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ABSTRACT
Environmentally-powered computer systems operate on renewable
energy harvested from their environment, such as solar or wind,
and stored in batteries. While harvesting environmental energy
has long been necessary for small-scale embedded systems without
access to external power sources, it is also increasingly important
in designing sustainable larger-scale systems for edge applications.
For sustained operations, such systems must consider not only
the electrical energy but also the thermal energy available in the
environment in their design and operation. Unfortunately, prior
work generally ignores the impact of thermal e�ects, and instead
implicitly assumes ideal temperatures. To address the problem, we
develop a thermodynamic model that captures the interplay of elec-
trical and thermal energy in environmentally-powered computer
systems. The model captures the e�ect of environmental condi-
tions, the system’s physical properties, and workload scheduling
on performance. In evaluating our model, we distill the thermal
e�ects that impact these systems using a small-scale prototype and
a programmable incubator. We then leverage our model to show
how considering these thermal e�ects in designing and operating
environmentally-powered computer systems of varying scales can
improve their energy-e�ciency, performance, and availability.
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1 INTRODUCTION
Environmentally-powered computer systems operate on renewable
energy harvested from their environment, such as solar or wind,
and stored in batteries. While harvesting environmental energy
has long been necessary for small-scale embedded systems without
external power sources [2, 26], it is also increasingly important
in designing sustainable larger-scale systems for zero-carbon and
edge applications. For example, there has been a recent emphasis
on designing zero-carbon edge-cloud infrastructure powered by
renewable energy to mitigate climate change [3, 5].

Since these systems’ power is intermittent and limited by their
environment, they must carefully regulate their energy usage over
time to match their supply. While there has been substantial prior
work on designing environmentally-powered systems that dynami-
cally adapt their energy usage to enable perpetual operation, most
of this work focuses on small-scale energy-harvesting sensor sys-
tems [14, 22, 27], which have little computing capacity, low compu-
tation density, and primarily focus on data sensing. However, the
recent emergence of low-power and energy-e�cient AI accelera-
tors, such as NVIDIA’s Jetson Nano [1], combinedwith the advances
in solar and battery technologies is changing how these systems
are designed and operated. The future environmentally-powered
computer systems at the edge are going to be much more powerful
running compute-intensive tasks such as AI inference and computer
vision tasks. These workloads will originate from modern appli-
cations – including precision agriculture, smart tra�c monitoring
and control, beehive/bird/animal population monitoring, live lan-
guage translation, and others – deployed in outdoor environments.
These changes to system sizes, and the workloads that run on them,
are increasing the importance of thermal e�ects, which have not
been addressed in prior work. In general, environmentally-powered
computer systems may be deployed in many di�erent climates that
subject them to a wide range of ambient temperatures, which can
a�ect their operation in numerous and signi�cant ways.

In particular, changes in temperature alter the energy-e�ciency
of processors, batteries, and cooling elements in signi�cant, but
di�erent, ways. For example, battery charging and discharging be-
comes much less energy-e�cient as temperature decreases, and
may shutdown if the temperature decreases or increases too much.
Prior work has generally ignored these e�ects, and often implicitly
assumes an ideal temperature range, e.g., 20-25�C, even though
most locations do not experience ideal temperatures year-round.
The lack of consideration of thermal e�ects is one reason that
reported uptimes for environmentally-powered systems, such as
FarmBeats are often low, e.g., <30 days [15]. Our key insight is
that, to optimize performance, energy-e�ciency, and availability,
environmentally-powered computer systems must jointly consider
and manage both the electrical and thermal energy in the environ-
ment as part of their design and operation. While much prior work
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Figure 1: Environmentally-powered computer systems consist of processors powered by solar and ba�eries and include a cooling
element (a). Common applications include small- to medium-scale embedded systems. e.g., for precision agriculture (b) and
medium- to large-scale edge data centers (c). In both cases, systems may be exposed to highly variable temperatures.
has examined adapting system operation to match variations in
available energy, e.g., from solar or wind, in both small-scale sens-
ing systems [14, 22, 27] and large-scale cloud systems [8, 9, 16, 21],
it has not addressed the signi�cant impact of temperature on the
solar- and battery-powered system design and operation.

To address the problem, we enumerate, quantify, and model the
numerous thermal e�ects that impact solar- and battery-powered
computer systems. While the temperature responses of individual
components, e.g., processors, batteries, cooling elements, etc., are
well-known, optimizing the performance, energy-e�ciency, and
availability of these systems requires understanding the relation-
ships between these components and their environment. For exam-
ple, at low temperatures, environmentally-powered systems can
leverage some of the thermal energy generated by their processors
to heat their battery, which can signi�cantly increase the energy-
e�ciency of both. Of course, these systems must also e�ciently
dissipate their heat at high temperatures to prevent processors and
batteries from over-heating and becoming unavailable.

To this end, we design a thermodynamic model for
environmentally-powered systems by combining well-known
physical models of heat transfer, batteries, processors, and cooling
elements. Importantly, our model captures thermal feedback loops
between components that a�ect the system’s operation, such
as how scavenging a system’s waste heat warms its battery,
increasing its energy-e�ciency, and enabling more computation.
We empirically validate our model using a small-scale prototype
and programmable incubator that precisely regulates temperature
between -30�C and 40�C. We then leverage our thermal model
to show how considering thermal e�ects in both designing
and operating environmentally-powered computer systems can
improve their performance, energy-e�ciency, and availability.

Speci�cally, our model and analysis quanti�es the e�ect of a
system’s power draw, enclosure insulation, and ambient tempera-
ture on its energy-e�ciency, i.e., computational work done using
a fully charged battery. We also highlight the tradeo� between an
enclosure’s heat transfer coe�cient and its energy-e�ciency: better
insulation increases energy-e�ciency when cold by more produc-
tively using waste heat, but decreases it when hot by requiring
additional energy to power a cooling element that dissipates heat
to prevent battery and processor over-heating. Our work di�ers
from prior work on optimizing the cooling infrastructure of data.
centers powered by the electric grid, as that work mostly focuses
on the e�cient movement of heat from within the facility to outside
of it, and does not exhibit the feedback loop between computation
and batteries present in environmentally-powered systems.

Our work demonstrates that managing and adapting to variable
thermal energy is just as important as electrical energy in solar-
and battery-powered computer systems, and that they are depen-
dent on each other. Currently, thermal management is mostly an
after-thought for these systems with most implicitly designed for
ideal-to-higher temperatures, often with little insulation that re-
duces the need for active cooling as temperatures rise, but wastes
much of the heat these systems produce as temperatures drop.
There is currently little understanding, and no explicit modeling, of
how temperature a�ects these systems. Our work is an important
step towards better understanding how the temperature e�ects of
individual components manifest at the system-level.

