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ABSTRACT
Developing accurate solar performance models, which infer solar
output from widely available external data sources, is increasingly
important as the grid’s solar capacity rises. These models are impor-
tant for a wide range of solar analytics, including solar forecasting,
resource estimation, and fault detection. The most significant error
in existing models is inaccurate estimates of clouds’ effect on solar
output, as cloud formations and their impact on solar radiation are
highly complex. In 2018 and 2019, respectively, the National Oceanic
and Atmospheric Administration (NOAA) in the U.S. began releas-
ing multispectral data comprising 16 different light wavelengths
(or channels) from the GOES-16 and GOES-17 satellites every 5
minutes. Enough channel data is now available to learn solar per-
formance models using machine learning (ML). In this paper, we
show how to develop both local and global solar performance mod-
els using ML on multispectral data, and compare their accuracy to
existing physical models based on ground-level weather readings
and on NOAA’s estimates of downward shortwave radiation (DSR),
which also derive from multispectral data but using a physical
model. We show that ML-based solar performance models based
on multispectral data are much more accurate than weather- or
DSR-based models, improving the average MAPE across 29 solar
sites by over 50% for local models and 25% for global models.
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1 INTRODUCTION
Grid-connected solar capacity continues to grow exponentially at
roughly a 20-30% increase per year [8]. This is in line with Swan-
son’s law, which observes that the price of solar photovoltaic (PV)
modules tends to drop 20% for every doubling of production vol-
ume [32]. This increase in solar capacity is expected to continue for
the foreseeable future with solar power expected to satisfy 25% of
global electricity demand by 2050 [7]. Of course, solar’s potential is
much higher as enough sunlight strikes the Earth’s surface in only
1.5 hours to satisfy the world’s annual energy consumption [20].
This dramatic increase in solar power is expected to place increas-
ing stress on the electric grid, which must continue to balance
supply and demand despite large potential fluctuations in solar
power generation that are geographically distributed.

The underlying reason is the mismatch in activation time be-
tween solar modules and conventional thermal generators. While
solar modules are always active and ramp power up and down
nearly instantaneously as clouds pass by, conventional generators
may take anywhere from tens of seconds to days to activate depend-
ing on their size. As a result, under large solar penetrations, utilities
keep many conventional generators active as spinning reserve to
quickly offset any dips in solar power. This is both expensive and
highly energy-inefficient, and akin to indefinitely maintaining an
idling car that is only driven periodically for short distances. While
batteries can mitigate some of this inefficiency, they are unlikely
to eliminate it at the grid level in the near future due to both high
cost and the limited supply of lithium on Earth [25].

A complementary approach to improving grid operations is to
improve the accuracy of current and projected solar power output.
Solar performance models infer one or more sites’ solar output
based on their physical and environmental characteristics, and are
a basis for a range of solar analytics, including short- and long-term
forecasting [19], resource estimation [4], fault detection [3, 6], and
disaggregation [22, 28]. In general, solar power is a well-known
function of a module’s physical characteristics, e.g., type, wiring
topology, inverter, tilt, orientation, location, elevation, etc., and its
environment, primarily the time of day, day of year, temperature,
and cloud cover. There are many “white box” modeling frameworks,
such as PVlib [14] and the U.S. Department of Energy’s System
Advisor Model (SAM) [24], that enable users to configure their
physical and environmental characteristics to estimate solar output.
There has also been recent work on “black box” data-driven model-
ing, such as Solar-TK [16, 21], which automatically derive physical
characteristics from data, and uses them to estimate solar output
based on current or forecasted environmental characteristics.

Unfortunately, the accuracy of these frameworks in estimating
solar power is only as good as their input. In general, white-box
approaches, such as PVlib and SAM, assume the components of

https://doi.org/10.1145/3408308.3427610
https://doi.org/10.1145/3408308.3427610


BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Akansha Singh Bansal and David Irwin

ground-level solar radiation are well-known, e.g, global horizon-
tal irradiance (GHI), direct normal irradiance (DNI), and diffuse
horizontal irradiance (DHI). Solar performance modeling is highly
accurate given accurate estimates of ground-level solar radiation,
derived from either a pyranometer [14] or a nearby solar site. Un-
fortunately, high fidelity solar radiation data is not widely available
at most sites. Thus, prior black-box approaches have estimated
ground-level solar radiation using cloud cover estimates commonly
reported by weather stations [21, 22]. Unfortunately, the frequency,
resolution, and spatial coverage of these cloud cover estimates are
coarse and imprecise, which results in significant inaccuracy. Im-
portantly, this inaccuracy in estimating the effect of cloud cover on
ground-level solar radiation is by far the largest source of error in
solar performance models that estimate solar output.

