
Harnessing Virtual Machine Resource Control for Job Management

Laura Grit, David Irwin, Varun Marupadi, Piyush Shivam
Aydan Yumerefendi, Jeff Chase, and Jeannie Albrecht†

Duke University University of California, San Diego†

{grit,irwin,varun,shivam,aydan,chase}@cs.duke.edu,jalbrecht@cs.ucsd.edu

Abstract

Virtual machine technology promises important ben-
efits for grid computing and cluster batch job systems,
including improved isolation, customizable workspaces,
and support for checkpointing and migration. One way
to gain these benefits is to “drill holes” in existing batch
computing systems; however, we believe these new capa-
bilities warrant a rethinking of the architectures of exist-
ing systems. We propose separating resource control for
VMs into a new foundational layer that focuses narrowly
on resource management.

We presentJAWS, a new batch computing service that
is built as a thin-layer above a resource control plane
that enables it to share a common pool of networked
cluster resources with other cluster services.JAWS ex-
ecutes jobs within isolated virtual machine workspaces.
We discuss how exposing resource control allowsJAWS
to leverage VM-based resource isolation as a means to
learn models of application behavior, and use those mod-
els to guide scheduling policies for efficient resource
sharing.

1 Introduction
Virtualization technologies continue to mature, expos-

ing new resource management control to existing batch
computing systems. Nearly all virtual machine software
supports new controls such as strong performance iso-
lation, save/restore of running VMs, and live migration.
Moreover, VMs may be created and destroyed within
a matter of seconds by using techniques such as flash
cloning of stored images. Virtualization promises to
change the way cluster and data center resources are man-
aged at the lowest level. Machines are no longer bound
to physical hardware; they may be created, destroyed,
started, stopped, saved, restored, or migrated at the push
of a button. How should we expose and leverage this new
control for cluster and grid computing environments?

In recent work, we explored a simple technique to
leverage virtualization: instantiate complete middleware

environments (e.g., Globus [17] and Sun Grid Engine [8])
within isolated logical containers (workspaces) compris-
ing sets of virtual machines. We showed how add-on
controllers for each hosted environment could grow and
shrink the computing resources assigned to their contain-
ers by invoking resource leasing services in an underly-
ing resource control planeto obtain resources according
to demand. In essence, we introduce a new software layer
to manage virtualized resources below the middleware
and below the operating systems: we refer to the resource
control plane as “underware”. The architecture and cur-
rent implementation (Shirako) of the underware layer is
outlined in Section 3 and described in more detail in an
earlier paper [8].

This simple approach allows multiple user commu-
nities and middleware environments to share computing
resources with policy-based adaptive resource control.
However, it is limited in that the new control interfaces
do not apply to individual jobs, but only to complete
middleware environments. The middleware controls job
scheduling on its machines; the mapping of jobs to ma-
chines is not known outside of the middleware, and the
scheduler may place multiple jobs on a machine. Thus
it is not possible for a controller to migrate a job by mi-
grating the containing VM, or use VM control interfaces
to suspend/resume, save/restore, or reserve resources for
individual jobs. An alternative is to retrofit VM sup-
port as an option into existing middleware for job man-
agement [11, 20]. However, virtualization technology of-
fers a rare opportunity to rethink the software architecture
from the ground up.

In this paper we propose a streamlined job execu-
tion system called JAWS (Job-Aware Workspace Ser-
vice) that uses the Shirako resource control plane to run
each job within an isolated virtual container sized for the
job. Although it manages job execution, JAWS is not
a job scheduler: all functions to schedule and arbitrate
shared resources migrate to the underware layer. In this
way, a JAWS job service can share a common pool of
networked cluster resources with other cluster services,
including other middleware environments such as grid

Figure 1: A classic job execution service running on a clus-
ter’s physical machines (a) compared to a job execution service
running on federated virtual machines above a generic resource
control plane and sharing underlying resources with other clus-
ter services (b).

software or applications such as Web services. The con-
trol plane underware provides common facilities to re-
serve, allocate and configure resources and manage VM
workspaces, and to control sharing of resources across
multiple autonomous resource providers. These func-
tions apply to all hosted environments (see Figure 1), in-
cluding the JAWS job service.

