
View from the Cloud
Editor: George Pallis

88 Published by the IEEE Computer Society 1089-7801/17/$33.00 © 2017 IEEE IEEE INTERNET COMPUTING

Keep It Simple: Bidding for
Servers in Today’s Cloud
Platforms
Prateek Sharma, David Irwin,

 University of Massachusetts Amherst

Dynamically priced spot servers are an increasingly popular platform on which
to deploy applications. This article shows the effect of spot server bidding
on application cost and availability and discusses bidding strategies and new
research directions in cloud resource management and fault tolerance.

T oday’s infrastructure-as-a service (IaaS) cloud
platforms such as Amazon Elastic Compute
Cloud (EC2) and Google Cloud Platform rent

computing resources on-demand in the form of vir-
tual machine servers. Benefits of using such plat-
forms include a pay-as-you-use pricing model, the
ability to quickly scale capacity when necessary,
and low costs due to their high degree of statistical
multiplexing and massive economies of scale.

IaaS platforms rent servers under a variety of
contract terms that differ in their cost and avail-
ability guarantees. The simplest type of contract
is for an on-demand server, which a customer can
request at any time and incurs a fixed cost per
unit time of use. In contrast, spot servers pro-
vide an entirely different type of contract for the
same resources. Spot servers incur a variable cost
per unit time of use, where the cost fluctuates
continuously based on the spot market’s instan-
taneous supply and demand. Unlike on-demand
servers, spot servers are revocable — that is, the
cloud platform can unilaterally preempt them at
any time.

In the case of EC2, the cost and availability
of spot servers is governed by an auction mecha-
nism. A customer specifies an upper limit (a bid)
on the price they’re willing to pay for a spot server,
and EC2 reclaims the server whenever the server’s
spot price rises above the bid. Because spot servers
incur a risk of unexpected resource loss, they offer
weaker availability guarantees than on-demand

servers and tend to be cheaper — the average
price of spot servers is 10 to 30 percent of that of
on-demand servers.

Conventional wisdom has held that careful
selection of bid-price is important to balance
the cost−availability tradeoff — a high bid might
increase costs but also increase spot server avail-
ability. Here, we show that spot instance bidding
need not be complicated. We analyze empirical
price data of more than 1,500 spot markets over
a six-month period, and show that a wide range
of possible bids have approximately the same
intended effect on cost and availability. We show
that while careful bid selection doesn’t signifi-
cantly impact the cost−availability tradeoff, care-
ful spot market selection is important to reduce
costs and the effects of revocations.

Based on our analysis, we argue for simple bid-
ding strategies and describe best practices when
deploying applications on spot servers. We iden-
tify challenges and opportunities in reducing the
impact of spot revocations (which are akin to
machine failures) on application performance. Our
goal is to provide practical suggestions to simplify
bidding, and to motivate new directions in cloud
computing research.

Spot Instance Bidding
Spot instances allow cloud platforms to gain rev-
enue from surplus idle resources. Amazon EC2
uses a market mechanism to sell this capacity

Keep It Simple: Bidding for Servers in Today’s Cloud Platforms

MAY/JUNE 2017 89

where users place a bid for servers,
and EC2 allocates them if the bid is
higher than the spot price, which var-
ies continuously based on supply and
demand. When the spot price rises
above a user’s bid price, EC2 revokes
the servers. EC2 determines the spot
price by running a sealed-bid mul-
tiunit second-price auction.1 Note
that the underlying supply of surplus
servers in the spot pool also changes
dynamically, because EC2 might take
resources from the spot pool to allo-
cate new on-demand instances. Thus,
the spot price changes dynamically
both as users submit new bids, and as
the spot pool’s capacity changes (see
Figure 1).

To use a spot server, users place a
single, fixed bid, which represents the
maximum hourly price that they’re
willing to pay. The bids can range
from zero to 10 times the on-demand
price. Based on the current bids for
the server and the available supply,
a spot price is determined by a con-
tinuous auction. Because this is a sec-
ond-price auction, users pay the spot
price, which might be lower than the
bid. If the market price increases to
more than the user’s bid, then the spot
instance is revoked and terminated
after a small (120 second) warning.
The prices for each spot server type
(also referred to as a spot market) are
independently determined. The com-
bination of different server sizes and
geographical regions determines a
market, and Amazon runs more than
2,500 spot markets globally.