An alternative approach for inferring cloud effects is to use data
from satellites. For example, the Heliosat family of algorithms were
first introduced in the late 1980s and have been updated since
then [17]. These algorithms analyze satellite images in the visible
light spectrum, and estimate a “cloud index” by comparing a pixel’s
actual value with the value it would have under a clear sky. These
algorithms generally use physical models that are calibrated from
empirical observations of a location, and have grown increasingly
more complex as satellite sensors have grown more sophisticated.
In particular, the latest generation of U.S. satellites (GOES-16 and
GOES-17) include a sensor—the Advanced Baseline Imager (ABI)—
that takes images of the Earth with 16 spectral bands, including
two visible channels, four near-infrared channels, and ten infrared
channels. The ABI is capable of imaging the entire continental U.S.
(CONUS) at resolutions ranging from 0.5 − 2km every 5 minutes.

The U.S. National Oceanic and Atmospheric Administration
(NOAA) began releasing both raw data and derived data products
from the GOES-16 and GOES-17 in early 2019. As a result, there is
now enough raw channel data available to learn solar performance
models using machine learning (ML). In this paper, we show how to
develop both local and global solar performance models using ML
on multispectral satellite data. Local solar performance models are
trained on data from a specific solar site where the input features
include multispectral data and the output is solar power generation,
while global models are trained on normalized data from many
solar sites. As we show, local models are more accurate, but require
local data from each new site for training, while global models are
less accurate, but do not require any local data for training.

We compare our ML models above with existing calibrated phys-
ical models using both ground-level weather readings and NOAA’s
estimates of downward shortwave radiation (DSR). The latter es-
timates also derive from multispectral data, but using a physical
model, and represent the state-of-the-art for physical modeling of
surface radiation from satellite data. Our work differs from prior
work on estimating solar radiation in that we focus on end-to-end
solar performance models that estimate the solar power generation
of a particular site (at a specific location and time) using widely
available environmental data. Most prior work, including PVlib and
SAM, instead decouples estimating surface solar radiation from
estimating solar power output based on its physical characteristics,
e.g., efficiency, tilt/orientation, shading, temperature coefficient,
etc., given surface solar radiation. We focus on end-to-end mod-
eling because it is simpler, and there is less need for decoupling

when using ML, as ML training is capable of jointly learning the
solar radiation and the effect of a site’s physical characteristics.

Our hypothesis is that training ML-based solar performance
models on new multispectral satellite data can yield higher accu-
racy than existing physical models that use either multispectral
satellite data or ground-level cloud cover readings. In evaluating
our hypothesis, we make the following contributions.
Analyzing Multispectral Satellite Data. We analyze existing
multispectral satellite data, and its derived data products, from
GOES-16 and GOES-17 that are being made publicly available. We
compile a dataset composed of solar generation every 5m-1hr from
29 solar sites at known locations, along with the value of the 16 spec-
tral bands every 5m-1hr, DSR estimate, temperature, and ground-
level cloud cover reading, e.g., clear, scattered, broken, overcast,
etc.
ML-based Solar Performance Models.We develop approaches
for training both local and global ML models using multispectral
satellite data, and compare them with prior approaches that use
calibrated physical models. The local models are simple, and trained
on a dataset that includes multispectral data as input features and
solar generation as the dependent output variable. Instead, the
global model requires normalizing each site’s solar output to enable
training a consistent model across multiple sites.
Implementation and Evaluation. We implement both our ML-
based models and existing models and evaluate them on up to 2
years of multispectral data (the maximum that has been released)
from the 29 sites. We show that ML-based solar performance models
based on multispectral data are much more accurate than weather
or DSR-based models, improving the average MAPE across 29 solar
sites by over 50% for local models and 25% for global models.

2 BACKGROUND ESTIMATES
Our problem is to develop a solar performance model that infers
solar power output for a specific location, time-of-day, and day-of-
year given historical solar power output, and the location’s environ-
mental data at the same time. Below, we discuss prior approaches
that use physical models, but with different types of environmental
data as input. We then detail the characteristics of the data sets
we use for our learning approach, including the raw channel data
gathered by the GOES-16 and GOES-17 satellites.

2.1 Prior Approaches
White-box Modeling. Solar performance modeling is a mature
area with detailed physical models available that can accurately
estimate the power output of a solar system. These models de-
scribe how the system’s environment (e.g., due to temperature,
cloud cover, etc.), physical characteristics (e.g., wiring topology,
conversion efficiency, conversion losses, etc.), and location (e.g.,
time-of-day, day-of-year, elevation, shading, etc.) affect solar power.
White-box modeling frameworks, such as PVlib [14] and SAM [24],
require users to configure virtual solar systems that include these
details—down to the type of hardware and surface irradiance—and
then uses the available physical models to provide a solar estimate.
Since solar systems are often highly complex, and surface-level
irradiance measurements are often not available, recent work has
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ABI Band Central Wavelength
(µm)

Spatial Resolution
(km) Type

1 0.47 1 Visible
2 0.64 0.5 Visible
3 0.86 1 Near-Infrared
4 1.37 2 Near-Infrared
5 1.6 1 Near-Infrared
6 2.2 2 Near-Infrared
7 3.9 2 Infrared
8 6.2 2 Infrared
9 6.9 2 Infrared
10 7.3 2 Infrared
11 8.4 2 Infrared
12 9.6 2 Infrared
13 10.3 2 Infrared
14 11.2 2 Infrared
15 12.3 2 Infrared
16 13.3 2 Infrared