JAWS has access to all VM control functions ex-
posed by the underware layer on a per-job basis. We
explore one example of how to use this control: we inte-
grateactive learningtechniques developed in the NIMO
project [21] to construct performance models that are use-
ful for proactive resource management. We built an auto-
mated NIMO controller for JAWS that manipulates VM
control “knobs” to learn models to predict job runtime for
a given assignment of resources (e.g., CPU capacity and
memory). Before deploying JAWS , NIMO collected job
data from a specialized testbed with diverse machines;
the new JAWS-based system uses VM resource control
to explore the space of resource assignments automati-
cally on any VM hosting cluster.

In this paper we describe the benefits of exposing re-
sources in a new foundational layer and using it as the ba-
sis for a job execution service (Section 2). We illustrate
the benefits of the architecture through the design and im-
plementation of JAWS (Section 3). We also discuss one
benefit of exposing resource control by integrating active
learning into JAWS (Section 4).

2 Overview

Increasingly, high-end computational science and en-
gineering problems are solved on a complex hierarchy
of resource and software systems that consist of scien-
tific codes, portals, workflow tools, web services, re-
source management middleware, and underlying cluster

and HPC resources. In this setting, effective execution
depends on a complex set of interactions between the
end-user, different layers of software infrastructure, and
the underlying resources.

These systems are typically built on grid middleware
that, in turn, is layered upon traditional, mainstream clus-
ter operating systems and batch schedulers. The job-level
and process-level resource control of these systems offers
limited predictability and isolation and makes it difficult
to orchestrate large composite applications effectively,
particularly for deadlines or dynamic behavior [5, 20].

In addition, future systems must deal with more di-
verse software configurations: e.g., different library ver-
sions, operating systems, or middleware services. To har-
ness computing resources for a given task, it is necessary
to install and configure the correct software stack.

Virtual machines or workspaces (VWs) [5, 11, 14]
have been proposed as a means to address the challenges
of isolation, customization, and management. A virtual
workspace provides access to a collection of resources
(physical or virtual) and a software environment suitable
for the execution of a job or a collection of jobs.

2.1 Workspace Architecture

In this paper we address the architectural questions of
creating, managing, and using virtual workspaces for job
execution. Our main architectural principle is to sepa-
rate control over resource sharing from job execution and
management. Similarly to [11] we delegate control over
a workspace to the job owner, but extend this concept
by factoring sharing control out of the middleware into
a general resource control plane (underware). Factoring
sharing control into the underware layer allows operators
to control resource assignment and usage while insulat-
ing them from the details of any specific environment or
service.

Decoupling sharing control and job management sim-
plifies the job execution service. The underware layer
takes care of the underlying trust and authorization is-
sues, and resource arbitration policy.

2.2 Benefits of VM Control

The proposed architecture supports important capabil-
ities that are difficult to obtain in many of today’s clus-
ter/grid environments, but are important for HPC as it
evolves and seeks to incorporate new virtualization tech-
nology.

Resource Control. Resource owners need control
over how their resources are used and users must know
what resources are available to them. The resource con-
trol plane usesleasesto represent contracts over resource
commitments that grant the holder rights to exclusive
control over some quantity of resource over a specified
period of time. Leases are dynamic and renewable by

2

mutual consent between a resource provider and a guest
(e.g., JAWS). The leasing abstraction applies to any set of
computing resources that is “virtualized” in the sense that
it is partitionable as a measured quantity. For example, by
using performance-isolating schedulers, a resource might
comprise some amount of CPU capacity, memory, stor-
age capacity, and/or network capacity, measured by some
standard units, and with attributes to describe them.

A sliver is the partition of a physical machine’s re-
sources; leases in JAWS are for a set of slivers which
form a virtual workspace. Slivering may result in the col-
location of two complementary sized virtual workspaces
on the same host machine. After the initial slivering, a
virtual workspace may require resizing to accommodate
for the changing requirements of a job or to meet client
performance targets. Virtual machines may be resized
along multiple dimensions to enlarge or shrink a job’s vir-
tual workspace. Resizing may involve migration to a new
host.