Our hypothesis is that optimizing environmentally-powered
computer systems requires jointly managing their electrical and
thermal energy as part of their design and operation. In evaluating
our hypothesis, we make the following contributions.
Thermodynamic Model and Validation. We design a compre-
hensive thermodynamic model for an environmentally-powered
computer system that consists of an energy source, e.g., solar panel,
enclosure, batteries, and processors that are subjected to some am-
bient temperature. The model accounts for the e�ect of heat and
processor power on battery capacity, charging, and discharging,
the heat emitted by the processor, and the energy consumed by a
cooling element to dissipate heat. We validate our model by enumer-
ating, isolating, and empirically quantifying the thermodynamic
e�ects that impact the system’s operation, and how they relate to
each other. Our empirical analysis demonstrates the impact of each
e�ect on system operation under di�erent ambient temperatures.
System Design and Operation Use Cases. We present both a
design and operation use case for our thermodynamic model. In the
design use case, we leverage our thermodynamic model to highlight
the tradeo�s between system design parameters and user-speci�ed
performance objectives, e.g., for performance, energy-e�ciency,
and availability. In the operation use case, we demonstrate how a
scheduler can leverage our thermodynamic model to operate the
given design of an environmentally-powered computer system to
optimize for a user-speci�ed performance objective.
Implementation and Evaluation. We implement a small-scale
prototype and programmable incubator to empirically validate our
model. We develop a model-driven simulator to enable long-term
experimentation. We quantify the design tradeo�s and the opera-
tional space to show how our thermodynamic model can be lever-
aged to improve the system-level performance of two case study
applications—a small-scale embedded system for precision agricul-
ture and medium-scale federated learning at an edge datacenter.
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2 BACKGROUND
We summarize the thermodynamic e�ects exhibited by batteries,
processors, and cooling elements, and how they alter the energy-
e�ciency of each. We model these e�ects in the next section.

2.1 Environmentally-powered Systems
Environmentally-powered computer systems operate on renewable
energy harvested from their environment, such as solar or wind,
and stored in batteries. Figure 1(a) shows these systems’ typical
components, including solar panels, processors, batteries, and a
cooling element, such as a fan or pump. Figure 1(b) & (c) show
two example applications that leverage environmentally-powered
systems. Precision agriculture applications deploy these systems
to gather data from small-scale embedded devices that monitor
environmental conditions, such as soil moisture, humidity, and
temperature. Similarly, there are a wide range of smart city appli-
cations, such as tra�c monitoring, vehicle-to-edge communication,
and crime detection, that analyze and process the data collected by
sensors and cameras at medium- to large-scale edge data centers.

2.2 Batteries
The energy stored by batteries is related to their temperature and
discharging/charging current. We discuss these relationships below.
Temperature-Energy E�ect. The usable energy capacity of
lithium batteries decreases with temperature. Figure 2(a) shows
curves from our prototype’s battery datasheet, where the points
represent experiments we run to empirically validate the datasheet
using our programmable incubator. The graph shows that the bat-
tery’s usable capacity, as a percentage of its charged capacity, drops
by over 50% at the 3V cut-o� voltage when the temperature drops
from 25�C to -20�C. This “wasted” energy is consumed as heat by
the battery to catalyze its chemical reaction that produces electricity.
We call this the temperature-energy e�ect. In addition, discharging
at low temperatures can damage batteries and reduce cycle-lifetime.
In general, lithium batteries should not be discharged below -20�.
Likewise, as temperatures increase, batteries’ self-discharge rate
also increases, which reduces the energy available for discharge,
although not by as much as a decrease in temperature. Lithium
batteries generally cannot be discharged at >60�, and as at that
temperature their available capacity drops to 0.

Figure 3(a) plots the temperature-energy e�ect in our prototype
with ambient temperature on the x-axis and available battery ca-
pacity on the y-axis. The points represent experiments using our
prototype, while the continuous line represents our model’s predic-
tion, which closely matches the data. In this case, we set the battery
to 100% capacity at 25�C. As shown, the available capacity drops
signi�cantly as the temperature decreases, with only 80% of the
energy available at 0�C and 50% available near -20�C. Temperatures
between 0�C and -20�C are common over winter in much of the
U.S., Europe, and other high latitude locations. As we show, the
heat generated by processors can be leveraged to raise the internal
enclosure temperature and extract more energy from batteries. The
plot also shows how our prototype’s charge controller automati-
cally shuts down the battery once it reaches 60�C for safety. While
ambient temperatures generally do not reach 60�C, they can reach
this high within an insulated enclosure if processors generate heat
faster than the system can dissipate it, i.e., via convection.
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Figure 2: A system’s usable ba�ery capacity varies with both
temperature (a) and discharge current (b).
Discharge-Energy E�ect. The discharge-energy e�ect refers to
the decrease in available energy that occurs when discharging at
higher rates. Figure 2(b) shows curves from our prototype’s battery
datasheet, where the points represent experiments we have run for
empirical validation. The graph shows that, at the 3V cut-o� voltage,
the battery’s usable energy decreases by 25% when increasing the
current from a C-rate of 0.2 to 2, where a C-rate of # represents
the discharge current required to fully discharge the battery in 1/#
hours. Due to this e�ect, if processors execute at 100% utilization,
they draw less energy from a battery than if they operate at lower
utilization, since utilization is roughly linear with current draw.
Thus, the slower processing speed, the more energy they can extract
from batteries, and the more overall computation they can perform.

Figure 3(b) quanti�es the discharge-energy e�ect where we plot
the discharge current (which is linear with utilization) on the x-axis
and the available energy capacity on the y-axis. The points repre-
sent experiments with our prototype, while the continuous line
represents our model’s prediction, which closely matches the em-
pirical data. Here, we normalize the experiment to some discharge
current (equivalent to 50% utilization), which we set at 100%, and
then set the available capacity at 100% for that discharge current.
This setting allows us to evaluate the discharge-energy e�ect at
currents higher than 1C, which may be required by the system to
server workload bursts. The experiment shows a linear relationship:
as we slow down the system (by reducing utilization), we are able
to extract more than nominal available energy, and as we speed up
the system (by increasing its utilization), we draw less energy. In
this case, only 80% capacity is available when operating at 100%
utilization compared to 50% utilization. The discharge-energy e�ect
counteracts the temperature-energy e�ect: running the processor
at high utilization generates more heat, which can warm the bat-
tery and increase its available energy, but the increased discharge
current reduces the available energy. Thus, determining the most
energy-e�cient operating point at any given time is non-trivial.
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(a) Temperature-Energy E�ect (b) Discharge-Energy E�ect (c) Temperature-Charging E�ect
Figure 3: Energy-e�ciency as a function of temperature (a), discharge current (b), and available ba�ery capacity when charging
at various temperature (c). For (a) and (b), the black points are experimental data and the red curves represent our model.

