
Resource Management in Data-Intensive Clouds:
Opportunities and Challenges

(Invited Paper)

David Irwin, Prashant Shenoy, Emmanuel Cecchet, and Michael Zink
University of Massachusetts, Amherst

Computer Science Department
140 Governors Drive
Amherst, MA 01003

{irwin,shenoy,cecchet}@cs.umass.edu, zink@ecs.umass.edu

Abstract—Today’s cloud computing platforms have seen much
success in running compute-bound applications with time-varying
or one-time needs. In this position paper, we will argue that the
cloud paradigm is also well suited for handling data-intensive
applications, characterized by the processing and storage of data
produced by high-bandwidth sensors or streaming applications.
The data rates and the processing demands vary over time for
many such applications, making the on-demand cloud paradigm
a good match for their needs. However, today’s cloud platforms
need to evolve to meet the storage, communication, and pro-
cessing demands of data-intensive applications. We present an
ongoing GENI project to connect high-bandwidth radar sensor
networks with computational and storage resources in the cloud
and use this example to highlight the opportunities and challenges
in designing end-to-end data-intensive cloud systems.

I. INTRODUCTION

After initial proposals over 40 years ago [20], cloud comput-
ing platforms have finally popularized the on-demand model of
computation originally inspired by public utilities, where con-
sumers provision and pay for computing resources only when
they use them. 1 The pay-for-use model is generally more cost-
effective and efficient for both consumers and providers. While
consumers tend to under-utilize their on-site IT facilities,
providers are able to sustain high aggregate utilization by
taking advantage of statistical multiplexing to simultaneously
satisfy many consumers. Cloud platforms, such as Amazon’s
family of web services, using an Infrastructure-as-a-Service
(IaaS) model provide abstractions that are general enough
to support a wide range of existing distributed computing
platforms tailored to specific application scenarios. Amazon
allows consumers to rent virtual machines (EC2), storage
volumes (EBS), and storage objects (S3) on-demand and pay
only for resources they use. While pricing models vary for
each resource, consumers typically pay a fixed rate for both
their length of use and their aggregate network and disk I/O
bandwidth.

Many consider IaaS platforms a natural evolution of on-
going work on high-performance scientific and grid comput-
ing, which focuses predominantly on supporting large-scale
execution of computationally-intensive scientific tasks [12].

1This work is supported in part by the NSF under grant number CNS-
0834243.

Due to the generality of IaaS platforms, applications with
other models of computation have also become increasingly
popular. In particular, Google’s family of services, including
GFS [9], MapReduce [6], BigTable [4], and others [7], tailor
abstractions for sub-tasks that are useful for efficiently storing
and searching unstructured, and largely static, customer and
web data. These projects have become increasingly popular
beyond Google with the emergence of the open-source Apache
Hadoop project. For instance, MapReduce exposes a program-
ming paradigm that allows users to efficiently manipulate—by
filtering, sorting, and aggregating—multi-terabyte, and even
petabyte, datasets.

Unlike general scientific computations, which may encom-
pass highly-synchronized distributed compute-bound tasks,
MapReduce instead focuses narrowly on supporting batched
processing of a special class of embarrassingly-parallel, data-
intensive tasks. In addition to MapReduce, numerous other
“big data” cloud platforms supporting a variety of data layout
and consistency models, e.g., [7], [5], are also emerging. Thus,
with the advent of a wide-range of these cloud-inspired data-
intensive paradigms, cloud usage has grown increasingly data-
intensive. However, interestingly, cloud platforms, including
both their pricing models and their programming paradigms,
largely remain separate from, and agnostic to, both the data
sources they operate on and the networks that transmit that
data. As a result, there is an opportunity to improve co-
ordinated provisioning of the cloud computing and storage
resources that process and archive data with the data sensing
and network resources that produce and transmit data. The
ability for cloud platforms to reserve and stitch together mul-
tiple diverse types of networked resources, including servers
and storage as well as the networks that connect them, will
enable networked applications that operate on streams of high-
bandwidth data.

