
NILM Redux: The Case for Emphasizing
Applications over Accuracy

Sean Barker, Sandeep Kalra, David Irwin, and Prashant Shenoy
University of Massachusetts Amherst

Abstract—Non-Intrusive Load Monitoring (NILM) has re-
cently experienced a rebirth due to the expanding deployment of
network-connected smart meters by utilities and the increasing
availability of Internet-enabled consumer-grade power meters.
While many dimensions of the problem have been well-studied
over the past 25 years, we argue that prior work has placed
too much emphasis on incremental improvements in accuracy
and not enough on designing novel NILM applications. As a
result, the basic NILM problem and its primary application—
a simple appliance-level breakdown of home energy usage—has
remained unchanged since its inception. We believe a renewed
focus on NILM applications could help steer future research in
novel directions by exposing new problem variants, data analysis
techniques, and evaluation metrics. In this paper, we summarize
our own application-centric research agenda, which focuses on
online applications that generate results in real time as smart
meters produce data. As we discuss, our focus on applications has
led us to consider efficiency and performance issues not addressed
in prior work, which typically targets offline data analysis.

I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM), or energy dis-
aggregation, has been an active research area for 25 years,
starting with Hart’s original work in 1989 [1], [2]. As recent
surveys show [3], [4], researchers have proposed novel NILM
algorithms for a broad spectrum of problem variants, which
differ based on their data type (e.g., real/reactive power,
current, voltage, etc.), data acquisition hardware, data reso-
lution, scale (i.e., number of devices), diversity (i.e., type of
devices), deployment length, and time lag (i.e., the delay in
returning results). In recent work, Armel et al. categorize 18
different algorithms from prior work that effectively target 18
different variants of the problem [3]. To further complicate
matters, in many cases, authors do not fully specify their
problem variant. As one example, four of the 18 authors above
did not specify their data resolution, which may vary from
100,000,000 samples per second to 1 sample per hour and
has a strong impact on the efficacy of any NILM method [3].
Surprisingly, there are actually few NILM algorithms for any
given variant, and often just one. For instance, Armel et al. cite
only two approaches that disaggregate the 1Hz real power data
common to popular consumer-grade, Internet-enabled power
meters, such as the TED [5] and eGauge [6]. As a result,
proposed common standards for evaluating and comparing
different NILM algorithms (e.g., REDD [7]), while laudable,
may have limited value, since algorithms targeting widely
different problem variants are fundamentally incomparable.

In addition to the many existing problem variants, a wide
variety of accuracy metrics for NILM also exist, many of
which are incomparable across different algorithms for the
same problem variant. For example, some algorithms might
detect when devices either turn “on” or “off” and use binary
classification metrics (e.g., precision, recall, MCC, etc.) to
quantify accuracy, while others might assume devices vary

their energy usage continuously and quantify accuracy based
on the total energy correctly assigned to each device. As a
result, algorithms that use the former approach to quantify
accuracy could show “high” precision and recall (for some
definition of “high”), but still incorrectly assign much of
the energy usage if each device’s energy use varies widely
when “on,” as recent work shows is often the case [8]. The
converse may also be true, with algorithms capable of showing
a “low” precision and recall, but correctly assigning much of
the energy usage. In addition, NILM algorithms may exhibit
highly variable accuracy (for some metric) on a per-load
basis. For example, techniques that model devices as having a
small number of discrete power states will likely perform well
for devices that actually have discrete power states, and less
well for devices that continuously vary their power usage in
complex patterns. As a result, any technique’s accuracy for a
given dataset will depend on the set of devices within the data
and their characteristics. Each accuracy metric also implicitly
values certain behavior in a NILM algorithm. For example,
using the “total energy correctly assigned” for an entire home
as the accuracy metric prioritizes accurately assigning energy
to the devices that consume the most energy, while discounting
high accuracy for low-power devices. However, as we discuss,
some applications may value high accuracy for some important
but low energy devices. For example, many interactive devices
consume relatively little energy, but are useful for activity
recognition and provide the most insight into user behavior.

Ultimately, the variety of NILM variants and accuracy met-
rics combined with its 25 year history of prior research makes
it difficult to determine NILM’s important open problems, or
even if it has any important open problems. The plethora
of continuing research in the area indicates that researchers
believe NILM is not a solved problem, i.e., new techniques
will result in more than just incremental improvements in
accuracy over existing methods (at least for some problem
variants). However, since problem variants differ widely, the
open problems for each variant (and their associated accuracy
metric) are likely also different. So, is there a “right” problem
variant and accuracy metric for NILM? Given some accuracy
metric, what is a sufficiently “high” level of accuracy? How do
we determine if a new technique’s improvement in accuracy
over an existing technique is significant or just incremental?
Of course, the “correct” answer to each of these questions
depends on NILM’s target application. For instance, using
NILM as part of a recommendation engine that pushes energy-
efficiency suggestions to users’ smartphones in real time differs
substantially from using it to determine which home appliances
consume the most energy over a month. The former values
accuracy at each point in time and has real-time performance
requirements, while the latter values accuracy over the course
of an entire month and permits offline analysis.

