ap-
plication, and the properties of the underlying resources
bound to each VM, e.g., CPU, memory, storage, and
network resources.

e Data. The characteristics of the data that the appli-
cation processes such as the input data size, and its
layout and partitioning on the storage server.

e Workload. The characteristics of the workload seen
by the application, e.g., the request arrival rate, and
the service demand of each request.

The NIMO system—focus of this demonstration—builds per-
formance models that capture the interaction among such
factors, and the resulting application performance [4, 6]. It
uses these models to provision VMs in Shirako—a toolkit for
leasing VMs from a shared utility resource infrastructure—
to meet several performance goals in an automated and on-
demand fashion.

2. SHIRAKO

Shirako [1, 3] is a Java toolkit for secure, on-demand leas-
ing of utility resources. Shirako provides a guest application
with a slice of virtualized resources (VMs) from a collection
of distributed physical resources.

Shirako has programmatic leasing primitives for dynami-
cally partitioning a networked utility into Xen virtual ma-
chines. Each Xen VM is bound to a performance-isolated
sliver of server resources; slivers are sized along multiple

Application Network O
Workbench | D) garen &=

1 [m)
VM sliver Scheduler T
Resource [TSYeT §
Profiler | | (Enumerates | Application Application 3
(Runs standard Vaf;‘\d |°°5"5 [| and Data Active and
benchmarks) | Profiles of slivers) 1< plication Profiler accelerated
e profile learning
used in the
VM sliver
Selected
VM sliver

Shirako Toolkit
(policies and mechanisms for leasing
VMs from utility resources)

1: Architecture of NIMO.

Maximum prediction accuracy

) with learned model
acceleration f-----------ooaee y

Active sampling
with

Fairly accurate
model is ready

for use here Passive

Accuracy of i sampling
current best |
model ! Active sampling

without acceleratior

Time
2: Active and accelerated learning.

dimensions (e.g., CPU cycles, memory, and network band-
width), and can be resized on-the-fly to adapt to changing
demands. Shirako, without NIMO, was demonstrated re-
cently at OSDI’06 and SC’06 [2].

3. NIMO

NIMO [4, 5, 6] creates application performance models
using active learning techniques automatically and quickly.
NIMO has three objectives.

1. End-to-End. NIMO learns performance models that
predict performance measures taking into account the
interaction between an application’s workload, the VM
sliver(s) assigned to the application, and the data pro-
cessed by it.

2. Noninvasive. NIMO gathers training data for models
from passive instrumentation streams readily available
with common tools, with no changes to application or
system software.

3. Active. NIMO deploys and monitors applications
on VMs with different sliver sizes to collect sufficient
training data to learn accurate models.

4. NIMO OVERVIEW

Figure 1 shows NIMO'’s overall architecture. It consists of:
(i) a scheduler that enumerates, selects, and requests VMs
for applications from the Shirako toolkit; (ii) a modeling
engine—consisting of a resource profiler, a data profiler, and
an application profiler—that learns performance models for
applications, and captures the behavior of the application
resulting from the interaction of the relevant factors listed
in Section 1; and (iii) a workbench where NIMO conducts
proactive application runs to automatically collect samples
for learning performance models. Active learning with ac-
celeration, as shown in Figure 2, seeks to reduce the time

Candidate compute,

Application network, and Input data sets
storage assignments
e i 1

]
Application Resource Data | (Noninvasive
Profile Profiles Profiles | | instrumentation

1

1

1 I common monitoring tools)
R N, I A

‘ Performance Model ‘

Candidate Target .
plans completion

time \-

1

:]
1 Predict t Characterize
1 Leedslf P|:"'16 assignments that : Use of model
1 meet the target | | for planning
|
- 1

3: Model-guided resource planning.

before a reasonably accurate performance model is available.
(The z-axis in Figure 2 shows the progress of time for col-
lecting samples and learning models, and the y-axis shows
the accuracy of the best model learned so far.)

We now summarize the components of NIMO in the con-
text of a computational science workflow G [4]. Note that
the demonstration will include computational science work-
flows and a multi-tier application.

41 Modds

The scheduler uses a performance model M(G, I ,ﬁ) to
estimate the performance of G with input dataset I on a
resource assignment R. Figure 3 gives an overview of our
approach to estimate the performance of candidate plans.
A plan consists of an assignment of a VM sliver(s) to an
application by Shirako. NIMO builds profiles of resources
and applications by analyzing instrumentation data gath-
ered from previous runs of the application. A performance
model M for an application G predicts the performance of
a plan for G given three inputs: (i) G’s resource profile of
the VM assigned to the plan, (ii) data profile of the input
data, and (iii) application profile of the application. Details
on NIMO’s performance models and profiles are in [6].

Intuitively, resource profiles specify attributes that char-
acterize the function and power of the VM independent of
applications. For example, a resource profile might represent
a virtual machine with its share of CPU cycles, memory size,
and network bandwidth. Similarly, storage resources can be
approximated by attributes such as capacity, spindle count,
seek time, and transfer speed. The data profile comprises
the data characteristics of G’s input data, e.g., the input
data size. The application profile captures the behavior of
the application resulting from the interaction of the appli-
cation, the resources assigned to it, and its data profile.

4.2 ActiveLearning of Models

NIMO’s modeling engine automatically learns the perfor-
mance model for G from the instrumentation data samples
obtained by deploying G on selected VMs with varying sliver
sizes, either to serve a real request, or proactively to use idle
or dedicated resources (a “workbench”; see Figure 1). Each
sample point consists of G’s application, resource, and data
profile values for that run. NIMO’s modeling engine actively
initiates new runs of GG on selected VMs in the workbench.
The choice of VM slivers is guided by the active learning

1 Learned automatically

algorithms. The goal is to obtain sufficient samples to learn
an accurate performance model for G quickly; see Figure 2.
Further details on instrumentation and the active learning
in NIMO are in [4, 5].