In parallel with these developments in the cloud for sup-
porting data-intensive applications, environmental sensors that
collect data to understand and address both immediate and
long-term environmental problems have become increasingly
important pieces of societal infrastructure. These sensors
are evolving from being largely disconnected and producing
low-bandwidth data streams to being directly integrated into

the network fabric and producing streaming high-bandwidth
data. For example, weather radars, such as those used in
the NEXRAD system in the United States, are capable of
producing data rates near 200 megabits/second. Recently,
scientists [22] have prototyped denser networks of smaller,
steerable radars that produce similar data rates but provide
more accurate higher resolution images of smaller regions
than NEXRAD. Networks of pan-tilt-zoom video cameras
being deployed across both the southern and northern border
by the U.S. border patrol, as well as large astronomical
radio telescopes, also represent real-world examples of high-
bandwidth sensors that produce streaming data.

Unlike the largely static data sources in use on existing
cloud platforms, high-bandwidth sensors have both time-
varying resource needs and real-time performance demands.
Since sensors collect data in the real world, their needs
are driven primarily by unpredictable real world events. For
instance, weather radars may produce more data and require
higher-bandwidth during intense thunderstorms than during
periods of calm. Likewise, pan-tilt-zoom cameras may require
low latency network connections during times of intense bor-
der activity, but may not require network resources at all when
performing conventional monitoring functions. In addition to
time-varying needs, closed-loop adaptive sensor networks ex-
hibit both latency and bandwidth requirements to transmit data
to back-end processors, process the data, and use the result to
influence sensor steering decisions. Thus, while application
resource needs over the long-term are unpredictable and may
vary over time, during short-term periods of intense activity
the resource needs are highly predictable. To experiment with
these high-bandwidth sensor networks, we have deployed a
small testbed of high-bandwidth sensors [18], [11], including
both radars and cameras, in Western Massachusetts as part the
NSF GENI initiative [16].

The time-varying, data-intensive requirements of these high-
bandwidth sensor network platforms can benefit from tight in-
tegration with both the compute and storage resources offered
by cloud computing platforms, and the emerging “big data”
cloud software platforms. In this position paper, we argue that
cloud computing platforms must evolve to incorporate a range
of multiple types of resources, including both reserved network
links that connect sensors to storage, as well as sensors them-
selves. We first lay out, in Section II, a motivating application
scenario using radars from our testbed that highlights the
benefits of coordinated provisioning of a diverse mix of shared
networked resources, including high-bandwidth sensors and
cloud resources. We then use our application scenario to derive
a set of architectural requirements in Section III for a general
cloud control plane that is able to accommodate end-to-end
high-bandwidth sensing applications that incorporates sensing,
networking and cloud resources. Finally, before concluding, in
Section IV, we provide a brief overview of our ongoing work,
focusing on our ViSE testbed for high-bandwidth sensors, as
well as the GENI project. We discuss the benefits of integrating
ViSE with GENI, and how GENI’s goals are well-matched to
integrating diverse types of resources, including both high-

bandwidth sensors and cloud substrates.

II. MOTIVATING SENSOR → CLOUD APPLICATION

Our prior experience [11], [14], [18] has shown that a
key characteristic of high-bandwidth sensor systems is the
need for servers to process the data sensors produce in
real-time to drive subsequent actuation. For example, our
steerable weather radars are capable of producing data at
a rate of nearly 200 megabits per second. In a network of
these steerable radars [14], [22], data centers aggregate data
feeds from multiple radars, process the data in real-time, and
use the results to steer (“actuate”) each radar in subsequent
observations. The observe-process-actuate feedback loop gives
these networks the potential to closely track fast moving
weather phenomena, such as thunderstorms and tornadoes.
Weather radars are not the only real-world examples of high-
bandwidth sensors capable of actuation: the U.S. Border Patrol
is deploying networks of pan-tilt-zoom (PTZ) video cameras to
continuously monitor the northern border for smugglers [15],
and as part of a “virtual fence” on the southern border [8].

A. Sensor Feedback Loop

High-bandwidth sensors capable of actuation have a number
of characteristics that distinguish them from more typical
low-power embedded sensors. Rather than being deployed
“off-the-grid” in remote settings and communicating using
wireless radios, the energy and bandwidth demands of these
sensors necessitates connections to both the power grid and
wired network links. The systems are inherently distributed
since multiple sensors may need to coordinate their actuations
to achieve specific network-wide tasks, such as sensing the
same region from multiple vantage points. In some cases,
as with long-range radars that track mesoscale weather sys-
tems across entire regions, the coordination may cover large
geographically-disparate areas.

