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ABSTRACT
Energy-efficiency has long been considered a “first class”
metric for evaluating computer system performance. A high
energy-efficiency translates into more work done per unit
of energy, which increases the operating time for battery-
powered systems and lowers the energy bill for conventional
grid-powered systems. Unfortunately, optimizing solely for
energy-efficiency leads systems designers to make two im-
plicit assumptions about how the electric grid generates en-
ergy: i) that all energy is created equal and ii) that it is avail-
able in unlimited quantities at any time. In reality, all en-
ergy is not created equal—its cost and carbon footprint vary
substantially over time—and, as the penetration of intermit-
tent renewable energy sources in the grid increases, it may
not be available in unlimited quantities at any time. Thus,
we propose a new grid-centric performance metric, called
energy-agility, that accounts for the assumptions above. We
argue that grid-friendly computer systems are better judged
by their energy-agility, rather than their energy-efficiency.

1. INTRODUCTION
Energy-efficiency, which is defined as the amount of work,

i.e., computation and I/O, done per joule of energy, has
been considered a “first class” metric for evaluating com-
puter system performance for over two decades [?]. Energy-
efficiency as a metric originally gained prominence with the
introduction of mobile battery-powered systems, such as lap-
tops, which must run off a fixed supply of stored energy [?].
In this case, a more energy-efficient system can run longer
without depleting its battery. Energy-efficiency eventually
also became important for server-class systems with the rise
of warehouse-scale data center facilities [?]. Here, greater
energy-efficiency lowers these facilities’ large electric bills
(assuming that utilities charge a constant price for energy
over time) and reduces their carbon emissions (assuming
that the energy is created from carbon-based sources).

Energy-efficiency for warehouse-scale data center facili-
ties remains a highly active research area, since their size
and number continues to grow to satisfy the increasing de-
mand for cloud-based services. The power demands of the
largest data centers now exceed 100 megawatts (MW) [?],
and, collectively, they are estimated to consume 1.7-2.2% of
electricity in the United States [?]. The scale of data center
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energy consumption is now large enough to affect the electric
grid’s operation. Unfortunately, optimizing exclusively for
energy-efficiency has led systems designers to make two im-
plicit assumptions about how the grid generates energy: i)
that all energy is created equal and ii) that it is available in
unlimited quantities at any time. These assumptions are not
correct: in reality, all energy is not created equal—its cost
and carbon footprint vary over time depending on the mix
of generators utilities use to create it—and, as the penetra-
tion of intermittent renewable energy in the grid increases,
it may not be available in unlimited quantities at any time.

Thus, in the broader context of the electric grid, just be-
cause a system is highly energy-efficient does not necessar-
ily mean that its carbon footprint and energy cost are lower
than a highly inefficient system. That is, an inefficient sys-
tem that consumes energy at the “right” times, e.g., when
renewable energy is plentiful or electricity prices are cheap,
may be cleaner and cheaper than a much more energy-
efficient system that uses energy at the “wrong” times, e.g.,
when renewable energy is limited or electricity prices are
high. In addition, energy-efficient systems designers gener-
ally do not account for energy constraints, but instead as-
sume they can consume whatever energy is required without
limits at any given time to satisfy their workload. While
there has been some prior work on enforcing power caps
across servers [?, ?] and clusters [?, ?], it is distinct from
energy-efficiency optimizations, and instead focuses on over-
subscribing power delivery infrastructures with fixed limits
on the maximum amount of power they can deliver.