Temperature-Charging E�ect. The temperature-charging e�ect
refers to the relationship between temperature and the rate at
which batteries can charge. While lithium batteries can safely dis-
charge down to �20�C, their maximum charging rate decreases
with temperature and charging is not possible below 0�C. Thus, low
temperatures prevent storing energy and make using energy much less
e�cient. Lithium batteries can also easily overheat at high tempera-
tures, since their chemical reaction generates additional heat that
increases their internal temperature beyond the ambient temper-
ature. Charge controllers generally prevent charging/discharging
when the internal temperature rises too high (above ⇠60�C). Thus,
high temperatures can prevent storing and using energy. Figure 3(c)
shows how the charging capacity of the battery changes with tem-
perature. In this case, 100% represents the maximum charging ca-
pacity at 25�C. As shown, charging rate decreases rapidly from
5�C to 0�C, where it falls to 0%. At 5�C capacity is ⇠80% and then
increases roughly linearly with temperature. As expected, higher
temperatures enable the system to charge the battery at faster rates.
As above, the points represent experiments using our prototype
and line represents our model’s prediction, which closely matches.

2.3 Processors
Since processors do no mechanical work, their power is converted
to heat, which must be dissipated to prevent them from overheating
due to thermal runaway. A system’s energy-e�ciency is a function
of temperature if it leverages outside air (or water) for cooling, since
lower ambient temperatures require using less additional energy
to actively cool the processor. Such “free cooling” is often used
by cloud data centers [10]. Thus, unlike batteries, processors are
more energy-e�cient at low temperatures, since they do not have
to consume additional power to dissipate heat. Also unlike batter-
ies, computer systems (at a �xed frequency and voltage) are more
energy-e�cient, in joules per computation, at higher power, since
they are generally not energy-proportional and a higher power
(and utilization) amortizes their baseload power over more com-
putation. Of course, an ideal energy-proportional system has the
same energy-e�ciency at any utilization. The heat generated by
processors can be recycled by environmentally-powered systems to
optimize the e�ciency of the battery based on the various e�ects
above. For example, scheduling workload at low temperatures can
improve system performance by generating heat that improves
battery e�ciency. We call this the scheduling-performance e�ect.

2.4 Cooling System
Fans (or pumps) are generally used to dissipate heat in computer
systems. The intensity with which a variable speed motor must
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Figure 4: Fan power as a function of insulation. Black points
are experimental data and the red curve represents our model.

rotate the blades of a fan (or pump) to maintain a certain tem-
perature is a function of the heat dissipated by the processor, the
conductivity of the system enclosure’s insulation, and the external
temperature. Thus, there is an insulation-cooling e�ect that impacts
system enclosure design: the thicker the enclosure’s insulation, the
better its performance in low temperatures, but the more the motor
must run in high temperatures, and vice versa. In addition, as we
discuss, fan (and pump) energy usage is a cubic function of the
amount of air (or water) it moves, and thus the heat it dissipates.

The insulation-cooling e�ect captures the tradeo� between hav-
ing thicker insulation to retain heat during low temperatures at
the cost of consuming more energy via a fan (or pump) to dissipate
heat at high temperatures. Figure 4 quanti�es the insulation-cooling
e�ect for our prototype at 25�C for di�erent levels of insulation
on the x-axis. The y-axis shows the power required by the fan (or
pump) motor to maintain 25�C as the enclosure’s insulation in-
creases when operating the system at 50% utilization. As expected,
when the insulation is thin, there is almost no need for cooling,
and it consumes little power. However, as we increase the insula-
tion’s thickness, the enclosure retains more heat, which requires
consuming more power to dissipate that heat by active cooling. Of
course, the energy used by the cooling element is energy that does
not go towards productive computation. One option at these higher
insulation levels, instead of running the cooling element, is to op-
erate at a lower utilization to generate less heat, which reduces
the need to consume energy by the fan to dissipate heat. Thus,
as with the discharge-energy e�ect, operating slower, at a lower
utilization, enables more energy to go towards productive compu-
tation. That is, active heat dissipation using the cooling element
enables environmentally-powered systems to operate at higher
workload intensities than they otherwise could, but at the cost of
lower energy-e�ciency. Also, as above, the points in the graph
represent experimental data from our prototype, while the line
represents our model’s prediction, which closely matches.
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3 THERMODYNAMIC MODEL
To better understand the e�ect of temperature on the operation of
an environmentally-powered system, we develop a comprehensive
physical thermodynamic model that estimates a system enclosure’s
change in temperature over some time interval �C . Our contribution
lies in leveraging basic thermodynamic relationships to develop
an end-to-end model for predicting system-level performance; the
basic relationships can be found in classic thermodynamic text-
books [6, 19]. Figure 5 illustrates our model and its key parameters.
Table 1 outlines the notations used in the model, their de�nitions,
and units. The model assumes a processing element, such as CPU,
GPU, radio, or their combination with a dynamic power range, and
batteries reside within an enclosure of a given size. The processors,
batteries, and the air within the enclosure each have an associated
temperature () ), mass (<), and thermal capacity (⇠), which is the
heat required to change the temperature of the mass, and is in units
of joules per degree K. We also assume the ambient temperature
outside ()0<1 ) is una�ected by any heat transfer with the enclosure.

The enclosure provides insulation from the environment based
on its heat transfer coe�cient * , which is an empirically derived
constant that dictates the heat transfer rate (&̂CA0=B ) in joules per
unit time between the enclosure and its external environment. The
overall heat transfer coe�cient* is a combination of the internal
convection inside the enclosure, conduction through the enclosure
walls, and external convection away from the enclosure. We can
calculate* as thermal resistors connected in series, as below.

1
*

=
1
⌘8

+ 3
:
+ 1
⌘>

. (1)

In Equation 1, ⌘8 is the internal convection coe�cient, : is the
thermal conductivity, 3 is the thickness of the enclosure, and ⌘>
is the outer convection coe�cient. The heat transfer rate (&̂CA0=B )
below between the enclosure and its external environment is di-
rectly proportional to the heat transfer coe�cient (* ), temperature
di�erence (�) (C)) between inside and outside the enclosure, and
the heat transfer area (�), computed as below.