Further, high-bandwidth sensor systems are data-driven
since they use sensor data to drive subsequent actuation and
vice-versa. Thus, the resulting control loop must meet timeli-
ness constraints on sensing, data processing, and actuation. For
instance, if a severe weather system is approaching an area,
there may be tighter timeliness requirements, requiring more
resources, than during a calm period. Further, applications
with different goals may choose to steer these sensors in
different directions. As a result, the system must be capable
of servicing multiple concurrent applications with differing
requirements, such as wind estimation to track tornadoes or
rainfall estimation to predict floods. In related work [18], we
developed a system to multiplex PTZ cameras between concur-
rent adaptive sensing tasks, including continuous monitoring,
object tracking, and fixed-point sensing.

To accurately sense changing phenomena, the network’s
feedback loop must be quick and responsive or else sensors
may not be able to keep up. The key to a fast turnaround
from initial observation to informed actuation is the avail-
ability of the network resources—to transmit the data—and

the computing resources—to process it. Of course, a high-
bandwidth sensor network’s need for computing and network
resources fluctuates over time based on its real-world obser-
vations. While high-bandwidth network links and significant
computing power may be necessary to track a powerful storm,
these resources may not be necessary during periods of relative
calm. Due to these natural fluctuations, dedicating multiple
high-bandwidth, and in some cases nationwide, network links
along with entire data centers is not desirable, since these
expensive and useful resources would otherwise sit idle for
significant periods of time.

Instead, the system’s ability to reserve—during periods of
intense activity—and release—during periods of inactivity—
both computing and network resources is crucial. This is
exactly the type of elastic behavior cloud computing platforms
target. However, existing for-profit cloud computing platforms,
such as Amazon’s EC2, are available only using the public
Internet, and are incapable of reserving backbone network
resources and linking them to edge servers and storage.
Additionally, cloud computing platforms do not target non-
traditional resources, such as steerable sensors, that multiple
scientists often share [22]. Further, while the pricing model
for both the storage and network bandwidth resources offered
by cloud platforms follows the pay-for-use paradigm, the
quality-of-service is best effort. As a result, cloud platforms
make no guarantees over the network or storage bandwidth an
application will receive.

As we discuss in Section IV, the ability to reserve both
network and storage bandwidth in conjunction with sensors
is important for the real-time data-intensive sensing applica-
tions our GENI/ViSE testbed supports. We have found that
providing a layer 2 fabric is also important in developing and
managing applications that include resources from multiple
substrates, from sensors to network links to the cloud. We
provide a high-level outline of an example workflow from
a radar testbed to a back-end cloud computing platform, to
highlight the benefits of linking together both sensing and
cloud resources using high-bandwidth layer 2 connections.

B. Radar Application

In radar sensing, a collection of daemons typically work
together to gather, process, and transmit data to multiple
destinations. Importantly, our radar sensing application must
leverage multiple diverse types of shared resources in a coor-
dinated fashion to track moving weather phenomena (Figure
1). An initial time-series daemon operates close to the radar
to take streaming data from its analog-to-digital interface card
and batch it together into one or more radials, where each
radial contains sensor readings from a specific angle of the
radar’s antenna. This daemon also communicates with the
radar over a separate control line to determine the angle of
the data stream, i.e., the position of the radar’s antenna in
space for each radial. Multiple daemons may communicate
with the time series daemon to fetch the data for storage or
manipulation. For example, one daemon may fetch the batched
data and store it in files.

NetworkSensors Servers Storage

ViSE Amazon

Time-
series

Daemon

Radar Workflow

Moment
Data

Daemon

Storage
Daemon

LDM
Sender

LDM
Receiver

Nowcast
Processing

Archival
Storage

Image
Generation

Radar
Map

Visualization

Radar Application

1. Request Sensing, Networking, Computing Resources

2. Deploy Radar Workflow on Resources

3. Continuously Adjust Radar Steering based on Results

Fig. 1. The components of our radar workflow and the different cloud
providers a radar application would have to interact with to deploy the work-
flow. Data flows through multiple daemons and network links before reaching
cloud processing platforms, which process the data to inform subsequent
sensing tasks. The radar workflow spans radar sensor, local processing nodes,
the network, cloud storage, and cloud computing platforms. To support this
type of workflow, a cloud platform must support a diversity of resources
including both sensing and network resources.