A low bid means that the user is
price-sensitive and is only willing to
pay a low price for the spot servers.
But a server with a low bid might suf-
fer from low availability and a higher
likelihood of being revoked if the
market price increases to more than
the bid price. Frequent revocations
might cause application downtimes,
missed deadlines, and decreased per-
formance as the application recovers
from revocations, which are akin to
machine failures. Thus bidding pres-

ents the user with a tradeoff between
cost and availability/revocation-rate,
which might further impact applica-
tion performance.

Careful selection of bids via bidding
strategies has received wide attention
in both research2 and industry. Bid-
ding strategies have been proposed for
minimizing costs with different con-
straints (such as deadlines) for a wide
range of applications (such as MapRe-
duce, scientific computing, and so on).
Bidding’s complexity might be one
reason why, despite its extremely low
prices (70 to 90 percent less than on-
demand instances), the spot market
has low usage.3 As we discuss, how-
ever, the bidding problem in today’s
markets (and possibly in future mar-
kets) isn’t particularly important for
maximizing performance and mini-
mizing costs using spot servers.

Effect of Bidding
To understand the effect of bidding for
spot instances, we analyze spot prices
over a six-month period from March
to August 2015 (and longer periods
where stated) of 1,500 spot markets.
For ease of exposition, we begin our
discussion by analyzing the most
popular instance types in the most
popular region — Linux instances in
the region known as us-east-1.

Bidding strategies optimize the
cost−availability tradeoff for spot
instances: as a user increases their
bid, they might pay more per hour,

but their availability also increases.
However, spot price data across many
markets shows that a wide range of
optimal bids exist that essentially
yield the same availability for the
same cost. This is because the spot
prices are spiky. In Figure 1, we see
that the price spikes can be almost 10
times those of the on-demand price —
the same as the upper bound on the
bid price. Thus no matter what the
bid, the spot instance will be revoked
during these large spikes.

To illustrate, Figure 2a shows
a cumulative distribution function
(CDF) of availability for instance types
in five different markets over our
six-month period, where the x-axis
is a user’s bid normalized to the on-
demand price — that is, 2 is 2 times
the on-demand price, and so on. As
expected, availability monotonically
increases with the bid. However, the
CDF has an extremely long tail, and
there’s little increase in availability
after some bid threshold and only
bids that fall within the steep range of
the incline yield different availabili-
ties. As the graph shows, this range
of bids is quite small, providing only
a narrow window where changing a
bid will have a significant effect on
availability. Thus, availability of spot
instances isn’t sensitive to bidding for
a large range of bid prices.

The insensitivity of bidding in
determining the average cost of spot
instances can similarly be seen in

Figure 1. Variations in spot price of the m3.medium instance type. The
spot price is generally much lower than the on-demand price, but shows
occasional spikes.

Pr
ic

e
($

/h
r)

0.5

0.4

0.3

0.2

0.1

0.0
0 50 100 150 200

Time (minutes)

Spot price
On-demand price

View from the Cloud

90 www.computer.org/internet/ IEEE INTERNET COMPUTING

Figure 2b. In this case, the cost on the
y-axis is a fraction of the on-demand
cost. The cost is monotonically increas-
ing with the bid amount. However, just
as with availability, the cost curve has
a long tail, such that higher bids result
in little or no increase in cost. This
occurs because most markets always
have a low and stable spot price, with
the average spot price <0.2 times the
on-demand price. Just as with avail-
ability, bidding has little effect on the
cost of spot instances, because there’s
no penalty for bidding high due to the
auction’s second-price nature.

Finally, the frequency of revocations,
as indicated by their mean time between
revocations (MTBR), is another impor-
tant metric, since revocations incur

overhead for applications that restart
or migrate. Figure 2c shows the MTBR
for different bids. The figure shows that
MTBR range from tens to hundreds of
hours. In addition, the MTBR also have
a long tail in all but one market, such
that bidding high doesn’t significantly
increase the MTBR and a wide range
of bids exist with effectively the same
MTBR. Regardless of the bid price, revo-
cations are unavoidable when using spot
instances.