In this paper, we consider energy constraints in a much
broader context as they arise in the electric grid. Mod-
ern society generally expects the grid to instantly generate
however much power is necessary to meet any amount of de-
mand at any time. Unfortunately, meeting this expectation
imposes a substantial financial and environmental burden
for a number of reasons. First, the grid must massively
over-provision its generation capacity to meet its peak de-
mands, which may only occur for a short period. In addition,
the “peaking” generators utilities activate to satisfy demand
peaks are typically much less efficient than the baseload gen-
erators that continuously operate. As a result, estimates at-
tribute as much as 20% of the generation costs in the U.S.
to servicing only the top 100 hours of peak demand each
year [?]. Put another way, as much as 20% of the gener-
ation costs go to satisfying a period of roughly four days
per year. Further, different types of generators not only in-



cur different monetary costs, but also have different carbon
emissions and environmental impact. For example, Watt-
Time.org estimates the grid’s real-time carbon emissions to
encourage consumers to use energy when emissions are low,
similar to how variable electricity prices encourage energy
consumption when its price is low. Finally, ensuring the
grid is capable of satisfying arbitrary power demands dis-
courages high penetrations of renewables, such as wind and
solar, since utilities cannot control their output.

Due to the dynamics above, making energy generation
more “efficient,” that is reducing its cost and carbon foot-
print, will require consumers to limit their energy usage at
particular times, either when the cost and carbon footprint
of generation are too high or when renewable energy is not
plentiful. There are a variety of ways to implement or in-
centive such demand-side management, which is a focus of
recent smart grid efforts. Our purpose here is to highlight
that the grid’s “efficiency” in terms of its cost and carbon
footprint varies substantially over time and is more com-
plex than the conventional notion of energy-efficiency, i.e.,
work done per joule, in computer systems. In particular, a
higher energy-efficiency in computer systems does not neces-
sarily correlate with a higher grid efficiency, i.e., lower energy
costs and carbon emissions. As a result, energy-efficiency is
not the right metric to quantify a computer system’s perfor-
mance in the context of the grid. Just because a system is
energy-efficient does not mean it is “green,” as is often im-
plicitly assumed in prior work. In reality, how a system uses
energy to accomplish a task (and how that energy was gen-
erated) is just as important as how much energy it uses. To
properly evaluate performance in this context, we propose a
new grid-centric metric, which we call energy-agility.

While energy-efficiency is a measure of work done per joule
of energy consumed by a platform, energy-agility is a mea-
sure of work done per joule of energy available to a platform,
which may vary over time. Thus, as a metric, energy-agility
captures the salient characteristics above that i) energy is
not always available in unlimited quantities at any time, and
i) the availability of energy may vary over time. The energy
available to a platform is also independent of how much en-
ergy it actually consumes. Whereas energy-efficiency only
depends on how much energy a platform consumes, energy-
agility applies a “use it or lose it” property to energy that
incentivizes platforms to use as much energy as possible,
as efficiently as possible, when it is available, or else waste
it. Energy-agility captures the grid’s basic characteristics,
where electricity’s supply and demand must be balanced at
all times, and the only way to not waste unused energy is
to explicitly store it for later use. We argue that, when con-
sidered in the broader context of the electric grid, computer
systems are better judged by their energy-agility, rather than
their energy-efficiency. Note that, since energy-agility in-
centivizes systems to use available energy as efficiently as
possible, it also implicitly encourages energy-efficiency.

2. BACKGROUND
Formally, energy-agility is a measure of the amount of

work, e.g., computation and I/O, done by a computer sys-
tem given a power signal P (t) that dictates an energy cap
the system must adhere to over each interval (t − τ, t] for

some interval length τ . Thus, for a given amount of work, a
greater energy-agility translates into a shorter running time
and less aggregate energy used or wasted. Due to the “use
it or lose it” property above, the value of τ derives from a
platform’s energy storage capacity, where a larger capacity
implies a higher value. While energy-agility quantifies how
well an application is able to adapt to variable amount of
available power, it does not dictate the underlying reason
for the power variations, e.g., due to demand-response sig-
nals, fluctuations in renewable generation, changes in elec-
tricity prices, etc. Thus, the characteristics of P (t) may
differ widely depending on the scenario. As with energy-
efficiency, a platform’s software design and its hardware ca-
pabilities contribute to its energy-agility. However, we be-
lieve designing energy-agile systems differs markedly from
designing energy-efficient ones. For example, recent research
on energy-efficient system design focuses on ensuring two key
characteristics—balance [?, ?, ?, ?, ?, ?, ?, ?] and energy-
proportionality [?]—which we briefly describe below.