For the radars we study in [14], the radar produces files
every 30 seconds, where each file is roughly 1 gigabyte in size,
at a rate of nearly 200 megabits per second. Alternatively, a
moment data daemon may fetch the data to produce various
moment data, including both reflectivity and velocity data.
This daemon transforms the raw time-series data by reducing
its resolution and normalizing its scale to make it comparable
with other different types of radars. The moment data daemon
may also write the data to a file for archival (at roughly
8 megabytes per file), generate graphics from the data to
use on a local radar map, or post the data to an LDM
(Local Data Manager) [13] queue that operates like a simple
publish/subscribe system to distribute data products.

There may be multiple LDM receivers running on remote
servers listening for new data to post to the queue. A server
may also be listening for multiple queues to post data from
multiple radars. Once the queues post data, software triggers
detection algorithms to execute on the data. Multiple types
of detection algorithms may run in parallel. For example,
“nowcasts” generate highly accurate short-term forecasts, on
the order of minutes, that differ from conventional weather
forecasts that operate over larger time-scales and may aggre-
gate other data inputs, such as weather station data. A con-
troller may then use the output of these detection algorithms
to drive subsequent sensor actuation, e.g., steering the sensor
to track a moving storm along a reverse path. If we consider
applying this application in a severe weather scenario without
the capability for reserving both network and cloud resources
there are multiple potential bottlenecks.

For instance, while there may be ample compute resources
available for processing, the LDM queues must wait until
enough data posts from multiple radars before triggering
one or more detection algorithms. Thus, without sufficient

bandwidth the detection algorithms may stall. Since these
algorithms not only provide immediate forecasting, but also
inform the direction of future actuations, any bottlenecks are
magnified because they actually delay subsequent sensing.
In effect, the system behaves less like multiple independent
workflows, and more like a closed loop pipeline, where any
stall in the pipeline causes the entire loop to stall. Of course, if
ample bandwidth is available, but ample data center resources
are not, there may also be a stall in the data pipeline.

Since our system is setup as a collection of daemons that
communicate over standard pipes and sockets, their placement
in a network is flexible. For example, it is not feasible to
stream raw time-series data over the public Internet. As a
result, the moment data daemon typically operates locally
to reduce the data’s resolution, allowing the detection algo-
rithms to run only over coarse moment data. However, higher
bandwidth links will change the current trade-offs that dictate
today’s daemon placement, potentially allowing processing
on higher-resolution data streams. Another advantage of the
workflow is that the input to each daemon may be either live
data or archived files. Storing archived time-series and moment
data in the cloud lowers the barrier to processing that data:
for instance, scientists may generate the moment data above
from raw time series data using a simple MapReduce job [6].
Further, the ability to package up such a sensing-to-processing
workflow into one or more virtual appliances enables turn-key
deployment on different cloud computing substrates, such as
Amazon’s EC2 [1] or the open-source Eucalyptus project [2].

III. REQUIREMENTS

Since our radar application requires on-demand access to
multiple types of resources, existing cloud platforms are not
sufficient to satisfy its networking and computing require-
ments. While IaaS clouds allow an application to reserve
shared computing resources, they do not integrate network or
sensing resources. Using our radar application as motivation,
we discuss requirements for next-generation cloud platforms
to enable support for other types of resources, including high-
bandwidth sensors.
Dedicated Virtual Networks. Since current cloud platforms
are only accessible over the public Internet, they do not
offer latency or bandwidth guarantees to applications. Next-
generation cloud platforms should allow consumers to reserve
dedicated virtual network links from source to destination.
Reserving both network and computing resources for elastic
sensing applications requires policies at both the data center
and network level to decide how to adapt co-located applica-
tions.

We are leveraging our current work on empirical measure-
ments of virtual machine and cloud resource isolation [3], [21],
as well as our recently developed algorithms to optimize the
cost associated with reconfiguring an application’s capacity
in the cloud [19] based on these measurements, to make
informed decisions. We are currently expanding our ViSE
testbed to include resources from EC2, connected via layer
2 using OpenVPN, and connected to NLR’s dynamic VLAN

service (Sherpa) to provision high-bandwidth network links
between ViSE and other GENI participants. In particular,
ViSE connects to Eucalyptus clusters at Duke University and
the Renaissance Computing Institute through provisioned and
reserved NLR paths as part of GENI, which will soon be
available as a research and deployment platform.