Resource Federation.The underware control plane
may coordinate resource allocation and deployment
across multiple autonomous clusters—this is an example
of resourcefederation. Independent clusters may donate
resources to third-party brokers. The underware control
plane uses these brokering intermediaries to implement
resource sharing policies.

Robust Computing.Virtual workspaces in JAWS en-
able a more robust computing environment for jobs in-
cluding: saving VM images as they execute for check-
point or recovery, snapshotting file system images, and
VM migration to balance load or perform system main-
tenance. In addition, our underware control plane uses a
database to persist all state pertaining to deployed vir-
tual machines and pending resource requests as advo-
cated by [18]. Persistent state makes it possible to re-
cover after a crash and restore the system into operation
with minimal consequences.

Advance Reservations. Sophisticated applications
may want to know what resources they have control over
and when, while some applications may require resources
at specific times (e.g., for the coordination of a work-
flow). To support intelligent applications the resource
control plane must provide resource reservations, both
immediate and advanced.

Allowing advance reservations is difficult in any sys-
tem where applications may require resource for an un-
predictable amount of time. For example, in JAWS and
classic job execution services, it is possible that job run-
time estimates are inaccurate [13] and the job may require
resources longer than expected. When such a system al-
locates advanced reservations, there is the risk that re-
sources allocated to a job may be reclaimed before the job
completes to satisfy an advanced reservations. The use of
leases in our architecture is beneficial in these situations

because they offer a measure of assurance to JAWS: re-
sources are revoked at a well-known time allowing JAWS
to checkpoint the state (VM image and disk) of unfinished
jobs and re-bind them to resources at a later time.

Support for Diverse Environments. Within a grid or
a cluster, jobs may require different and complex execu-
tion environments. Each virtual machine on a host can
run its own customized software stack from the operating
system up to application services.

JAWS can leverage software environments packaged
asappliances: complete bootable images containing both
application and (custom) operating system components.
The appliance model is well-suited to virtualized infras-
tructure, and has revolutionary potential to reduce in-
tegration costs for software producers and to simplify
configuration management of software systems. For ex-
ample, rPath1 is packaging appliances for key driv-
ing applications, including the STAR application from
Brookhaven and the Community Climate System Model,
and supporting infrastructure such as the Open Science
Grid toolset.

Resource Sharing.The position of the resource con-
trol plane in the software stack makes it possible to host
multiple services from a common pool of resources. The
resource control exposed by the underware layer, enables
a service to completely customize its workspace and to
adjust dynamically the resources bound to its workspace.
Compared to traditional batch schedulers that are config-
ured statically to cluster resources, JAWS is dynamic in
the number of resources it uses, making it possible to
reallocate unused resources to other cluster service that
may require more resources at that time.

Application Management. The type of jobs running
in HPC job management environments are evolving from
self-contained entities to long-running, multi-component
workflows that can more closely resemble services than
classical HPC jobs. As long-running and complex ap-
plication workflows become more prevalent, a need for
long-lived application managers to monitor resource us-
age and application status as well as allow user interac-
tion with a running application. These managers may
take advantage of resource controls exposed by the un-
derware layer. For example, the manager may adjust
the resources associated with the application’s virtual
workspace, or may control other functions like check-
pointing a job or migration. JAWS acts as the application
manager to its client jobs.

3 JAWS Design and Prototype
JAWS is designed as a thin layer above Shirako: an

implementation of an underware control plane architec-
ture [8, 17]. Shirako is a toolkit for distributed resource
management based on resource leasing. There are three

1http://www.rpath.com

3

Figure 2: JAWS uses Shirako to obtain resources and to config-
ure virtual workspaces (VWs). JAWS determines how to queue
and manage its submitted jobs. The resource control policy de-
termines what resources to request from a Shirako broker.

different roles Shirako servers may take: service manager
(resource consumer), site authority (resource provider),
or broker (resource arbitrator and provisioner). [8] details
Shirako’s protocols and design; we give a brief summary
here as it relates to JAWS.