Table 1: Wavelength for 16 channels of GOES-16 and -17 [9].

also explored data-driven approaches to learning the parameters of
the physical models solely from historical solar power data [21, 22].
Data-driven Modeling. Data-driven solar modeling approaches
estimate surface irradiance by combining well-known clear sky
models [10, 29] with simple cloud cover models [21, 27]. Clear sky
models accurately estimate surface irradiance based on the Sun’s
position in the sky, which is deterministic for a given location at
a given time-of-day and day-of-year. Simple cloud cover models
then translate basic weather station readings of cloud cover, which
are made available by the National Weather Service (NWS) for
every location in the U.S. These cloud cover readings are coarse
observations in units of oktas, where 1 okta represents one-eighth
of the sky being covered by clouds. The measurements are typically
made by placing a circular sky mirror divided into eight slices
on the ground, such that any slice that reflects a cloud is 1 okta.
Okta-based measurements are typically reported as common string
values, such as “clear,” “scattered,” “broken,” and “overcast.” Simple
data-driven solar modeling uses the reported oktas to estimate a
cloud index, which captures the percentage reduction in the clear
sky irradiance due to cloud cover. Clearly, measuring cloud cover
using oktas is highly imprecise, and thus represents the largest
source of error in simple data-driven solar modeling.

Clouds formations are highly complex, and have different im-
pacts on solar radiation depending on their height in the sky and
composition. In addition, other atmospheric properties, such as
water vapor and aerosol particles, can affect the absorption and
scattering of solar radiation. These complex effects simply cannot
be captured by okta measurements that only range from 1-8.
Satellite-based Modeling. An alternative approach is to estimate
a similar cloud index, and surface radiation, using satellite images
taken from space. Even early satellite-based imagers were capa-
ble of more precision than okta-based measurements. The Heliosat
method was first introduced in the late 1980s [17, 18, 30] to estimate
a similar cloud index from visual images of the Earth’s surface, and
has been improved upon multiple times as satellites have improved.
The basic idea is that the more light clouds reflect back in satellite
images, the less light reaches the surface. Thus, in visual images,
darker pixels represent higher surface irradiance, and lighter pix-
els represent lower irradiance. Of course, the physical models are

highlly complex, as different locations have different ground re-
flectivities, which can change over time, e.g., due to foliage, snow,
roadways, etc. Thus, Heliosat, and methods derived from it, use
complex physical models to translate satellite measurements into a
surface radiation estimate. The latest methods go well beyond using
simple clear sky models, and account for atmospheric changes even
under clear skies, such as the Linke turbidity factor. However, many
of the latest methods are proprietary, as large-scale solar radiation
data is becoming an increasingly valuable commodity for a wide
range of applications beyond solar energy modeling [12, 13].

Satellite-based methods also necessarily change as new satellites
are launched with new and more advanced sensors. The GOES-16
andGOES-17 are the latest generation of weather satellites launched
by the U.S. GOES-16 and GOES-17 became operational in 2017 and
2018, respectively, and cover different regions. GOES-16 covers the
east region of the U.S. and GOES-17 covers the west coast and much
of the Pacific ocean. The GOES satellites record 16 spectral bands (or
channels) for the continental U.S. every 5 minutes at a high spatial
resolution (1-2km depending on the channel). By contrast, Heliosat
was originally developed for visual images in a single spectral band,
while the previous generation of satellites recorded only 5 spectral
bands at 15 minutes resolution. Importantly, NOAAmakes the satel-
lite data publicly available for download [11]. In addition, NOAA is
developing numerous higher-level data products based on the raw
spectral data. In particular, the Downward Shortwave Radiation
(DSR) product represents the state-of-the-art in estimating surface
radiation from satellite data using physical models. The theoretical
basis and algorithm for the DSR physical model is described in a
125-page white paper released by NOAA [2]. These DSR estimates
are made publicly available hourly, and can be used as input directly
into white-box or data-driven models for solar output (or by using
it to compute a cloud index). Unfortunately, DSR’s physical model
cannot often not compute its value under overcast sky conditions,
and thus often has missing data points [2].

2.2 Spectral Data Characteristics
Table 1 shows the centerpoint of spectral bands recorded by GOES-
16 and GOES-17, and their wavelengths. Solar cells generate power
from wavelengths in the range 0.38µm to 0.75µm, which are de-
scribed by channels 1 and 2 and part of channel 3. However, while
not directly relevant, the other channels may also embed important
information about the characteristics of clouds and the atmosphere
that could indirectly reveal information about solar generation.
A full description of the channels, and what they are capable of
sensing, is outside the scope of this paper. Since we focus on using
ML rather than physical modeling for developing our models, the
precise meaning of the different channels is not as significant. We
simply treat channel data as a “black box” for learning.