&̂CA0=B = * ⇥� ⇥ �) (C) = * ⇥� ⇥ ()0<1 �)4=2 (C)) . (2)

For simplicity, our model assumes the enclosure is a cube with
side length ! with a surface area � = 6!2. As shown in Equation 2,
the heat transfer rate is a function of surface area �. At any time
C , �) (C) = )0<1 � )4=2 (C) represents the di�erence between the
temperature inside and outside the enclosure. Thus, a positive�) (C)
represents heat �owing into the enclosure, and a negative �) (C)
represents heat �owing out of it. Given Equation 2, we can compute
the total heat transfer (in joules) over a time interval �C by simply
integrating &̂CA0=B over time, calculated as below.

&CA0=B =
π C+�C

C
&̂CA0=B 3C . (3)

Equation 3 enables us to compute the total heat energy trans-
ferred between the inside of the enclosure and the outside environ-
ment. However, some of this heat energy is absorbed by the mass
within the enclosure, including the processors, batteries, and air,
and thus does not contribute to raising the enclosure’s temperature
()4=2 ). This heat energy is a function of the enclosure’s heat capac-
ity (⇠4=2 ), which is computed as the mass-weighted average of the
respective heat capacities of the objects within the enclosure, as
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Figure 5: A simple and general thermodynamic model of an
environmentally-powered computer system.

Notation De�nition Unit
Q Heat transfer rate J.s�1

h Heat transfer coe�cient W.m�2K�1

U Combined heat transfer coe�cient W.m�2K�1

k Thermal conductivity W.m�1K�1

d Enclosure thickness m
A Enclosure surface area m2

T Temperature K
�T Temperature di�erence K
m Mass Kg
C Thermal capacity J.K�1

RB?428 5 82 Speci�c gas constant J.Kg�1K�1

? Pressure J.m�3

d Density Kg.m�3

V Volume m3

V Processing element voltage volts
I Processing element current ampere
AF Air�ow m3 .s�1

Table 1:Model notations, de�nitions, and units.
shown below, where<4=2 =<08A +<10C +<?A>2 or the total mass
within the enclosure. Here, we assume the enclosure includes only
processing elements, batteries, and ambient air.

⇠4=2 =
1

<4=2
⇥ (<08A .⇠08A +<10C .⇠10C +<?A>2 .⇠?A>2 )

We can empirically measure the battery and computing plat-
form’s mass (<) and heat capacity (⇠) using a scale and calorimeter,
respectively. We cannot directly weigh the air mass, but can derive
it using simple models. In particular, the mass of air in the enclo-
sure is a product of its volume and the air’s density d08A , which is
directly proportional to the atmospheric pressure, and inversely
proportional to the temperature ()08A ) as well as its speci�c gas
constant ('B?428 5 82 ), as given below.

d08A =
?

'B?428 5 82 ⇥)08A
. (4)

For dry air on earth 'B?428 5 82 = 287.058� ·:6�1 · �1. We assume
the enclosure is closed when ? = 1 atmosphere and )08A = 25�C.
Note that, based on the ideal gas law, even when the temperature
inside the enclosure changes, the ratio of its pressure ? to its tem-
perature)08A , and thus its air density, remains constant. As a result,
in this case, the density of air d08A = 1.1839kg/m3, which results
in an air mass<08A = 1.1839 ⇥ !3. The heat capacity of air (⇠08A )
at earth’s surface under these conditions is also a constant and
equal to 717 joules per kilogram per degree Kelvin (K). We have
retrieved the coe�cients for the thermal properties of the air and
other components from Engineering ToolBox [25].
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Figure 6: The change in the enclosure’s temperature )4=2 over time is a function of the (a) ambient temperature )0<1 , (b) the
enclosure’s thermal conductivity : , and (c) the processor’s power usage % .

Given all this, we can compute the enclosure’s heat capacity
⇠4=2 above. If the enclosure generates no internal heat, then its
temperature will eventually reach an equilibrium temperature equal
to the temperature )0<1 of the ambient environment. To reach
equilibrium, the total amount of heat &CA0=B the enclosure will
absorb or release is the product of its total mass<4=2 , heat capacity
⇠4=2 , and change in temperature, computed as below.

&CA0=B =<4=2 ⇥⇠4=2 ⇥ ()0<1 �)4=2 (0)) . (5)

Here, )4=2 (0) is enclosure temperature at the start. While the
equation above represents the heat transferred to reach the equilib-
rium temperature, the same basic equation also dictates the heat
transferred over any arbitrary time interval �C based on the change
in temperature at the time interval’s start and end, as given below.

&CA0=B =<4=2 ⇥⇠4=2 ⇥ ()4=2 (C + �C) �)4=2 (C)) . (6)

Notice that we have computed the total heat transfer&CA0=B over
a time interval in both Equation 3 and Equation 6. Setting these
equations equal to each other yields our model, which predicts the
temperature within the enclosure after some time interval �C given
a starting temperature )4=2 (C), the enclosure’s mass (<4=2 ) and
heat capacity (⇠4=2 ), as well as its thermal conductivity (:), surface
area (�), ambient temperature ()0<1 ), and depth (3).

<4=2 ⇥⇠4=2 ⇥ ()4=2 (C + �C) �)4=2 (C)) =
π C+�C

C
&̂CA0=B 3C

)4=2 (C + �C) = )4=2 (C) +
1

<4=2⇠4=2

π C+�C

C
&̂CA0=B 3C (7)

To this point, our model assumes the processor generates no
heat. In practice, however, the power drawn by the processor is con-
verted to heat, which our model assumes is uniformly distributed
throughout the enclosure. For now, we assume there are no me-
chanical components, such as fans, to dissipate this heat. We discuss
modeling for heat dissipation using a fan below. Thus, we extend
our model above to account for the processors’ power draw by
assuming it is entirely converted to heat. We can account for this
heat energy by simply adding it to the heat transferred with the
environment, given as below.

)4=2 (C + �C) = )4=2 (C) +
1

<4=2⇠4=2

π C+�C

C
(&̂CA0=B + (V · I)) 3C .

Here,V andI are platform’s voltage and current, andV·I is its
overall power draw. The model above simply observes that power
translates directly to heat within the enclosure and thus augments
any other heat transfer mechanism available to the system.