Unfortunately, in most cases, prior NILM research does



not explicitly mention or target a specific application. Often,
the implicit application is computing a simple appliance-
level energy breakdown over some time interval, e.g., a
day or month. We believe NILM research needs to move
past computing appliance-level energy breakdowns. Energy
breakdowns, themselves, are not a particularly compelling
application, since they do not directly lead to quantifiable
improvements in energy-efficiency. Instead, to demonstrate its
value to outsiders, the research community should emphasize
designing new and novel applications using NILM, rather than
seeking incremental improvements in various accuracy metrics
for slightly different problem variants. We argue that NILM
research should be application-centric: the primary results
of any new technique should demonstrate how it enables
a novel application or enhances an existing application. A
focus on applications will also have the side-effect of putting
evaluations of accuracy in proper context by demonstrating if
the technique was accurate enough to support the application.
Likewise, future work can focus on showing how improving
the technique improves the application, which also serves the
purpose of putting any accuracy improvements in context.

In this paper, we outline our own application-centric
research agenda, including ongoing and future research on
NILM, as well as a broader set of energy data analytics. This
focus on applications has led us to value online and scalable
analytics: online NILM (and other online and scalable analyt-
ics) computes results in real time soon after a meter generates
new data. As a result, such analytics must be efficient, enabling
them to scale to massive grid-sized data sets including tens of
thousands of customers. Many novel applications require such
real-time and efficient analytics to be useful. Since most prior
NILM variants target offline analysis, ostensibly to compute
energy breakdowns, they are often computationally expensive.
As a result, they are neither online (as they cannot generate
new results as meters generate data) nor readily scalable (as
they consume significant computing resources per home).

II. EXAMPLE ONLINE APPLICATIONS

Before discussing our own research agenda and approach,
we first briefly describe a handful of online applications that
we consider interesting and potentially novel. While these
applications are not strictly dependent on NILM, they could
each benefit from an accurate NILM algorithm.

• Virtual Power Sensor. The foundational application that
an online approach to NILM should be able to provide
is that of a virtual power sensor that mimics having a
network-connected energy meter attached to each device.
As recent research shows [9], large-scale sensor deploy-
ments remain problematic due to their expense (∼$40-
80 per device), invasiveness (many hard-wired devices
are difficult to directly meter), and unreliability (sensors
often fail to report data). Thus, an online NILM-based
system that creates virtual power sensors by analyzing
data from a single smart meter to infer each device’s
power usage is highly attractive. Of course, to be an
effective power sensor replacement, the system should
report power usage at similar resolutions in real time, e.g.,
every few seconds for a typical networked plug meter.
A virtual power sensor application would be useful for
effectively any application that requires deploying power

sensors to monitor the power of one or more devices. Prior
research is replete with examples of such sensing-based
applications—we list a few possibilities below.

• Device Scheduling. There are a variety of policies a
home might employ to programmatically schedule when
background devices, such as refrigerators, freezers, air
conditioners, and heaters, operate. For example, utilities
might incentivize homes to schedule devices to reduce
their peak demand [10], or homes with local renewable
energy deployments might schedule devices to better align
their power usage with renewable generation (thereby
decreasing battery capacity requirements) [11]. Of course,
such device scheduling requires knowing when each de-
vice is using power and how much power is used. Thus, a
virtual power sensor as described above would eliminate
the need to install and maintain a multitude of per-device
power sensors to collect this data in real time.

• Recommendation Engine. Another novel online appli-
cation is a recommendation service that monitors the
power usage of various devices, and then issues real-time
alerts to users that notify them of immediate actions they
can take to optimize their energy usage. In recent work,
Banerjee et al. design such a recommendation service for
an off-grid home that relies on solar energy and battery-
based energy storage for power [12]. Such homes must
carefully regulate their power usage over time to align
with renewable generation as closely as possible. Thus,
the recommendation service advises users when high-
power appliances should be run, and notifies them of
energy conservation opportunities. The service uses power
sensors to report fine-grained power usage for high-power
devices, but, as the authors note, could benefit from a
more non-intrusive method of data collection.

• Demand Response Capacity Estimation. Finally, we
propose a new online application to aid utility demand
response programs. Currently, these programs typically
enable a utility to schedule the operation of specific
devices, e.g., air conditioners, for participating consumers
in exchange for lower electricity rates [13]. Thus, the
demand response capacity—the amount of power the
utility can shed—varies over time based on how many of
these devices from participating consumers are operating.
Today, utilities have no way to monitor the total demand
response capacity in real time. However, utilities with
access to smart meter data could use the virtual power
sensor application above to monitor each home’s air con-
ditioner. This application also highlights the importance
of computational efficiency: a utility may need to perform
NILM across tens of thousands of homes in its customer
base to perform this estimation. While, in a single home,
dedicating a server for online NILM analysis does not
seem onerous, dedicating tens of thousands of servers for
utility-scale analysis is likely cost-prohibitive.