Figure 1 gives some intuitive sense of the relationship between
channel values and a site’s solar output on a sunny day with no
clouds. The lefty-axis shows a site’s solar output over a day normal-
ized by the maximum solar output over the day. The right y-axis
then shows the channel values for the same location (within 1km2

area), which are in Wm−2µm−1. As shown the channel values fol-
low a similar trend. The relationship with higher channels does not
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Figure 1: Relationship between solar generation at a site, and
the values of channels 1, 2, and 3 at the same location.

exactly follow the trend, since they measure longer wavelengths of
irradiance that capture properties not reflected in solar output.

3 ML-BASED SOLAR MODELS
We present both local and global ML solar performance models
using GOES satellite multi-spectral data. Local models are trained
for each individual solar site using its own data, and only apply to
that one site. In contrast, global models are trained on data from
many solar sites, and are applicable to any new solar site even if
data for the site is not available in the training set.

3.1 Local ML Models
Our local ML solar performance model is simple: the input features
are time-series data of the 16 channel values for a particular solar
site location and the location’s ambient temperature, while the de-
pendent output variable is the average power generated by the solar
site over the same time intervals. The channel values indirectly
quantify the surface irradiance, while the temperature is necessary
because solar cell conversion efficiency varies with the cell tem-
perature. In general, for every 1◦C increase in cell temperature,
the efficiency of converting solar irradiance to electrical energy de-
creases by ∼0.5%. While we assume a solar site’s location is known,
and used to determine the associated channel values and tempera-
ture, prior work shows how to extract an accurate location directly
from solar power data at one-hour or less time resolution [23]. We
discuss in detail the process of extracting the 16 channel values for
a location from the GOES satellite’s NetCDF-formatted data files in
Section 4. We simply retrieve the temperature fromWeather Under-
ground, a popular online weather website. Finally, we retrieve solar
power data remotely from web-based solar monitoring systems. We
have archived multiple years worth of 5 to 15 minute resolution
average solar generation data from 29 solar sites.

For each solar site, we curate a training dataset with the times-
tamp, 16 channel values, temperature, and average solar power
generation. We then train an ML model using a support vector
machine (SVM). While we could use any ML regression model
for training, SVMs have been used for solar modeling in the past,
and shown to have higher accuracy than other regression mod-
els. SVM is well-suited for a variety of reasons. In particular, it is
a non-linear model and our input variables do not have a linear
relationship, and we have multiple input features with different

magnitudes, units, and ranges. For our SVM, we select a specific
error range by setting the margins and a radial function. We define
a tolerance margin (ϵ), a regularization co-efficient C , and use the
radial basis function (RBF) as the kernel. The tolerance ϵ and co-
efficient C are estimated using 5-fold cross-validation on the train-
ing data in the following range: ϵ ∈ {0.005, 0.01, 0.05, 0.1, 0.2}
and C ∈ {1, 10, 102, 103, 104, 105, 106}. For our basic model, we
perform 5-fold SVM regression for each site individually to evalu-
ate its performance. We use 5-fold evaluation to get a more robust
estimate of the performance. We call this a local model because the
model is trained separately for each solar site.

A key benefit of our approach above compared to both prior ML-
based solar models and prior physical models is its simplicity. We
apply a standard ML regression model to a simplistic dataset com-
posed of only three input feature types—timestamp, channel values,
and temperature—without using any domain-specific knowledge.
As a result, the approach is purely a “black box” that requires only
gathering and curating the datasets for training. In contrast, prior
ML approaches to solar modeling are much more complex, and not
pure black box approaches, because they lack the data necessary to
directly infer surface level irradiance [26, 31]. As a result, these ap-
proaches must use time and cloud conditions to indirectly estimate
surface irradiance. These methods also often mix ML with numer-
ous physical models that describe the effect of temperature, solar
geometry, location, and time to improve accuracy. While doing so
improves accuracy and reduces the training data necessary to learn
the model, it also increases model complexity.

As we show in Section 5, our simple local ML solar performance
models, which include no physical models, are significantly more
accurate than these prior approaches. The largest source of error
in prior approaches stems from the inaccurate measurements of
the effect of clouds, which satellite data improves upon. Our ML
approach is also able to learn the effects of the physical models
above, which mitigates the advantage of using these models.

3.2 Global ML Models
The local MLmodels above must be trained for each individual solar
site, which requires acquiring sufficient training data to learn the
model. In general, roughly one year of training data that captures
all of the Sun’s positions in the sky across the year is necessary to
learn an accurate model. As a result, local ML models have some
significant practical limitations. To address this problem, we also
develop a global ML model that uses satellite data. Global models,
once trained, can be applied to any solar site without retraining
the model. As we show in Section 5, these models are less accurate
than the local ML models above, but still more accurate than prior
approaches that do not use GOES satellite data for estimating the
effect of clouds on surface irradiance. The primary reason for the
degraded accuracy is that global ML models can conflate the effects
of many characteristics that are unique to each solar site when
training, including each site’s unique shading behavior, geometry
(i.e., tilt and orientation), temperature coefficient, wiring topology,
inverter type, conversion efficiency, etc. However, as mentioned
above, since the effect of these differences is small compared to the
effect of inaccurate cloud cover estimates, global ML models are
able to maintain higher accuracy than prior approaches.
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To develop our global models, we train our models not from
data from a single site, but using data from many sites. That is, we
combine the training sets for individual sites above together into a
large dataset. The only change we make is to the dependent output
variable, which in the local models is the solar power output in
watts. Since solar sites have different sizes, and thus different solar
outputs, we must normalize this power by the maximum power a
site is capable of producing at the given time. To do so, we adopt
an approach from prior work [22] that bounds a site’s solar power
curve using the solar irradiance curve from a clear sky model. Prior
work shows that this method requires few datapoints, and yields an
accurate model of a solar site’s maximum solar output under clear
skies at any time. Dividing solar power by the maximum generation
yields a normalized output across sites in the range [0, 1]. We then
train the global ML model using the same approach as above.