Our model captures an enclosure’s temperature change over
time based on its physical characteristics, the ambient temperature,
and the processor’s power usage. Unfortunately, there are no good
physical models that capture the e�ect of temperature and power
draw on usable battery capacity. Thus, we use empirical models
from our battery’s datasheet in Figure 2, which we experimentally
validated. We next extend our model to include using an arbitrary
cooling component, such as an air conditioner or simple fan.
Heat Dissipation Using Active Cooling. Processors may dissi-
pate heat faster than an enclosure can transfer it to the external
environment based on its conductivity, which causes the tempera-
ture to rise to a point where neither the battery nor processor can
function. In this case, fans or pumps may be necessary to increase
the rate of heat dissipation within the enclosure using convection.
While our model below focuses on fans, which transfer heat by
moving air, the same basic approach applies to pumps, which trans-
fer heat by moving a liquid. The selection of a fan depends on the
speci�cations of the enclosure and the maximum rate of heat dis-
sipation required. A fan moves the air that absorbs the heat from
inside the box and then dissipates it to the external environment.
The amount of energy dissipated (&38BB ) depends on the mass of
the moving air (<08A ), the speci�c heat of the moving air (⇠08A ),
and the temperature change of the moving air (�)08A ).

&38BB =<08A ⇥⇠08A ⇥ �)08A

The mass of the moving air can be calculated from the volume
of air (+08A ) being moved and the density of the moving air (d08A ).

&38BB = (+08A ⇥ d08A ) ⇥⇠08A ⇥ �)08A

We divide both sides of the equation to get the power needed to
dissipate at each time (C ).

&38BB

C
= (+08A

C
⇥ d08A ) ⇥⇠08A ⇥ �)08A

The air volume over time is the air �ow rate, which we term
as ��08A . We term the power dissipation as %38BB . We arrange the
equation to get the air�ow required for a given power dissipation.

��08A =
%38BB

d08A ⇥⇠08A ⇥ �)08A

The value of⇠08A is 1: � ·:6�1 ·⇠�1 and the density of air at 20�C
is d08A = 1.20kg/m3. We can use this equation to either �nd the
heat dissipation rate for a given �ow rate or the heat �ow required
to achieve the desired heat dissipation rate.

Since the equipment inside the enclosure will exhibit resistance
to the air �ow, air needs to be delivered at a certain pressure that can
overcome the resistance. However, the amount of pressure required
is highly dependent on the design and physical characteristics of
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Figure 7: Small-scale prototype inside the incubator.
the product to be cooled, and must be determined either experi-
mentally using anemometers and manometers to measure the air
speed and pressure, respectively, or using di�erent computer-aided
design (CAD) software to design and calculate air�ow character-
istics. Either method will yield system pressure requirements that
increase with the air �ow. The pressure exerted by the fan reduces
as its air �ow increases, and delivers the highest air �ow when
the back pressure is lowest. The intersection of the two curves is
the operating point of the fan for the given system. We assume
our model uses a fan that has the required air�ow at its operating
point. The power consumption of a variable speed fan has a cubic
relationship with the change in the air�ow. That is, if the air�ow
of the fan doubles, its power consumption increase by 8⇥. This
relationship is shown in the equation below.

% 9 = %8 ⇥ (��9/��8)3

Here, %8 and ��8 are the initial power consumption and air�ow
while % 9 and �� 9 are the �nal power consumption and air�ow,
respectively. Note that using the fan to dissipate heat reduces the
energy available for doing productive computation.
Implementation and Model Validation. To validate our model
and experiment with thermodynamic design, we built a pro-
grammable incubator by connecting a mini-freezer and incandes-
cent light bulb (as a heat source) to programmable relays controlled
by a Raspberry Pi (Figure 7). Our incubator programmatically con-
trols temperature between -30�C and 40�C with an error of ±2�C.
We use the Nvidia Jetson Nano as our computing platform for vali-
dation. The Nano has a baseload power of ⇠1W, and a maximum
power of 10W. We use Panasonic NCR18650B lithium-ion batteries
rated for 3.2 Amp-hours (Ah) at 3.6V. We use a boost converter to
build a 4Ah, 5V battery bank for the Nano with 20Wh maximum
energy capacity. Figure 2 from §2 shows our battery’s response to
temperature and discharge current. Our enclosure uses Expanded
Polystyrene (EPS) foam, which has a thermal conductivity : of
0.04,<�1 �1 [17]. We use 1.25in thickness as our baseline for
experiments. We vary : by changing its thickness. For example,
halving the thickness increases : by 2⇥ to 0.08,<�1 �1.

Three parameters a�ect the change in enclosure’s temperature
)4=2 over time: the di�erence with the ambient temperature )0<1 ,
the enclosure’s thermal conductivity : , and the processor’s power
usage % . Figure 6 shows the complex non-linear e�ect of each on
the change in )4=2 , initialized to 0C. Our baseline is )0<1=10�C,
:=0.04, and %=0W. Figure 6(a) then varies )0<1 without changing
: or % , and shows that a higher ambient temperature causes the
enclosure’s temperature to rise more quickly. Similarly, Figure 6(b)
varies : , and shows that a higher thermal conductivity, i.e., more
insulation, also causes the temperature to rise quickly. Finally, Fig-
ure 6(c) varies the processor’s power usage, and shows how the
resulting heat increases the temperature up to 100�C at full utiliza-
tion (10W), which is well beyond the 10�C ambient temperature.
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design 

specifications
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online

design  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operation 
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Figure 8: An overview of thermodynamic model use cases.
Figure 6 also validates our model: the curves represent our model,
while datapoints represent the mean temperature change across
�ve experiments, where error bars represent the max and min.

4 THERMODYNAMIC MODEL USE CASES
In this section, we �rst present the design of an environmentally-
powered computer system, speci�cally its enclosure, and operation
of the system as the two uses cases for the thermodynamic model, as
shown in Figure 8. We then present a broader analysis that outlines
the use cases across a wide range of settings.

4.1 Use Case 1: Designing the System
In the design use case, the end goal is to determine the con�gura-
tion range for the system enclosure that allows the system to meet
its performance objectives across seasons. To do so, a pre-requisite
is the historical temperature pro�le of the system’s location and
user-speci�ed system objectives, such as 100% availability at 50%
of the power. User also speci�es the order of priority for secondary
metrics. In addition, user must also specify the capacity of di�er-
ent system components such as the processor, batteries, and solar
panels. Given these inputs, we exhaustively search the system en-
closure parameter space, which includes the enclosure insulation
and cooling element capacity, to �nd a range of parameters that
satisfy the user-speci�ed performance objectives.