By including provisioned network links as part of a single
platform for sensing applications, our vision is complementary
to recent efforts, e.g., CASA [22] and LEAD [17], to make
both sensors and IT resources more flexible in response to
real-time weather phenomena. Our example radar workflows
are inspired by our current joint work with CASA at UMass-
Amherst. While LEAD recognized the need for flexible and
adaptive control of both sensing and IT resources, our goal
is to link steerable sensors to cloud resources via provisioned
network paths that quicken the observe-process-actuate feed-
back loop present in adaptive steerable sensor networks.
Virtualizing Non-traditional Resources. Cloud computing
platforms should virtualize and incorporate other types of non-
traditional resources, in addition to virtual machines and net-
works, including steerable sensors and cameras. While these
types of resources have been dedicated to a single purpose
or application in the past, their widespread deployment and
multiple potential usage patterns motivate a virtualization
approach. Once virtualized, IaaS clouds should incorporate
them into existing platforms to enable on-demand access. As
part of ongoing work on our ViSE testbed, we have designed
a proportional-share scheduler for both steerable sensors and
cameras [18] that adapts and extends a standard SFQ [10]
proportional-share scheduler. We have integrated our scheduler
into both the Xen virtual machine monitor and the VServer
virtual machine system to allow users to request concurrent
access to these sensors on-demand.
General Stitching Mechanisms for Diverse Resource Types.
Incorporating multiple diverse types of resources elevates
the importance of stitching mechanisms to direct or change
the bindings of these resources. Even now, Amazon’s cloud
platforms allows users to change the binding of EBS storage
volumes to virtual machines. The capability allows users
to connect these two resources together. Similar types of
mechanisms are needed to connect sensors to network links
and network links to back-end cloud servers.
Federating Clouds. The emergence of private clouds at aca-
demic institutions and research labs increases the importance
of cloud federation. As more institutions deploy private clouds
for their local computing needs, they may decide that it is
cost-effective to lease their infrastructure to others, similar
to Amazon. We discuss federation further in the context of
GENI in the next section. Federation is a natural consequence
of integrating networks into clouds, since networks invariably
cross administrative boundaries. For example, while it’s un-
likely that Amazon will operate a radar network similar to
NEXRAD [22], users of that radar network may wish to make
use of Amazon servers for computation, as well as reserved
virtual network links provided by various autonomous systems
between each radar and Amazon.

Isolation in Storage. In addition to on-demand access,
commercial cloud storage platforms present characteristics
that make them attractive for hosting high-bandwidth sensor
network applications. For instance, clouds effectively offer
infinite storage at a linear price that is decoupled from
processing. Typically, storage costs follow a step function
where each additional step may incur steep costs, especially
for large disk arrays. Further, since storage platforms like
EBS and S3 are typically replicated, consumers get data
redundancy in addition to storage space. However, despite
these characteristics, clouds will need to evolve to effectively
support high-bandwidth sensor networks, including support
for reserving disk I/O bandwidth rather than providing best-
effort service. Allocating storage bandwidth ensures that high-
bandwidth streaming applications will be able to satisfy their
timeliness requirements.
Large-scale Processing Platforms for Time-series Data.
While there are many “big data” platforms available today,
they do not focus specifically on the type of time-series
data and processing required by sensors. Platforms, such as
MapReduce, may be applicable to some types of time-series
data processing. For instance, the simple data manipulations
performed by the moment data daemon are easily transformed
into MapReduce-style computations. However, computations
of forecasts from time-series data typically involve numerical
solutions to partial differential equations that do not conform
to MapReduce’s embarrassingly parallel style of computation.
Other big data platforms largely focus on providing structure
to efficiently query and retrieve unstructured data. For these
style of computations, new platforms may be required to fully
utilize the scale of cloud resources that are available.

IV. GENI AND VISE

GENI consists of a federated collection of research testbeds
donated by universities, industry research labs, and nation-
wide networks, with the goal of providing a shared research
platform to support a wide range of realistic and repeatable
network science and engineering experiments at scale. In many
ways, GENI resembles a cloud computing platform: at its core,
it must multiplex collections of heterogeneous physical and
virtual hardware components among multiple concurrent ex-
periments. Thus, basic commercial cloud computing platforms
represent a partial realization of a core GENI function. As
with GENI, cloud platforms expose open web services APIs
for third-parties, i.e., GENI researchers, to request isolated
collections of virtualized hardware components, i.e., GENI
slices, to deploy their applications, i.e., GENI experiments.