3.3 ML Model Variants
In addition to defining the basic local and global ML models above,
we also experimented with many model variants, which we present
the results of in Section 5. We describe these variants below.
Varying Resolutions. The spectral satellite data is made available
every 5 minutes, enabling us to train models at any resolution
greater than 5-minutes. By contrast, DSR and ground-level cloud
cover observations are typically reported only every hour. Thus,
for comparison, we train our ML models at multiple different time
resolutions, including 5 minutes, 15 minutes, and 1 hour. Similarly,
for comparison, we increase the resolution of DSR and ground-level
cloud cover readings by simply assuming that every 5 or 15 minute
interval within an hour has the same value.
Varying Channels. We compare the accuracy of using different
numbers of channels. While in our basic model, we use all 16 chan-
nels, we also examine the accuracy of using only the first 3 channels
that corresponds to the visible region and directly senses the wave-
lengths converted to solar power.
Multi-Satellite Models.While GOES-16 targets the eastern por-
tion of the U.S. and GOES-17 targets the west coast and Pacific
ocean, they both capture data from the entire continental U.S. from
different angles. Thus, we augment our basic models above, which
primarily use GOES-16 data since most of our sites are in the east-
ern part of the U.S., to use both GOES-16 and GOES-17 data. This
provides data from two different vantage points in space for the
same location. To do so, we simply augment our model above to
also include the 3 channels of data from GOES-17.

4 IMPLEMENTATION
We implemented our satellite-based ML models using multispec-
tral data in python, along with two competing approaches that
apply physical models to ground-level cloud cover readings and
DSR. We summarize these competing approaches more below. We
used python’s scikit-learn ML library to train the SVM and other
regression models. We collect hourly temperature and ground-level
cloud cover readings from Weather Underground, a popular online
weather site. For the physical modeling approaches, we use the
pysolar [1] library to derive a site’s clear sky irradiance based on
its location and time. We collect solar power data from 29 sites re-
motely via their energy meter API. We initially gathered data from

Data Units Time Resolution Source

GOES-16 Channel Wm−2µm−1 5 Minutes NOAA
GOES-17 Channel Wm−2µm−1 5 Minutes NOAA
DSR Wm−2 60 Minutes NOAA
Okta Cloud Cover Percentage 60 Minutes Weather Underground
Solar Generation Data kW 1 - 60 Minutes Energy Meter
Temperature Celsius 60 Minutes Weather Underground
Clear Sky Irradiance Wm−2 Minutes Pysolar

Table 2: Summary of data sources, units, and resolution.

75 sites and filtered sites where we could not verify the solar array
in satellite imagery, e.g., from Google, did not have minute-level
solar data available, or did not have 2 years worth of solar data.
This left us with the 29 sites across U.S. which we analyze.

The GOES-16 and GOES-17 multispectral data is made available
by NOAA as netCDF files downloaded from Amazon S3 buckets.
We use a script to recursively download the data for specific dates
each year along with the description of the ABI product, bucket,
and the satellite name. The size of each 5 minute netCDF file is in
the range of ∼75MB, which requires nearly 16 terabytes to store two
years of data from one satellite. Each 5 minute file includes data for
all locations. To minimize storage requirements, we filter each file
as we download it to extract only the channel data for the locations
we are interested in, and discard the rest. The DSR data is also
made available by NOAA in the form of netCDF files, but using a
different mechanism, which currently requires manually submitting
a request and then receiving an FTP link for download. Table 2
provides a summary of these data sources, their units, and their
maximum resolution. In our experiments, we compare accuracy of
the models at resolutions coarser than the maximum.

The netCDF files for multispectral and DSR data require some
processing to filter out the data for the location of interest. Specifi-
cally, our python module reads the goes_imager_projection variable
to convert (x ,y) degree coordinates for latitude and longitude to
radians. We then search the file for the latitude-longitude pair that
is closest to our location of interest. Since these are geostationary
satellites, their rotation matches that of the Earth, enabling us to
look at the same part of the file each time. Thus, we read a file and
first create a list of closest latitude longitude pair using the Vincenty
formula [33], which calculates the distance between two points on
the surface of a spheroid. This is done to reduce the computational
resources so that the process of finding the nearest location is not
repeated for each 5 minute file.