Balanced systems focus on aligning a hardware platform’s
capabilities with its software requirements to ensure all hard-
ware is fully utilized and, hence, does not waste power by
consuming it when idle, i.e., doing no useful work. To illus-
trate, GPUs, which combine multiple low-speed cores with
high streaming memory bandwidth, are energy-efficient for
data-parallel applications [?, ?], but not for applications that
require high-speed single threaded performance. Since I/O is
often the bottleneck for data-parallel applications and CPU
power increases super-linearly with clock speed, high-speed
cores simply waste power without improving performance.
This theme of balance underlies the node platform design for
JouleSort [?], FAWN [?], and Themis [?], which target an
energy-efficient sorting system, key-value store, and MapRe-
duce implementation, respectively.

While balanced systems maximize peak performance per
watt, e.g., at 100% utilization, energy-proportional systems
focus on energy-efficiency across all utilization levels, such
that power consumption scales linearly with node utiliza-
tion. Designing energy-proportional nodes remains a chal-
lenging problem, since a variety of hardware components,
including the CPU, memory, disk, motherboard, and power
supply, consume significant amounts of power. Thus, any
power optimization that targets only a single component
does not result in energy-proportionality, since it reduces
only a fraction of a node’s total power consumption [?, ?].

As one example, due to the power consumption of non-
CPU components, nodes that aggressively use dynamic volt-
age and frequency scaling (DVFS) on CPUs at low utiliza-
tions may still operate at over 50% of their peak power [?, ?].
As a result, there has been much research on approximating
energy-proportionality in multi-node platforms for various
applications by activating and deactivating entire nodes as
workload demands vary over time, and then concentrating
workload on the active set of nodes [?]. Thus, if an ap-
plication requires 5k nodes in a 10k-node system (at 50%
system utilization), only 5k nodes will be active and con-
suming >50% peak power, while the other 5k nodes will stay
in a low-power inactive state, such as ACPI’s S3 Suspend-
to-RAM state, which consumes minimal (<5% peak) power.

Balance and energy-proportionality have been the basis



for a wide range of prior research on improving energy-
efficiency. However, a key attribute of both types of systems
is that they are workload-driven: while they use energy effi-
ciently, they consume whatever power is necessary (without
limits) to satisfy their workload. For example, if the applica-
tion above requires all 10k nodes at some point to complete
a subtask, it simply activates the remaining 5k nodes, with-
out any constraints. Thus, these systems implicitly assume
that the power delivery infrastructure is able to deliver as
much power as necessary (up to the system’s peak power)
at any time. Grid-centric energy-agile systems can make
no such assumption. Instead, they are power-driven: to re-
duce power’s cost and carbon footprint, they must choose
how to use a limited, dynamically changing, and potentially
unpredictable power budget to maximize performance.

While researchers have made substantial improvements to
the energy-efficiency of computing systems, as noted above,
we argue that continuing to achieve significant gains will
pose an increasingly challenging problem. Just as with
energy-efficiency optimizations, optimizing energy-agility
also has the potential to reduce computing’s energy cost
and carbon footprint. In particular, we believe that de-
signing for energy-agility will yield new avenues of research
that can reduce the energy cost and carbon emissions asso-
ciated with large-scale computing in data center and high-
performance computing platforms by correcting gross inef-
ficiencies in the electric grid. As one example, note that
energy-proportionality only applies to applications where
the workload intensity varies over time based on request vol-
ume, e.g., web applications, batch schedulers, etc.; it does
not apply to large-scale long-running tasks that have no vari-
ance in their workload, but are highly amenable to delays
from power variations. In contrast, energy-agility encour-
ages techniques that optimize such tasks to use energy ef-
ficiently at all utilization levels and adapt to variations in
available energy, e.g., due to cost or renewable fluctuations.