However, despite the similarities, there are key architectural
differences between GENI and commercial platforms. For
instance, no single entity operates the GENI prototype, since
it consists of a federation of autonomous testbeds hosted and
controlled by a variety of institutions. As a result, GENI
employs one or more Clearinghouses that aggregate resources
from multiple testbeds and allocates them in a coordinated
fashion. Further, since GENI will initially operate as a non-
profit sponsored by the NSF, resolving scheduling conflicts

on highly utilized portions of the testbed may not be as
easy as allocating resources to the highest bidder. Perhaps
the primary architectural difference, though, results from
GENI’s goal to support a wide rage of hardware components,
potentially including, not only machines, but also storage
volumes, network links, mobile devices, and sensors. Exposing
APIs that allow researchers to reserve entire networks of
heterogeneous devices promotes the development of end-to-
end systems, including the application scenario we discuss
in the next section, that combines real-world tasks, such as
sensing, with back-end processing and storage tasks. The
architectural requirements of GENI are well-matched to the
requirements of next-generation cloud platforms that are able
to support applications that require a diversity of resources.

A. ViSE Integration

As part of GENI, we have integrated our ViSE 2 high-
bandwidth sensor testbed with one of GENI’s candidate
control frameworks. ViSE currently consists of an Internet-
accessible gateway node along with three geographically-
distributed sensor nodes. Each node is roughly 10 kilometers
from the others, and they communicate using 802.11b over
long-distance antennas. Each node includes three distinct
sensors, a Davis VantagePro2 Weather Station, a Sony SNC-
RZ50N Pan-Tilt-Zoom Camera, and a Raymarine RD424
Radome Radar Scanner. We primarily use ViSE as a platform
for experimenting with closed-loop control of adaptive sensor
networks using steerable sensors. Applications actuate sensors
to capture data at a specific time, location, spatial region,
etc., stream that data over both wireless and wired networks
to compute clusters for analysis, and use the new results to
actuate and refocus sensors on important regions as conditions
change. For example, recent work [14] explores how shared
high-bandwidth sensor systems can intelligently prioritize and
compress data when not enough bandwidth exists to transmit
all of the sensor data.

B. Benefits

Beyond enabling new types of cross-resource applica-
tions and experiments, integrating both high-bandwidth sensor
testbeds and cloud computing platforms has a number of
indirect benefits for GENI’s prototype development. For in-
stance, GENI’s goal of developing a platform that supports the
broadest possible range of network experiments covering the
broadest possible range of substrates necessitates an extensible
design, where core GENI entities, e.g., Component/Aggregate
Manager, Clearinghouse, Slice Controller, define interfaces
for mapping their functions onto a range of different sub-
strates and experiments 3. For example, component/aggregate
managers must support both high-level GENI functions, such
as interactions with Clearinghouses, Slice Controllers, etc.,
and interfaces to interact with specific substrate technologies.

2ViSE is an acronym for Virtualized Sensing Environment
3See [16] for details on GENI nomenclature.

While Clearinghouses need not interface with specific sub-
strate technologies, they need substrate-specific knowledge to
facilitate experiment resource discovery and allocation.

However, extensible platforms too often “can do anything,
but are good for nothing.” As such, their design and implemen-
tation must interleave both general platform development with
specific platform use-cases. For GENI, a use-case requires
integrating different architectural components together—from
control frameworks, to substrates, to experiment workflow
tools—and augmenting them to support a specific class of ex-
periment. Integrating sensors with cloud computing resources
represents an example of this type of “vertical” integration
for a general class of data-intensive experiments. While our
initial focus is on data produced from our own ViSE sensornet
testbed, a data-intensive experiment may organize itself around
a collection of data sources, intermediaries, and data sinks. For
instance, the data sources could be high-bandwidth reflectivity
data from a ViSE radar sensor, continuous web crawls, or
streams of measurement data, the intermediaries could be
processing nodes or network elements, and the data sinks could
be storage volumes or object stores.

Integrating cloud computing platforms also offers the same
benefits to GENI as it does to medium- to small-sized busi-
nesses: a cost-effective means for scaling the size of an
infrastructure while holding human administrative burdens
constant. Further, GENI has yet to incorporate virtualized
storage allocated independently of processing nodes to archive
sensor/measurement data, which is a pre-requisite for effective
integration of high-bandwidth sensors. Thus, GENI can benefit
from the addition of the storage paradigms already offered by
cloud computing platforms, including Amazon’s EBS and S3.
Finally, sensors and storage volumes will likely have time-
varying demands that are not correlated with the demand
for compute servers. Integrating sensors and storage require
GENI to support applications that bind different resources with
different lifetimes together, such as computation and sensors
(short lifetime) and storage (long lifetime).