In addition to the five markets dis-
cussed previously, we also analyzed
these properties in more than 1,500
spot markets, and found that avail-
ability, cost, and MTBR are insensitive
to bidding for most markets. Figure
3 is a succinct representation of our

findings for the 1,500 markets. We
show the length of the range of bids
for which the availability, cost, and
MTBR are all within 10 percent of the
optimal bid. The optimal bid is the bid
that yields the highest availability and
MTBR for the lowest cost. In EC2, the
maximum bid can be 10 times the on-
demand price, and thus the maximum
bid range is 10. We see from Figure 3
that the bid range length is more than
9 for most markets, with few outliers.
This indicates that if we were to pick
randomly, more than 90 percent of the
bids would be within 10 percent of the
optimal.

Based on our analysis, we argue
that cloud customers need not employ
sophisticated bidding and can instead
use simple strategies as follows. First,
select the spot server type carefully to
reduce revocation risk. Then use a bid
price equal to the on-demand price.
Diversify when possible by choosing
multiple spot server types. And finally,
if revoked, migrate the application
state to a new spot server in a differ-
ent market. Next, we discuss several
design considerations in implement-
ing such a strategy.

Mitigating Spot Instance
Revocations
Applications can use the characteristics
of spot markets to minimize their costs
and the impact of revocations. Care-
ful spot market selection and using the
appropriate fault tolerance policies can

Figure 3. Range of bids for which availability, cost, and MTBR is within 10
percent of optimal across 1,500 markets.

Bi
d

ra
ng

e
le

ng
th

10

9

8

7

6

5

4
Availability Cost MTBR

Figure 2. The effect of bidding on (a) availability, (b) expected cost, and (b) mean time between revocations (MTBR) for
selected instance types. Bids and the expected costs are normalized to a factor of the corresponding on-demand price.

1.0

0.8

0.6

0.4

0.2

0.0

A
va

ila
bi

lit
y

C
os

t

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

M
TB

R
(h

ou
rs

)

200

150

100

50

0

Bid
10 2 3 4 5 10 2 3 4 5 10 2 3 4 5

Bid Bid

g2.2xlarge c3.xlarge r3.large m3.medium d2.8xlarge

(a) (b) (c)

Keep It Simple: Bidding for Servers in Today’s Cloud Platforms

MAY/JUNE 2017 91

drastically reduce the impact of revo-
cations while also lowering costs.

Market Selection
Carefully selecting spot markets,
instead of being restricted to a partic-
ular server type, can greatly increase
the effectiveness of spot servers.
For distributed applications, a use-
ful strategy is to use multiple spot
markets — that is, servers in differ-
ent availability zones and of differ-
ent types (small, large, and so on). We
observed that price variations across
markets are largely uncorrelated (see
Figure 4). In general, revocations
in different markets don’t occur at
the same time. When deployed on a
single market, a price spike results in
revocation of all the servers. If instead
multiple markets are used, then the
application can continue to run on
remaining unaffected servers.

Fault Tolerance
Fault tolerance policies and migra-
tion strategies are key in light of the
inevitability of revocations and the
availability of multiple markets. We
can treat server revocation events
as fail-stop failures, and choose the
suitable application-specific fault
tolerance policy. Checkpointing is
a commonly used strategy, and by
periodically checkpointing state to
network storage, the application can
resume from the most recent check-
point. This periodic checkpoint can be
performed either at the system-level
using nested virtualization,4 or by
using the application’s built-in check-
pointing mechanism.5,6

Spot server revocations come with
a small 120-second warning, and this
warning can expand the fault toler-
ance choices available and reduce
their overhead. For example, it might
be possible for certain applications to
react on revocation warning and com-
plete a checkpoint, instead of periodi-
cally checkpointing. Thus, there exist
research opportunities in determining
efficient checkpointing and migration

strategies to exploit inexpensive but
revocable spot servers.