4.1 Physical Modeling Approaches
For comparison, we implemented two physical modeling ap-
proaches discussed in Section 2. These approaches are distinguished
by the input data they use to estimate the effect of cloud cover on
surface irradiance. We summarize these approaches below.
Okta-based Approach. This approach is described in prior
work [21] and uses ground-level cloud cover readings in oktas
to capture the atmospheric and cloud effects on solar power output.
In particular, the approach uses a simple formula originally devel-
oped by Kasten-Gzeplank [27] to translate an okta-based cloud
cover reading into a cloud index, which quantifies the percentage
reduction in surface irradiance due to clouds. The approach then
essentially multiplies this cloud index by a solar site’s estimated
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Figure 2: Diagram of data inputs for different solar perfor-
mance modeling approaches we implement and evaluate.

maximum output at a given time. This maximum output is modeled
in the same way as in our global model by finding the tightest
upper bound on the data using a parameterized solar curve from
the clear sky model. The tightest upper bound is used instead of a
best fit, since the maximum solar generation is dictated by the clear
sky model’s solar curve. The parameters applied to the solar curve
include an efficiency constant, which captures the solar site’s con-
version efficiency at 25◦C, a temperature coefficient constant, which
captures the effect of temperature on efficiency, and constants that
capture the solar geometry (e.g., tilt and orientation angles). The
approach searches for the parameters that dictate the tight upper
bound, which provides an accurate model of a site’s maximum solar
output. More details are available in prior work [21, 22].
DSR Approach. This approach uses the same physical model as
above, but instead of using oktas to compute a cloud index uses
the DSR value computed from the GOES-16 satellite. As mentioned
in Section 2, this DSR value is computed from the channel data
using a sophisticated physical model [2], which yields an estimate
of the surface radiation. We divide this DSR estimate for a location
by the clear sky irradiance to yield a similar cloud index as above,
and apply it in the same way. Note that DSR is often not made
available, as certain conditions prevent it from being computed
accurately, especially under overcast skies. In addition, the DSR
technical report [2] evaluates its accuracy for estimating surface
radiation and highlights that its accuracy degrades as the cloud
cover increases, which are, unfortunately, exactly the times when
solar performance modeling is most important.

Both approaches above are deterministic physical models that
require calibration, e.g., by fitting known model function parame-
ters to data, and do not require black-box ML training of unknown
models. Calibrating parameters for well-known physical models is
an advantage compared to using ML to learn these models. Figure 2
captures the different inputs, and data processing steps for our ML
model and these two physical models.

5 EVALUATION
We evaluate our ML-based multispectral model and compare it to
the physical models in the previous section on 29 sites across two
years, which is currently the maximum data available from the
satellites. We use two primary metrics in our evaluation: the Mean
Absolute Percentage Error (MAPE) and the Capacity Error Percent-
age (CEP). The MAPE is computed as below, where St and Pt are
the ground truth and model-inferred solar generation, respectively,
at time t , and n is total number of temporal data points. The MAPE
quantifies the average percentage error across time.

MAPE =
1

n

n∑
t=0

|
St − Pt

St
|

We use MAPE because it is an intuitive metric that is comparable
across solar sites of different sizes and configurations. However,
MAPE is highly sensitive to periods of low absolute solar generation.
For example, if solar generation for a 10kW site is only 10W early
in the morning, and our model infers 40W, we record a 300% error,
even though the 30W error is only 0.3% of the site’s capacity. As a
result, MAPE can be significantly affected by these large percentage
errors that are actually small and insignificant absolute errors. Thus,
we pair the MAPE metric with an absolute error metric, called CEP,
that places less weight on these small absolute errors. We define
CEP below as the absolute difference in watts between the actual
(St ) and inferred solar generation (Pt ) divided by a site’s maximum
observed capacity (Smax ). We use CEP instead of other absolute
metrics, such as the Mean Absolute Error (MAE) or Root Mean
Squared Error (RMSE), because it is expressed as a percentage and
thus is still comparable across solar sites of different sizes.

CEP =
1

n

n∑
t=0

|
St − Pt
Smax

|

5.1 Performance of Local Models
We use 5-fold validation in all the experiments. This splits the
entire data for each site into 5 sets each of which is used in turn as
a test set and the remaining data as the training set. For each site,
we compute the average MAPE and CEP for all 5 of the test sets
and report the average with standard deviation. We use data from
2018-2019 for all evaluations except where specified.
Analysis on Individual Sites. We first study the performance of
the proposed ML model using multispectral satellite data on all
29 solar sites. For this analysis we consider only summer months,
May-September, and the middle of the day time period, 10am-3pm.
This targets evaluation for sunny periods which are prone to less
fluctuations and is the common time period used in evaluation in
prior work [16, 21]. The results are shown in Figure 3, which shows
the MAPE for all the individual sites in inferring solar generation
over 15 and 60 minutes time resolution. Note that Okta is only
available at a 60 minute resolution and the 15 minute resolutions
are obtained by treating the Okta value as constant over the 60
minute period. On the x-axis, we have the different sites in the order
of increasing MAPE under 60 minutes resolution, and the y-axis is
the MAPE. For each site on the x-axis, we have four comparisons
showing the performance of the Channel and Okta model under
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Figure 3: Performance comparison across the 29 sites. Data consists of only summermonths and themiddle of the day. Channel
data shows consistently better performance.
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Figure 4: Performance comparison of local model under different time-periods. Average over 29 sites is shown. Left shows
comparison using MAPE and right using CEP.