Note that, in this paper, we specifically target consumer-
grade power meters, such as the TED [5], eGauge [6], and
BrulTech, which commonly provide a sampling resolution of
one average (real) power reading per second, e.g., τ = 1
second. While today’s utility-grade smart meters provide, at
most, minute-level sampling (e.g., a reading every five minutes
is common), there are indications the next generation of meters
will provide second-level sampling. For example, a U.K. sub-



committee defining future smart meter specifications released
a report advocating a five second sampling resolution [14].

III. EXISTING APPROACHES

Most prior NILM algorithms are not appropriate for the on-
line applications above, in large part, because they are designed
for offline analysis and are too computationally expensive [2],
[15], [7]. These algorithms generally model devices using a
small number of discrete power states, i.e., one or more “on”
states and an “off” state with minimal or no power usage.
Each device is then represented by a small state machine
that transitions between power states based on either user
behavior or some internal device control algorithm. Using this
approach, a building’s power usage is then simply a larger state
machine that transitions between a large number of discrete
power based on the state of its constituent devices. Such
state-based approaches are attractive to computing researchers
because they admit a variety of off-the-shelf techniques already
developed for analyzing state machines.

For instance, much prior work maps building state ma-
chines to Hidden Markov Models (HMMs), and applies HMM-
based techniques to determine which loads are on in each
state [7]. For these techniques, using only a few power states
per load is advantageous, since it minimizes the number of
distinct power states for the entire building and reduces the
complexity of analyzing the resulting state machine. However,
even with only two power states per load, the number of
building power states is still exponential in the number of
loads, i.e., 2n for n loads. Thus, precise analysis is still
intractable for large values of n, requiring enumerating an
exponential number of states. This approach is practical for
applications that only focus on accurately computing the total
energy correctly assigned to each device, since the value of
n can often be substantially reduced because, typically, only
a small number of devices, e.g., HVAC, refrigerator, dryer,
washing machine, etc., contribute the vast majority of a home’s
energy usage. However, the approach is less practical for
fully disaggregating the 30-100 individual, and often small,
electrical devices found in a typical U.S. home.

In general, state-based approaches do not work well online
applications that value computational efficiency and moni-
toring low energy devices, e.g., for activity recognition. For
example, based on our benchmarks of a state-of-the-art NILM
algorithm [7] based on Factorial Hidden Markov Models, after
training the models on data, the algorithm takes 86 seconds
on a dedicated 2.4GHz Xeon server to disaggregate all 25
circuits in a typical home (where we model each circuit as
having four power states). As a result, such an algorithm would
have at least an 86 second time lag before reporting each set
of results. Further, for utility-scale applications, the approach
would either require a dedicated server per home or exhibit
much worse performance, i.e., a much longer time lag.

IV. MODEL-DRIVEN APPROACH

To overcome the problems mentioned above, our own
work is taking a different strategy that decouples the NILM
problem into multiple distinct and independent subproblems,
some of which are performed offline and some online. The
general NILM problem consists of at least three distinct parts:

determining what devices are in a home, building a model of
the devices to capture their behavior, and using those models
to determine when the device runs. Many NILM techniques
conflate these issues by assuming that nothing is known about
the home a priori, and attempt to concurrently solve each
problem. In contrast, our work considers the first two problems
as offline, one-time “configuration” tasks for each building and
device and the last problem as an online task designed to run
as a smart meter generates new data. We discuss the challenges
associated with each of these NILM subproblems in turn.

A. Device Discovery

Device discovery is the process of determining the set of
electrical devices in a home. Existing NILM algorithms that
generate their models based on training data also require a
device discovery phase to know how many devices to model.
In general, these existing algorithms simply assume training
data from each device in the home (or a similar device in
another home) is available to generate a device-specific model.
However, we do not leverage training data in our approach for
at least two reasons: i) in practice, it is usually not available
from the home in question (since its presence would eliminate
the reason for performing NILM) and ii) it often embeds usage-
specific information, i.e., how someone uses the device, that
diminishes the value of using training data across homes.