V. CONCLUSION

This position paper argues for tightly integrating high-
bandwidth environmental sensors, such as weather radars and
video cameras, with cloud resources using reserved network
links. We describe a motivating application scenario derived
from a heterogeneous high-bandwidth sensing testbed we are
building as part of the GENI initiative. Since GENI’s goal
is to build a platform that supports research on a broad
range of heterogeneous devices, it provides an opportunity
to overcome current challenges in providing this type of
coordinated provisioning between sensor networks, network
providers, and cloud computing providers.

REFERENCES

[1] Amazon elastic compute cloud. http://wwww.amazon.com/ec2, March
2010.

[2] Eucalyptus. http://www.eucalyptus.com, March 2010.
[3] Sean Barker and Prashant Shenoy. Empirical evaluation of latency-

sensitive application performance in the cloud. In Proceedings of the 1st
ACM Multimedia Systems Conference, Scottsdale, AZ, February 2010.

[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A distributed storage system for structured
data. Transactions on Computing Systems, 26(2), June 2008.

[5] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel
Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. Proceedings of the VLDB Endowment, 1(1), August 2008.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation, December 2004.

[7] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. In Proceedings of the Symposium on Operating
Systems Principles, pages 205–220, December 2007.

[8] A. Francoeur. Border patrol goes high tech. In photonics.com, August
2009.

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In Proceedings of the Symposium on Operating Systems
Principles, pages 29–43, December 2003.

[10] Pawan Goyal, Harrick M. Vin, and Haichen Chen. Start-time fair queue-
ing: A scheduling algorithm for integrated services packet switching
networks. In Proceedings of SIGCOMM, pages 157–168, August 1996.

[11] David Irwin, Navin Sharma, Prashant Shenoy, and Michael Zink. To-
wards a virtualized sensing environment. In Proceedings of the 6th
International Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities, May 2010.

[12] K. Keahey and T. Freeman. Science clouds: Early experiences in
cloud computing for scientific applications. In Conference on Cloud
Computing and its Applications, Chicago, Illinois, October 2008.

[13] Unidata local data manager. http://www.unidata.ucar.edu/software/ldm/.
[14] Ming Li, Tingxin Yan, Deepak Ganesan, Eric Lyons, Prashant Shenoy,

Arun Venkataramani, and Michael Zink. Multi-user data sharing in
radar sensor networks. In Proceedings of the 5th ACM Conference
on Embedded Networked Sensor Systems (Sensys), Sydney, Australia,
November 2007.

[15] S. Magnuson. New northern border camera system to avoid past pitfalls.
In National Defense Magazine, September 2009.

[16] GENI Project Office. The geni system overview. Technical Report
GENI-SE-SY-SO-02.0, BBN Technologies, September 2008.

[17] B. Plale, D. Gannon, J. Brotzge, K. Droegemeier, J. Kurose,
D. McLaughlin, R. Wilhelmson, S. Graves, M. Ramamurthy, R.D. Clark,
S. Yalda, D.A. Reed, E. Joseph, and V. Chandrasekar. Casa and lead:
Adaptive cyberinfrastructure for real-time multiscale weather forecast-
ing. Computer Special Issue on System-Level Science, 39(11):56–63,
November 2006.

[18] Navin Sharma, David Irwin, and Prashant Shenoy. Multisense: Fine-
grained multiplexing for steerable sensor networks. Technical Report
UM-CS-2009-033, University of Massachusetts at Amherst, April 2009.

[19] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh.
Kingfisher: A system for elastic cost-aware provisioning in the cloud.
Technical Report In Submission, University of Massachusetts at
Amherst, January 2010.

[20] I.E. Sutherland. A futures market in computer time. Communications
of the ACM, 11(6):449–451, June 1968.

[21] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant
Shenoy. Profiling and modeling resource usage of virtualized ap-
plications. In Proceedings of the ACM International Conference on
Middleware, Leuven, Belgium, December 2008.

[22] Michael Zink, David Westbrook, Sherief Abdallah, Bryan Horling, Vijay
Lakamraju, Eric Lyons, Victoria Manfredi, Jim Kurose, and Kurt Hondl.
Meteorological command and control: An end-to-end architecture for
a hazardous weather detection sensor network. In Proceedings of the
Workshop on End-to-End, Sense-and-Respond Systems, Applications,
and Services, June 2005.