3. DESIGNING FOR ENERGY-AGILITY
There has been a variety of recent research on designing

computing systems to better handle power variations, e.g.,
due to changing power prices. For example, initial research
has focused on optimizing a variety of system components
for power variations, including distributed caches [?], file
systems [?], virtual machines [?, ?], and batch schedulers [?,
?, ?, ?, ?]. The metric these systems measure themselves
against is generally the cost of power, since variable electric-
ity prices are typically lower, on average, than flat prices.
Thus, the performance of these systems is dependent on the
absolute price of electricity: the more variable the prices,
or the wider their range, the more cost savings are possible.
Using prices to evaluate systems performance is not ideal,
since prices vary significantly by region, by time, and based
on external factors. While changes in prices may incentivize
or disincentives energy-agile design, they are not a sound
basis for evaluating systems that use variable power.

In contrast, energy-agility provides a price-independent
metric to evaluate and compare the performance of such
systems, similar to how the absolute cost of energy has no
bearing on a system’s energy-efficiency. However, research
into energy-agile design requires new considerations along a

number of dimensions, which we summarize below.
Impact of Power Signal. The characteristics of the power
signal P (t)—its variability, its range, and its magnitude—
affect energy-agility. For example, consider an energy-agile
server cluster, which must activate and deactivate nodes to
stay within the power cap at any time t. With a stable
power signal equal to 50% of the cluster’s maximum power,
the cluster might simply deactivate half its nodes to stay
with in the cap. However, with a highly variable power
signal that oscillates between near full power and near zero
power, the cluster must make choices about when and how
to deactivate nodes to cap power. In this case, blinking
all nodes nodes [?] might improve performance relative to
policies that activate and deactivate individual nodes.
Impact of the Energy Storage Capacity. Energy stor-
age capacity affects the stability of the power signal over
each interval τ . A more stable power signal allows a plat-
form to better plan its power usage, which may reduce the
number of necessary power state transitions and overhead.
However, energy storage capacity is expensive to install and
maintain [?, ?, ?]. Thus, a key question in energy-agile
design is how close can the energy-agility of a system with
little-to-no energy storage come to a system with infinite en-
ergy storage capacity. Ideally, a system with little-to-no en-
ergy storage would be preferable if its energy-agility is equal
to a system with infinite energy storage. Energy-agility pro-
vides a metric for assessing the storage necessary to achieve
a certain energy-agility independent of electricity or storage
costs. Thus far, storage capacity has been considered largely
from a cost perspective, i.e., is a certain amount of energy
storage profitable given electricity prices?, and not a perfor-
mance perspective, i.e., how much energy storage does the
system require to reach a specific level of energy-agility?
Impact of Efficiency Losses. If an energy-agile system is
not able to, or choose not to, consume all the energy avail-
able at any given time, it must either store it for later use
or instantly transmit it for use by another consumer. The
grid currently implements the latter case using “net meter-
ing,” which permits consumers to transfer surplus energy to
the grid for use by others. Both options efficiency losses
that waste energy. For example, 20-50% of stored energy
is typically wasted due to conversion and efficiency losses
depending on the type of energy storage. Losses due to net
metering are more difficult to quantify, but include transmis-
sion and distribution losses (which are proportional to the
square of current) and losses related to running inefficient
“peaking” generators to offset renewable energy stochastics.
Energy-agility can incorporate these losses by discounting
surplus energy by some percentage, rather than assuming it
is entirely wasted. By considering these losses, systems de-
signers can accurately quantify the effect of energy storage
or net metering on energy-agility.
Impact of the Number and Type of Platform Power
States. The ability of a system to fully use a varying
amount of available power is largely a function of the num-
ber and type of platform power states it has. High-power
platforms typically have a multitude of active and inactive
power states, including the full range of ACPI system states
(S0-S5), inactive processor C states, and active processor P
states, e.g., using dynamic voltage and frequency scaling.