Finally, we must emphasize that it’s
the combination of spot market and
fault tolerance policies that determines
performance and costs. An applica-
tion deployed on a single market is
more susceptible to failure and thus
requires stronger fault tolerance, and
potentially incurs a higher performance
overhead. Selecting the right market
might involve considering its average
cost, availability, and MTBR. Tools
such as Amazon Spot Bid Advisor (see
aws.amazon.com/ec2/spot/bid-advisor)
can help users in picking markets. A
diversified portfolio of markets could
reduce revocation risk, but at a higher
cost, because this entails picking uncor-
related markets, which might not have
the lowest prices.

T he analysis of historical spot price
data leads us to conclude that

bidding can be kept simple in today’s
spot markets. Instead, users should
carefully select markets and fault tol-
erance policies for their applications.

Our results are predicated on the
nature of current spot prices, which
are generally low but with occasional

spikes. Increased usage of spot servers
might change these price characteris-
tics. If the cost and availability CDFs
are no longer long-tailed, then bid-
ding’s importance will increase. How-
ever, an increased demand for spot
servers might be met with an increase
in supply, and the price characteris-
tics might remain unchanged. The
second-order effects of increasing
spot server usage are thus unclear and
remain an open question.

References
1. O. Ben-Yehuda et al., “Deconstructing

Amazon EC2 Spot Instance Pricing,” ACM
Trans. Economics and Computation (TEC),
vol. 1, no. 3, 2013, article no. 16.

2. L. Zheng et al., “How to Bid the Cloud,”
Proc. ACM Conf. Special Interest Group on
Data Comm., 2015, pp. 71–84.

3. S. Higginbotham, “Bidding Strate-
gies? Arbitrage? AWS Spot Market Is
Where Computing and Finance Meet,”
Gigaom , 8 Oct. 2013; https://gigaom.
com/2013/10/08/bidding-strategies-
arbitrage-aws-spot-market-is-where-
computing-and-finance-meet.

4. P. Sharma et al., “SpotCheck: Designing a
Derivative IaaS Cloud on the Spot Market,”
Proc. 10th European Conf. Computer Sys-
tems, 2015; doi:10.1145/2741948.2741953.

Figure 4. Correlation between different spot markets in the us-east-1 region.
Darker squares indicate higher correlation.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

−1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

View from the Cloud

92 www.computer.org/internet/ IEEE INTERNET COMPUTING

5. P. Sharma et al., “Flint: Batch-Interactive
Data-Intensive Processing on Transient Serv-
ers, Proc. 11th European Conf. Computer Sys-
tems, 2016; doi:10.1145/2901318.2901319.

6. A. Marathe et al., “Exploiting Redundancy
for Cost-effective, Time-Constrained Exe-
cution of HPC Applications on Amazon
EC2,” Proc. 23rd ACM Symp. High-Per-
formance Parallel Distributed Computing,
2014; doi:10.1145/2600212.2600226.

Prateek Sharma is a PhD student in the College of
Information and Computer Sciences at the Uni-
versity of Massachusetts Amherst. His research
interests focus on cloud computing. Sharma
has an MS in computer science from IIT-Bom-

bay. Contact him at prateeks@cs.umass.edu.

David Irwin is an assistant professor in the
Department of Electrical and Computer
Engineering at the University of Massa-
chusetts Amherst. His research interests
include experimental computing systems
with a particular emphasis on sustain-
ability. Irwin has a PhD in computer sci-
ence from Duke University. Contact him at
irwin@ecs.umass.edu.

Prashant Shenoy is a professor of computer
science at the University of Massachusetts
Amherst. His research interests include
cloud computing and green computing.

Shenoy has a PhD in computer science
from the University of Texas at Austin.
He’s an IEEE Fellow and ACM distin-
guished member. Contact him at shenoy@
cs.umass.edu.

Read your subscriptions
through the myCS pub-
lications portal at http://
mycs.computer.org.

Are Enemy Hackers Slipping
through Your Team’s Defenses?

Protect Your Organization
from Hackers

by Thinking Like Them

Take Our E-Learning Courses
in the Art of Hacking

<ou and your staff can take these courses where you
are and at your own pace, getting hands�on, real�

world training that you can put to work immediately.

www.computer.org/artofhacking