We take an iterative approach to �nding the right speci�cations
for the enclosure and the cooling element. We start with an initial
set of values for the enclosure’s insulation, or thermal conductivity
: , that may correspond to low (e.g., styrofoam, : = 0.04, /<. ),
medium (e.g., Polyvinyl Chloride (PVC) plastic : = 0.2, /<. ),
and high (e.g., glass, : = 0.8, /<. ) value. These values are con-
�gurable and correspond to actual insulation materials that can be
used for the enclosure. Similarly, we pick an initial value for the
cooling capacity, speci�ed in watts (W). We then use an iterative
process to �nd the optimal enclosure and cooling element speci�-
cations using our thermodynamic model based on the temperature
and solar power pro�les at all insulation values. Since the workload
is not known, we vary the system’s operational power between the
user-speci�ed minimum (e.g., 30%) and 100% power. For each of
the con�guration combinations (i.e., thermal conductivity, cooling
capacity, and operational power), we compute the value of all of
the metrics that quantify system performance objectives.

We then use a brute-force approach to �nd the best con�gu-
rations. Since �nding the right enclosure speci�cation is a one
time process done before system deployment, the time required
for our brute-force approach is not a problem. Finally, we output
a single con�guration that satis�es the primary performance ob-
jective while maximizing the other metrics in the order of their
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Figure 9: Work done using i) naive and ii) thermal-aware
scheduling that exploits the electrical/thermal feedback loop.
priority. It is possible that no con�guration meets the desired level
of performance for the provided speci�cations.

4.2 Use Case 2: Operating System Components
In the operation use case, our goal is to determine the operating
point of the computing and cooling elements that allows the system
to meet its performance objectives over a �nite scheduling horizon.
To do so, we require all the inputs of the design use case and the
output parameters of the design process with one key distinction.
Instead of the observed temperature, solar generation, and work-
load arrival schedule, we need forecasted values for these inputs.
Temperature forecasts are generally highly accurate and readily
available. Solar power forecasts are also available through many
open-source and publicly-available tools, such as Solar-TK [4]. The
workload patterns for applications that are deployed using small-
scale embedded systems or edge datacenters tend to also be de-
terministic. Given these inputs, we simulate our thermodynamic
model using the forecasted values of temperature, solar power, and
workload. In doing so, we schedule the workload for each hour of
the scheduling horizon, while satisfying the speci�ed objectives.

In determining the operational schedule, we leverage the insight
that thermal and electrical energy both exhibit a feedback loop
between themselves, and that the thermal energy generated due to
energy consumption at time C a�ects the availability of energy in
subsequent time periods. We use a simple example to demonstrate
this e�ect, which we term the scheduling-energy e�ect. It refers
to the relationship between the intensity at which the processors
operate, and the energy available from the battery. Speci�cally,
due to the temperature-energy e�ect described in Section 2, the
warmer the battery, the more energy a system can extract from it.
Thus, when scheduling workload, systems can extract more energy,
and perform more total computation, if they operate at a higher
utilization as the temperature decreases, and lower utilizations
when the temperature increases. The former maintains a higher
temperature, which increases battery e�ciency, while the latter
generates less heat, which reduces the need for cooling, which
consumes additional energy to dissipate the waste heat.

Figure 9 quanti�es the scheduling-energy e�ect in a scenario
where the temperature drops over night but rises during the day.
The graph compares operating continuously at ⇠50% utilization
with a scheduling policy that operates at ⇠25% utilization during
the day and ⇠80% utilization over night. In this case, the latter
schedule is able to perform 11% more computation than the former
because of the e�ects above. For this experiment, our computations
is simply an integer benchmark. The experiment demonstrates that
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Figure 10: Temperature pro�les of a single location in north-
east United States across di�erent seasons.
scheduling when and how much processors dissipate heat can a�ect
a system’s energy-e�ciency and the total computation.

We use a simple iterative approach to �nd an optimal workload
schedule that meets the user’s performance objective. We work
backwards from the end of the scheduling horizon and schedule
workload for each hour such that the energy is extracted from the
battery at the highest energy-e�ciency. In the �rst round, it simply
uses the default workload pattern and then changes the workload
in each slot to ensure the performance objective is met.

4.3 Evaluation: Thermodynamic Model at Work
We next show how our thermodynamic model can improve the
design and operation of the use cases above. We present multiple
combinations of performance objectives and minimum operational
power constraints.We also decouple the results across three seasons
to demonstrate how the performance tradeo�s are impacted by
seasonal variations even for a given location.
4.3.1 Evaluation Setup. Below, we outline the key metrics used
to specify systems’ performance objectives.
Performance Metrics. We de�ne system performance objectives
using three metrics: energy-e�ciency, availability, and work rate.

Energy-e�ciency is de�ned as the percentage of available energy
in the battery that is extracted and used for computation.

Energy E�ciency = 100 ⇥ Energy used for computation
Energy stored in the battery

A value of 100%means that all the energy extracted from the battery
is used for the computation, while a value of 50% means that only
50% of the energy could be extracted and used for the computation.
In this case, the other 50% either could not be extracted from the
battery or was used by the cooling system. A higher value is better.

Availability is the percentage of time the system was up and has
enough power to operate at or above a threshold utilization.

Availability = 100 ⇥ System up time
Total experiment time

Availability ranges between 0% and 100%. A higher value is better
for a given operating point. Finally, the work-rate is de�ned as the
amount of work done (computation) per unit time. Its value is in
the (0, inf) range. Higher values of work rate are better.
System Con�gurations. For our use case demonstration, we con-
sider a small-scale carbon-free edge datacenter similar to those
considered in recent work [3, 5]. We consider the enclosure, in
this case a small room, as a cube with 8ft sides. The size of the
battery is 20kWh with a minimum state-of-charge of 40% or 8kWh.
The edge datacenter houses 8 servers of 250W each with a total
demand of 2kW at 100% utilization. The available battery capacity
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Figure 11: Energy-e�ciency across three seasons: (a) winter, (b) spring, and (c) summer. For each season, we evaluate our three
designs that are winter-optimal (red line, long dash), spring-optimal (black line, small dash), and summer-optimal (purple line,
solid) over various operating points represented by power intensity of x-axis.
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Figure 12: Availability across three seasons: (a) winter, (b) spring, and (c) summer. For each season, we evaluate our three designs
that are winter-optimal (red line, long dash), spring-optimal (black line, small dash), and summer-optimal (purple line, solid)
over various operating points represented by power intensity of x-axis.
of 12kWh is enough to run all the servers at 50% utilization for 24
hours under ideal conditions. This setting allows us to vary the
system utilization (and the current draw) around 50% and evaluate
the e�ect of increasing or decreasing battery’s discharge current
on system’s objectives. The heat capacity, volume, and mass of the
battery is based on our lithium-ion battery datasheet [28].