As a result, these platforms have a wide dynamic power
range that can accommodate a wide range of power caps.
However, high-power platforms also tend to have the high-
est idle power usage due to powering non-CPU components,
such as memory, disks, network cards, etc., and are signifi-
cantly more energy inefficient than lower-power nodes. Un-
fortunately, low-power nodes tend to have many fewer power
states; they often have limited processor C states and few
active P states, since their processors are already consid-
ered low-power. Thus, while low-power platforms are much
more energy-efficient than high-power platforms, they have
a narrower dynamic power range, which may prevent them
from fully utilizing an arbitrary amount of available power.
Thus, an interesting question is, with respect to optimiz-
ing energy-agility, whether the efficiency of the low-power
platforms outweighs their lack of dynamic power range.
Impact of the Power State Transition Latency. The
latency to transition between power states is also a key factor
in energy-agile design: the smaller the latency to transition
power states, the less overhead a system incurs to adapt to
changes in power. Servers often do not support server-wide
power state transitions, such as ACPI’s S3 Suspend-to-RAM
state and its S4 Suspend-to-Disk state, and if they do, they
have not been optimized for low-latency transitions. Thus,
even though the latency to transition to S3 could take as
little as a few hundred milliseconds [?], most servers have
transition latencies on the order of tens of seconds [?]. Such
long transitions preclude power management strategies that
incur large numbers of transitions, such as blinking [?], to
maintain a variable power cap. Note that blinking all nodes
in tandem between the active and inactive states enables
better use of the available network bandwidth than only ac-
tivating a fraction of the nodes at time. Thus, an interest-
ing research question is at what latency does the benefits of
blinking outweigh the overhead of transitioning power states.
Impact of Inter-node Communication Patterns. An
energy-agile server cluster continuously shifts the limited
power that is available away from resources that are waiting
or idle to resources that are performing useful work. Thus,
energy-agile design also poses an algorithmic challenge to
determine how to shift power based on inter-node commu-
nication patterns. For example, if all nodes are shuffling
data amongst themselves, then reducing power by deacti-
vating any node or lowering its voltage and clock frequency
will simply delay the entire data shuffling phase. To max-
imize energy-agility, a platform must adjust power states
in conjunction with the application to ensure the applica-
tion is fully utilizing all of the available power. As a result,
energy-agile applications should continually monitor their
utilization and energy usage in a closed-loop fashion to shift
power away from nodes that are not using it to nodes that
are using it. A key challenge is determining the optimal al-
gorithms for changing power states based on the available
power states and application communication patterns.
Impact on Applications. Finally, applications may re-
quire modifications to maximize their energy-agility. For
example, if a server cluster platform activates and deacti-
vates nodes as power rises and falls, then an application
must be modified (often significantly) to gracefully handle
such sudden addition and removal of nodes. Alternatively,

a server cluster could only use active power states to enable
an application to run unmodified; unfortunately, only using
active power states does not permit a wide dynamic power
range, which limits energy-agility. Other policies, such as
blinking [?], which transition all nodes in a server cluster
between the active and inactive states in tandem, might also
be able to minimize application modifications, such that all
nodes are concurrently active. An important research chal-
lenge is fully optimizing energy-agility for a wide range of
applications without requiring significant modifications.

4. CONCLUSION
This paper proposes a new grid-centric metric, called

energy-agility, for evaluating computer system performance.
Energy-agility accounts for the fact that all energy is not
created equal—its cost and carbon footprint vary over time.
These variations are expected to intensify as the penetra-
tion of renewable energy sources in the grid increases. As a
result, computer (and other) systems will need to take into
account these variations in assessing their performance. We
argue that the energy-efficiency metric used by computing
researchers over the past quarter century is not sufficient
for this purpose. Instead, we propose a grid-centric metric,
called energy-agility, to assess computer system performance
in scenarios where a limited amount of available power varies
over time. We then outline a number of considerations for
energy-agile systems designers.
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