Rather than use training data, our approach requires knowl-
edge of specific device models, down to their particular brand
and model number. Such specificity is necessary, since as
we show in recent work [8], different devices of the same
type might use power in different ways, e.g., refrigerators
from Maytag and GE might use power in different ways
and would thus need different models. One challenge with
this approach is that performing manual device discovery,
while possible, imposes a significant burden on the user.
We see multiple possibilities for addressing this challenge.
For example, mobile apps, such as Amazon PriceCheck, are
capable of automatically indexing a specific type of brand and
model of a device from a photograph, and could be modified
for this purpose. Alternatively, future devices may include
RFID tags that enable users to index them with an RFID
reader. Finally, for external users without access to the home,
device discovery could be done directly from the home’s smart
meter data by searching for identifiable power signatures—
specific sequences of changes in power—from a large database
of known signatures. Such device discovery itself represents
an interesting NILM-related problem.

B. Device Modeling

For each device in a home, our approach requires an
accurate model of the device. Rather than generate models for
each home’s devices using training data, as we mention above,
we view model derivation as a one-time offline “configuration”
task. Ideally, manufacturers would derive and publicly release
power models for their devices as part of the manufacturing
process. Many manufacturers often already include similar
types of detailed power usage information in device technical
manuals. Since these models are developed offline, they are
only able to capture usage-independent characteristics of a
device’s power usage when on, i.e., they can capture how
a toaster uses power when turned on but not how often the



toaster turns on or how long. Such models could also be crowd-
sourced by individuals. For example, The Power Consump-
tion Database already provides crowd-sourced information on
maximum and idle power for a wide range of specific loads,
indexed by type, manufacturer, brand, and model number [16].

In recent work [8], we present a simple and accurate
modeling methodology based on whether a device is resistive,
inductive, or non-linear load (or some combination thereof)
in an alternating current (AC) system. Since each type of AC
load exhibits similar characteristics, we design a few classes of
parameterized models that capture the power usage of loads in
each class. For example, high-power resistive heating elements
exhibit a exponential decay in their power usage after startup as
they heat up and their heating element’s resistance decreases.
As another example, non-linear switched mode power supplies
exhibit rapid, random fluctuations from a stable power state.
Our work defines four basic model classes—on-off (for low-
power resistive devices), exponential growth/decay (for high-
power resistive devices and inductive devices), stable min-max
(for switched mode power supplies and electronic controllers),
random range (for other types of electronics)—and two com-
pound classes—cyclic (for devices with automated controllers
that repeat at a regular, well-defined interval), and composite
(for devices that operate multiple simpler internal devices using
the above models, in sequence, parallel, or both).

We show that our model classes apply to nearly every
household device (since every device is either resistive, in-
ductive, non-linear, or a combination of them), and is more
accurate than models based on a limited number of discrete
power states. The primary challenge with our modeling ap-
proach is deriving a device’s class and constructing its model
programmatically. Currently, constructing a device’s model
is a manual and time-consuming process. Some composite
devices operate a collection of resistive, inductive, and non-
linear devices in complex patterns that requires independently
modeling each of the constituent devices and combining them
together. Ideally, models and their specific parameters could
be derived empirically using traces of device power usage. In
ongoing work, we are exploring techniques to automatically
identify model features in per-device power data to both
classify the type of device and construct its model.

C. Device Tracking

Our ultimate goal is to use the models above to enable
the virtual power sensors from §II that mimic a networked
power sensor by tracking and reporting the power usage of
a device in real time. The primary challenge in enabling
an accurate and efficient virtual power sensor is distilling
models into a set of identifiable features that are readily
observed in aggregated smart meter data. In many cases, the
models themselves are too complex and lengthy to accurately
detect when embedded in aggregated data. Generally speaking,
identifiable features are either large (i.e., high power) or very
distinct and brief in relation to the aggregated data. In other
words, large power consumption and distinct but brief periods
of power consumption are least likely to be obscured by
other devices in aggregated data. One goal of our work is
to define an identifiability metric that captures these high
level observations, enabling us to automatically select the most
identifiable set of features from a device’s model.

Once selected, the next challenge is to design efficient
methods to i) detect these features from smart meter data and
ii) extract the device’s power consumption. Efficiently detect-
ing a device model’s features enables a virtual power sensor to
know that the device is consuming power, while extracting the
device’s power consumption utilizes both the features and the
device’s model to infer device power consumption over time
(even during periods where its less identifiable model features
are obscured). Designing specific detection and extraction
techniques for each of our model classes is ongoing work;
however, we have been able to track devices using model-
based approaches more than an order of magnitude faster (e.g.,
compared to the disaggregation result given in §III) than using
traditional disaggregation techniques.

V. CONCLUSION

This paper argues that future NILM research should em-
phasize the design of novel applications that use NILM,
rather than incremental improvements in accuracy for different
problem variants. We detail the basis for this argument and
then describe our own research driven by the development of a
virtual power sensor—i.e., a type of online NILM that mimics
having a networked power sensor attached to each device. We
then discuss i) interesting higher-level applications of a such
virtual power sensor, ii) some limitations of existing NILM
research in supporting such an application, and iii) the status
of own research in developing such a mechanism.
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