We demonstrate the e�ect of the design and operating point on
the energy-e�ciency, availability, and performance using a site in
the northeast U.S. This site exhibits signi�cantly di�erent weather
across winter, summer, and spring. The temperature pro�les for
three representative days of these seasons are shown in Figure 10.
The temperature varies from 77�F (25�C) to 97�F (36�C) in summer,
from 46�F (8�C) to 52�F (11�C) in spring, and 5�F (-15�C) to 16�F (-
5�C) inwinter.We con�gure the enclosure’s heat transfer coe�cient
at three insulation settings: low (2), medium (0.9), and high (0.35).
These values are achieved by varying the thickness of insulated
wall with thermal conductivity of 0.15 W/m·K.
4.3.2 Energy-e�ciency. Figure 11 shows the energy-e�ciency
for di�erent design parameters and operating points across all sea-
sons. Here, we assume the system optimizes for energy-e�ciency
and discuss the design choices and operating points across seasons.
E�ect of Design. The choice of design to optimize for energy-
e�ciency depends on which season the system optimizes for and
how much loss of energy-e�ciency it is willing to accept in other
seasons. If energy-e�ciency in winter is desired for the system, we
should opt for a design that o�ers the highest protection against
ambient weather and best performance in heat scavenging, termed
as winter-optimal (high insulation). This design gives you 100% en-
ergy e�ciency in winter and o�ers the highest energy-e�ciency for
any operating point (Figure 11(a)). However, its energy-e�ciency
in other seasons is signi�cantly lower, especially in summer (Fig-
ure 11(c)), since, in summer, this design has to use signi�cant fan

energy to dissipate the waste heat. Similarly, a low insulation design
is the best choice for summer energy-e�ciency. As expected, its
performance in winter is the worst as high conductivity allows pro-
cessor heat to escape, preventing it from retaining heat when idle.
The spring-optimal design (medium insulation) o�ers the best per-
formance in spring and fall (Figure 11(b)). Since its performance is
better than low insulation in winter and high insulation in summer,
it is the best choice to optimize energy-e�ciency across seasons.
E�ect of Operation. The design of a system for a season does
not automatically guarantee the best energy-e�ciency. The operat-
ing point, i.e., utilization, provides another knob that optimizes the
energy-e�ciency. For example, during winter, the energy-e�ciency
for the low insulation design is highest at the maximum operating
point. This is because, at higher utilization, more heat is generated
which keeps the batterywarm. The gain in battery energy-e�ciency
is enough to o�set the negative e�ect of higher current draw. How-
ever, the same design o�ers the best energy-e�ciency at the lowest
operating point in spring and summer. This is because, at low oper-
ating points, the low insulation is able to dissipate the heat through
normal heat transfer. The low operating point not only avoids the
use of a fan but also the negative impact of higher discharge cur-
rents. This trend is not same for all the design choices. For a high
and medium insulation, the best performance is achieved at mid-
operating points in their respective seasons. This demonstrates that,
given a design, the choice of operating point will vary within a
season and across seasons. Figure 11 can also be used as a guide to
designing systems. If the systemmust operate at a certain operating
point, you can choose a design that gives the best performance. For
example, if the system must always operate at 10% power intensity,
the high insulation gives the best performance both in winter and
summer, and comparable performance for the rest of the year.
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Figure 13: Performance during summer for high (winter-
optimal), medium (spring-optimal), and low (summer-
optimal) insulation designs over various operating points.

4.3.3 Availability. Figure 12 evaluates availability for di�erent
design parameters and operating points across seasons. Here, we
assume the system optimizes for availability and discusses the
design choices and operating points to achieve that across seasons.
E�ect of Design. The availability across all operating points di�ers
for each insulation level. The maximum availability o�ered by each
insulation across all operating points di�ers signi�cantly across
seasons. A high insulation o�ers a minimum of 60% availability
across all operating points as compared to 35% for the low insulation.
This is because the energy-e�ciency of the two designs varies
signi�cantly at the highest operating point. However, the same
high insulation o�ers only 38% availability at all operating points
in summer. This is due to the energy loss to a fan, as it needs higher
air�ow to dissipate heat as the operating point increases. The choice
of design for 100% availability is straightforward if the operator does
not care about the operating point or energy-e�ciency. Figure 12
illustrates that all the design options o�er 100% availability across
all seasons. They only di�er by the highest operating point at which
they o�er 100% availability. Thus, if the operator wants the system
to be 100% available, they can choose any design and then operate
it at the highest operating point at which it o�ers 100% availability.
E�ect of Operation. Each operating point o�ers di�erent availabil-
ity across seasons. For example, at 30% or lower power intensity,
the system achieves 100% availability irrespective of design. This is
less than the 50% power intensity that an ideal system can support
with 100% availability. It shows the poor thermal management of
designs for non-optimal seasons. Note that each design gives 100%
availability at a higher operating point in its optimal season. For
example, a high insulation manages thermal energy the best in
winter, as it exceeds the 50% operating point. This is due to heat re-
tention that takes the battery temperature above 25�C and extracts
more energy than the nominal value. This e�ect is consistent across
seasons: the design that best manages thermal energy in a given
season, achieves the highest operating point for 100% availability.
4.3.4 Performance. Figure 13 shows the performance of di�er-
ent designs during the summer. There are two key points in this
evaluation. First, at di�erent operating points, the speed of work
di�ers. This is intuitive as power intensity on the x-axis is directly
proportional to the CPU utilization. At 100% utilization, the rate of
computation is 10 times faster than at 10% utilization. The second
takeaway is the di�erence in performance across designs. The low
insulation performs the best as it does not need a fan or active
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cooling. However, the other two designs must dissipate energy us-
ing a fan, as well as use workload scheduling to reduce the energy
consumption of the fan. For example, the high insulation design
uses a very simple scheduling policy to stop computation when the
temperature exceeds 60�C and resumes it only when the tempera-
ture drops to 60�C using a combination of passive cooling through
conduction and active cooling using the fan. This way, the design is
able to achieve higher energy-e�ciency at the cost of performance.

5 CASE STUDIES
We next present two applications as case studies that make use of
our thermodynamic model while prioritizing di�erent objectives.
The �rst application is precision agriculture where an IoT base
station is gathering sensor data from environmental sensors that
are part of a distributed wireless sensor network. The state of the
art for this application is Farmbeats [26], which is an IoT platform
for data-driven agriculture. The second application is federated
learning in smart cities where multiple edge computing platforms
are training a machine learning (ML) model. These case studies
show that our thermal-aware design and operation achieves better
performance than application-speci�c state-of-the-art.