15 and 60 minutes time resolution. The average for the local model
across all these sites are shown as flat lines for all the 4 cases.

We can see that the performance of these models is consistent
across all these sites with the percentage error being the lowest
for our Channel model. At 60 minutes resolution, which is the
minimum resolution for Okta, we observe significantly better solar
inference using the Channel model. On average across the sites at
60 minutes resolution, the Channel model gives a MAPE of 18.9%
compared to 39.4% from Okta model. At 15 minutes resolution,
the Okta performance worsens as expected. The Channel model
still performs well with a slightly higher MAPE compared to the
performance at 60 minutes resolution. Averaged across the sites at
15 minutes resolution, the Channel model yields a MAPE of 22.6%
compared to 42.8% from Okta.
CEP and Performance under Different Conditions. We now
analyze the performance for themodels under different time periods
throughout the year. The averaged result across the sites is shown
in Figure 4. Summer refers to May-September and mid-day refers
to 10am to 3pm. Again, we consider both 15 and 60 minute time
resolutions. The trend is the same with 60 minutes Channel Model
showing the lowest error and 15 minutes Okta Model showing
the highest error under all scenarios. We can also see that the
errors are lowest in the case of summer months and middle of
the day time period because this eliminates the period of low solar
generation, to which MAPE is sensitive. This is followed by summer
months and full day time-period. This period includes data from

sunrise to sunset for these summer months, thus eliminating the
possibility of snow but still keeping the rainy and cloudy time
periods. Furthermore, we can see that when we include the data
for the whole year the MAPE further increases. Note that these are
the averages across all the sites and contain the mix of sites with
snow periods and sites with no snow throughout the year. In all
these cases we observe that the Channel Model performs better by
almost 50% in comparison to the Okta Model.

Since MAPE is very sensitive to periods of low solar generation,
which will be frequent when the entire year is considered, we also
analyze the performancewith respect to themore balanced Capacity
Error Percentage (CEP) metric in Figure 4 on the right. Since CEP
is normalized with respect to the maximum solar generation for
each site, we see that the percentage numbers are considerably
lower and performance is comparable for summer mid-day and
whole year. For instance, Channel model yields a CEP of 6.7% in the
best case sunny scenario and 7.8% across the entire year. Moreover,
Channel still leads to substantial error reduction compared to Okta.
DSR Comparison. To evaluate the performance of DSR with the
Okta and Channel model, we show the comparison across 2 years
worth of data in Figure 5. We have again used summer months and
middle of the day to show the average results across sites under
each model. The number of data points used in this evaluation differ
from the other graphs because of the low availability of DSR data.
The time periods where DSR value was not available were dropped
so as to have the comparison of Okta and Channel model on the
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same set of points as the DSR. DSR data is only 40% available as
compared to the data from the weather station. Interestingly, we
find that the DSR performs comparable to the Okta model. DSR
analysis has been studied in the past [15].
Varying Channels. We also evaluate the performance of using
the first three channels from GOES-16 versus using all 16 chan-
nels. The first three channels correspond to blue, red and veggie
(green) bands and together form the visible region. Also we have
seen from Figure 1, how the first three bands relate to the actual
solar output at any given time. The higher channels correspond to
higher wavelengths and indirectly contribute to the solar output
by embedding information about cloud cover, water vapor, etc. For
example, channel 6 and channel 11 have information about cloud
particle size and cloud-top phase. Thus, it can be important to look
at all the channels while modeling the solar output. In Figure 6, we
have shown this comparison across different time periods. We can
see here that the performance of 3 channels is slightly better than 16
channels when only summer months are analyzed. However, when
considering the full year data, 16 channels perform slightly better.
This is because summer months only capture the peak of solar
generation data while under whole year we have different weather
conditions ranging from snow to rain and cloudy periods. At those
time periods, using all the16 channels gives better performance.

Multi-Satellite Models.We also analyze the performance when
data from both GOES-16 and GOES-17 satellites are combined. As
discussed before, the two satellites provide different view points
of the same location from space and can provide complimentary
information. Figure 7 shows the results, comparing both MAPE
(on left) and CEP (on right). We have used year 2019 data for this
evaluation as GOES-17 data is only available since 2019 [5]. We also
evaluate here the performance for the models at 5 minute resolution
on this data as the energy meter at the solar sites only store minute-
level data for the most recent year. We see that combining the
GOES-16 and GOES-17 data further improves the performance
for the Channel model indicating that the two satellites provide
complimentary information. For instance at 60 minutes resolution,
using the combination of satellites improves MAPE from 19.3%
to 13.7%. Moreover, even at 5 minute resolution, we observe good
performance from the Channel models compared to the Okta model.
Comparing Different Regression Models.While we used SVM
regression model in all of the analysis, we also compared differ-
ent ML based models like decision tree regression, a simple linear
regression, and SVM regression. Additional parameters, like the
decision tree depth, were also estimated using 5-fold validation on
the training data. Figure 8 shows the performance of these mod-
els. In this case, we perform the evaluation for 15 minute and 60
minute resolution. We can see from the graph that on both 15 and
60 minutes, SVM is performing best and has the highest accuracy,
i.e., lowest MAPE. It is also evident that even a simple regression
model performs generally well indicating a strong direct relation-
ship between the channel data and the solar generation.