Shirako provides programmatic leasing primitives to con-
figure VMs on-the-fly to enable NIMO'’s active learning. For
each application run on a VM, NIMO collects the instrumen-
tation data during the run, then aggregates it to generate a
sample data point as soon as the run completes. We contin-
uously track the samples obtained for each application in a
database of samples (Figure 1). We will use this feature to
demonstrate the active learning of models in real-time.

4.3 Model-guided VM Provisioning

A key challenge in provisioning VMs for meeting perfor-
mance goals is to determine the measure of physical re-
sources or the “sliver size” bound to each VM. Once NIMO
learns the application performance models, it can use them
to determine the VM sliver sizes for applications by: (i) rank-
ing the list of available VM slivers in order of application per-
formance; (ii) predicting the VM slivers that meet an appli-
cation’s target performance; and (iii) doing what-if analysis
(Section 5.3). Details of model use in NIMO are in [6].

5. SAMPLE DEMONSTRATION SESSION

Overall, we will demonstrate: (i) how NIMO builds mod-
els using active and accelerated learning; (ii) how NIMO
guides the provisioning of VMs in Shirako in real-time to
meet system performance goals.

5.1 Demonstration Setup

To demonstrate the NIMO system we need a utility re-
source infrastructure. Shirako provides mechanisms to cre-
ate and manage virtual data centers from a utility consist-
ing of a network of servers. We plan to create a network of
servers using a small cluster of laptops. We will have ap-
plications drawn from computational science (CardioWave,
NAMD, BLAST, and fMRI [6]), and RUBIS, an opensource
multi-tier web service that implements the core functionality
of an auction site like eBay: selling, browsing, bidding.

NIMO will use Shirako’s programmatic leasing primitives
to deploy and run the scientific workflows and RUBIS on the
utility resources. Each run will involve NIMO requesting a
VM from Shirako, and then dynamically instantiating and
running the application on the VM. NIMO will build the
model for each application, and use the learned model to
meet system performance goals.

5.2 Modd Learning

We will demonstrate the model learning process in real-
time (as shown in Figure 2) using a database of samples as it
is being populated by NIMO (see Figure 1). We keep track
of all sample runs in the sample database to show: (i) online
sample collection using active learning; (ii) model building
using available samples; (iii) the current model’s accuracy;
(iv) selection of new samples based on the current model’s
accuracy; (iv) updating of the model and convergence of its
accuracy as the system collects more samples.

5.3 Modd-guided Resource Planning

We will demonstrate how a self-managing system or a sys-
tem administrator can query the models to meet system
performance goals as follows:

5.3.1 Ranking

An administrator can query the model to rank a list of
available VM slivers in order of application performance. We
will show how to query the model to determine the execution
time of scientific applications, and the response time of the
database and other tiers of RUBIS on available VM slivers.

5.3.2 Guaranteeing SLAs

We will demonstrate how an administrator can determine
the VM sliver size for an application that meets an SLA
specified along with the application. An example SLA may
say: “the application must run in less than 10 minutes”,
or “the response time from the database tier should be less
than 2 ms”. Given a bound on the application performance,
the administrator can query the performance model to de-
termine the VM sliver that meets the SLA target. We will
also show how well the NIMO-guided choice of VM meets
the specified SLA.

5.3.3 What-if Analysis

We will show the querying of models with what-if queries,
e.g., “how will the performance of RUBIS change if the
CPU cycles or memory bound to the VM is doubled for
the database tier?” Accurate and timely answers to such
questions are useful for capacity planning as well as to es-
timate the potential impact of system failures and perfor-
mance problems. We will demonstrate how NIMO answers
such queries, and compare the answers that NIMO gives to
the actual values by running the application on a VM.

6. SUMMARY

We demonstrate the NIMO system that uses active and
accelerated learning techniques to learn performance mod-
els automatically for database applications. The learned
models are used to provision VMs for these applications in
a utility setting, including (i) ranking available VM sizes
based on application performance, (ii) determining VM sizes
that meet a performance target, and (iii) answering what-if
queries. We use computational science applications as well
as multi-tier web services in the demonstration.

7. REFERENCES
[1] D. Irwin, J. S. Chase, L. Grit, A. Yumerefendi, D. Becker, and

K. G. Yocum. Sharing Networked Resources with Brokered

Leases. In Proceedings of the USENIX Annual Technical

Conference, Jun 2006.

Network/Internet Computing Lab.

http://www.cs.duke.edu/nicl.

[3] L. Ramakrishnan, L. Grit, A. Tamnitchi, D. Irwin,

A. Yumerefendi, and J. Chase. Toward a Doctrine of
Containment: Grid Hosting with Adaptive Resource Control.
In Proceedings of ACM Conference on Supercomputing (SC),
Nov 2006.

[4] P. Shivam, S. Babu, and J. Chase. Active and Accelerated
Learning of Cost Models for Optimizing Scientific Applications.
In Proceedings of International Conference on Very Large
Data Bases (VLDB), Sep 2006.

[5] P. Shivam, S. Babu, and J. Chase. Active Sampling for
Accelerated Learning of Performance Models. In Workshop on
Tackling Computer Systems Problems with Machine Learning
Techniques (SysML), Jun 2006.

[6] P. Shivam, S. Babu, and J. Chase. Learning Application Models
for Utility Resource Planning. In Proceedings of International
Conference on Autonomic Computing (ICAC), Jun 2006.

2