5.1 Sensor Data Acquisition
We evaluate the performance of our thermal-aware approach
against Farmbeats [26]. Farmbeats attempts to minimize the data
gaps by varying the duty cycle of the data acquisition. Vasisht
et al. [26] detail the hardware speci�cations of the system. The
system is powered by two solar panels of 60W each. Solar panels
are connected to four 12V-44Ah batteries connected in parallel. The
processing component is a Raspberry Pi 4B that consumes 2.7W
in idle and roughly 7W at maximum. The environmental sensors
are interfaced with the base station through a 802.11b router, that
consumes 20W power at maximum with a base power of 3W. We
assume a linear relationship between the router power and sensor
data acquisition rate for the purpose of this case study. However, as
shown in the FarmBeats paper (Fig 6a), there is no enclosure for bat-
teries. In our case study, we design an enclosure for the system that
we use for both the FarmBeats-like and our proposed thermal-aware
approach. This case study essentially compares the performance
of thermal-agnostic FarmBeats-like system and a thermal-aware
operation for data acquisition. In the former case, we only change
the rate based on the available energy. In the later case, we leverage
scheduling-energy e�ect to get better performance.

Figure 14 shows the data rate achieved under thermal-aware and
thermal-agnostic Farmbeats operation. Both approches perform
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Figure 15: Performance comparison against a modi�ed Mul-
tiExit Federated Edge Learning (ME-FEEL) approach [23]. A
thermal-aware operation outperforms ME-FEEL by exiting in
a higher stage leading to a higher training accuracy.

similarly during spring when the temperatures are moderate and
there are no signi�cant variations in temperature over the course
of a single day. However, the thermal-aware operation of the base
station outperforms Farmbeats during summer and winter. The
di�erence is signi�cant during winter when thermal e�ects are sig-
ni�cant. Overall, our thermal-aware approach achieves 24% higher
data rate than Farmbeats’ thermal-agnostic design.

5.2 Federated Learning at the Edge
There is signi�cant prior work on leveraging federated learning on
resource-constrained edge devices [12, 23, 24]. These approaches
aim to maximize the accuracy of the trained model under energy
availability constraints at each device and constraints on the band-
width available to upload the local model to the parameter server.
However, these approaches do not explicitly consider how these
constrained resources might be further impacted when exposed to
a wide range of extreme environments. This case study shows that
by jointly managing electrical and thermal energy, we can achieve
better performance, both in terms of energy e�ciency and work
rate for such environmentally-powered computer systems.
Application Setup. Our baseline for this case study is the Multi-
Exit Federated Edge Learning (ME-FEEL) approach proposed by
Tang et al. [24], which uses a modi�ed ResNet18 [13] deep learning
model that enables exiting at any of its seven layers. Tang et al. [24]
pro�le the training time for each exit stage that we leverage in our
simulation. Our application scenario consists of periodic rounds
where the edge device trains its model and uploads the results to the
server within a certain time threshold. The edge device picks an exit
stage based on the energy availability at the device. A higher exit
stage indicates more work done and vice versa. Since the amount of
energy in both cases is the same, a higher work-rate means higher
energy e�ciency. Furthermore, since the system selects the exit
stage based on the available energy, it is available for 100% of the
rounds. We evaluate two scenarios where an application maximizes
its work rate and energy-e�ciency over a long period.
Optimizing Work Rate. As illustrated in [24], a higher exit stage
yields higher accuracy and application aims to exit at the highest
stage possible. To achieve this goal, the application must priori-
tize the work rate over system availability and energy-e�ciency.
Figure 15 compares the performance of the ME-FEEL’s thermal-
agnostic approach to our thermal-aware approach. A thermal-aware
approach results in a higher probability of exiting at a higher stage.

As a result, a thermal-aware model training has a higher accuracy.
However, in attempting a higher exit stage and increased work rate,
the node may run out of energy and not be able to participate in
some rounds. Thus, despite high accuracy, the model may not be
trained on the latest data. Our approach achieves an accuracy of
71% versus 62% for the baseline, representing a 14.5% improvement.

6 RELATEDWORK
Energy-harvesting Sensor Systems. There is prior work on de-
signing environmentally-powered systems that dynamically adapt
their energy usage to enable perpetual operation, mostly for small-
scale energy-harvesting sensor systems [14, 22, 27]. Most of the
prior work assumes ideal operating conditions, e.g., 20-25�C and
ignores thermal e�ects. The closest work to ours is [20], as it con-
siders the e�ect of ambient temperature and discharge current on
battery’s energy-e�ciency. However, it ignores other e�ects in our
work, e.g., insulation-fan e�ect and scheduling-energy e�ect.
Edge AI. There is prior work on Edge AI that maximizes the energy-
e�ciency of the edge computing platforms by optimizing various
power management techniques [12]. However, this body of work
is orthogonal and can be used in conjunction with our approach.
Sustainable Clouds. There is recent work on designing sustainable
clouds powered by renewable energy with battery storage [3, 8, 9,
16, 21], which focuses on adapting the workload to match variations
in the energy supply but ignores thermal e�ects we focus on.
Data Center Cooling. Prior work on managing heat in large-scale
data centers mainly focuses on heat movement within facilities and
avoiding hotspots. The work on free cooling data centers discusses
the impact of ambient temperature on energy-e�ciency and work-
load adaptation to optimize cooling e�ciency [7, 10]. However, data
centers do not have large batteries and thermal e�ects in them are
limited [18]. Also, data centers focus on cooling; the heat produced
is a waste that must be dissipated. In contrast, environmentally-
powered computer systems can leverage this heat in cold weather.
Energy Modeling. There is work on modeling thermal energy in
buildings, such as OpenStudio [11]. However, it generally does not
model battery components and its thermal e�ects.

7 CONCLUSION
In this paper, we considered environmentally-powered computing
system and showed that they must consider not only their elec-
trical energy but also the thermal energy for e�ective design and
operation. Our evaluation showed that a season-speci�c design can
achieve up to 35% higher energy-e�ciency than a non-optimal de-
sign while also outperforming the non-optimal design by achieving
20% higher availability. Finally, our case studies showed that the
thermal-aware operation of the systems yield an improvement of
24% in data acquisition rate for precision agriculture application,
14% increase in model accuracy for the federated learning at the
edge, and 41% increase in the data used for training at the edge.
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