5.2 Performance of Global Models
We now move to the evaluation of the global model. While the
local Channel model performs significantly better, it has the down-
side that it requires at least a year’s worth of site-specific data for
training. The global model, discussed in Section 3, overcomes this
limitation and builds a general model that is applicable to any new
site as long as we have one day’s worth of data to calculate the
site’s physical parameters for maximum solar generation profile
[21, 22]. We again use 5-fold validation for all evaluations. This now
splits the entire data based on the sites, so that each fold consists of
1/5th of the sites. Each fold is then used in turn as a test set and the
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learning models.

remaining sites as the training set. For each fold, we compute the
average MAPE and CEP across the sites in that fold and report the
average with standard deviation.

In Figure 9 (left) we have shown our results for the global models.
The data for these models are again at 60 minutes resolution for
the summer months and middle of the day. The left graph covers
only the GOES-16 satellite and hence hourly data of two years.
We can see on the y-label the error percentages in the form of
MAPE while the x-axis contains the local and global model results.
The local model is the individual site-specific model evaluated
previously and reproduced here for comparison. Note that the local
model error is the average across all sites, where some data for
each site was used in training the local model while the global
model error is on new sites whose data was not used for training
the global model. From the graph on the left, we can see that the
Okta model has same performance under both local and global
setting since it does not learn anything from the data. Comparing
the global models, the Channel model still outperforms Okta by
a large margin. The error of the global Channel model is higher
than the local model. This is expected as the global model does
not use any data from the test sites during training and hence will

miss site-specific physical parameters, such as shading and location,
which are modeled implicitly by the local model.

In Figure 9 (right), we have compared the performance of using
data from only GOES-16 with the performance of using the com-
bination of GOES-16 and GOES-17 satellites. Note that this only
uses year 2019 data. We can see again that the combination model
performs better but improvement is not as high as in the case of
local model.

6 RELATEDWORK
Our work differs from this prior work in multiple ways. First, we
use data from the latest generation of U.S. satellites (GOES-16 and
GOES-17) launched within the last two years, which includes 16
spectral bands instead of a single band in the visible spectrum.
These 16 spectral bands include 3 bands that directly translate to
solar generation. This data has much higher temporal and spatial
resolution than prior satellites. Second, we do not use any phys-
ical models as part of our approach, and instead learn black-box
machine learning models. As a result, our approach is highly acces-
sible to those outside atmospheric sciences, which has generally
been the domain of solar forecasting. We also use publicly available
data from NOAA, so replicating our approach is possible for other
researchers. We compare our ML models with a physical model of
surface radiation provided by NOAA as a higher level data prod-
uct called Downward Shortwave Radiation (DSR) [2]. Finally, our
work also differs from prior work in that we focus on end-to-end
modeling of solar power, rather than decoupling models of solar
irradiance and solar power generation (given the irradiance). This
approach is also more accessible, as real-time solar radiation esti-
mates are not widely available, even though they are required as
input to popular modeling frameworks, such as PVlib and SAM.

7 CONCLUSION AND FUTUREWORK
In this paper, we evaluate the performance of using multispectral
channel data for solar modeling from the new range of GOES-r
series of satellite(s) that cover the east and west CONUS domain
of North America. We compare the performance of these channels
with conventional ground-level okta-based measurements and a
secondary satellite product, DSR, at different time granularities and
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Figure 9: Performance comparison of global model. Average MAPE on year 2018-2019 data from GOES-16 (left) and year 2019
data from both GOES-16 and GOES-17 (right). Note that the global model performance is on new sites which are not part of
training of the regression model.

at different times of the year. Our results show that themultispectral
channel data performs better as compared to okta-based cloud
measurements and DSR-based approaches by over 50% for local
models and 25% for global models. Prior approaches were compared
at one hour time granularity and only during sunny conditions
whereas we compare our models at finer granularities of 5 and
15 minutes under different conditions throughout the year, with
improved results. We also show the merits of combining data from
GOES-16 and GOES-17 satellites.

Overall, our results show a strong correlation between satellite
data and solar output, and lays a foundation for future work on
using multispectral data for solar performance modeling. In future,
this opens up avenues to explore satellite data for better forecasting
of solar generation at minute-level resolutions, studying the effect
of unmodeled parameters such as shading to further improve global
models using multispectral data, and constructing hybrid models
which incorporate both satellite and ground-level measurements
for improved performance.
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