Figure 2 illustrates the basic design of JAWS. JAWS
acts as a Shirako service manager, or resource consumer,
that requests resources for jobs from a broker: brokers
are granted resource rights by Shirako site authorities for
subsets of their resources for a specified duration. Bro-
kers may aggregate resource rights from multiple site au-
thorities to coordinate cross-site allocation. Brokers en-
able a controlled form of federation: sites explicitly dele-
gate resource rights to brokers for fixed periods of time.

Brokers follow resource scheduling policies that de-
termine how to partition their resources among multiple
services. If a broker grants a resource request a signed
ticket is returned to the JAWS service manager which is
then redeemed at the site authority. The site authority in-
stantiates the resources and returns a lease to JAWS. A
lease signifies a capability to use a resource for a period
of time. Shirako site authorities use Cluster-on-Demand
(COD [3]) as a back-end resource manager for allocating
virtual machines to JAWS. COD includes support to con-
figure and instantiate OS images and IP/DNS namespaces
on physical servers and Xen virtual machines.

While our current implementation uses Xen, our
goal is to remain independent of any specific virtual-
ization and to support any technology that offers accu-
rate, low-overhead performance isolation, migration, and
save/restore of VM images. To this end our design fac-
tors out technology-specific code into resource drivers
that take as input a set of technology-independent prop-

erties that describe the attributes of the machine (e.g., IP
address, CPU share, Memory, etc.). Resource drivers are
not limited to VMs, and we have implemented drivers
that re-image and configure physical machines.

JAWS executes each job within the customized
workspace instantiated by the site authority. Our JAWS
prototype uses Plush [1] to execute a job on newly in-
stantiated VMs. Job workflows are described in an XML
specification language that details data staging, software
installation, and process sequencing. Plush monitors the
execution of the job and reports, via XML-RPC call-
backs, job completion or failure.

JAWS defines aresource controlpolicy that deter-
mineshow muchresource is needed for a job (e.g., one
machine or multiple machines, how much CPU capacity
and memory to bind to each machine, and how much lo-
cal disk space to incorporate into the workspace) andhow
long the resource is needed. The resources controlled by
JAWS may vary with time due to contention from other
systems using the same resource control plane. Under
contention the control plane can redirect resources fol-
lowing a predefined resource scheduling policy,indepen-
dentof the policy used by JAWS. However, since each
JAWS job runs within a leased performance-isolated
workspace, instantiated jobs are protected from con-
tention and cannot be affected by other systems sharing
the same control plane.

A Shirako broker acts as the resource scheduler for
JAWS. In many respects a Shirako broker behaves like a
conventional job scheduler: we have implemented many
commonly used scheduling algorithms as pluggable poli-
cies for Shirako brokers, including Earliest Deadline
First, Proportional Share, and Backfill. In our prototype
the broker schedules leases for virtual machines bound to
varying amounts of CPU, memory, bandwidth, and local
storage from an inventory of physical hosts. The default
broker policy module for our prototype defines a sim-
ple greedy algorithm that fills resource requests, in the
form of 4-tuples (CPU, memory, bandwidth, storage), in
a FCFS worst-fit fixed order.

4 Resource Control with Active Learning

A job in JAWS is a specific instance of an application
with certain input parameters and input dataset. Since
instances of an HPC application may execute multiple
times, JAWS has an opportunity to learn the resource de-
mands of HPC applications from prior application runs.
The information gathered from previous executions of an
application is captured in a performance model that pre-
dicts the application’s performance (e.g., runtime) as a
function of specific virtual workspace specification (e.g.,
amount of CPU, memory, network bandwidth). Explicit
resource control in JAWS enables integration of active
learning techniques to learn such models accurately and

4

Figure 3: JAWS interacts with NIMO to determine an effective
and efficient virtual workspace specification for its jobs. For
each request, NIMO must decide if it will explore a new virtual
workspace to enhance an application’s performance model, or
exploit an existing model. NIMO monitors the execution of
each job to collect the training data for updating its models.

quickly (Section 4.1). JAWS can use learned models in
several ways.

Reservations and deadlines.Prior knowledge of a
job’s runtime helps JAWS select an appropriate lease
length for the job’s workspace. JAWS must estimate job
completion times so that it can schedule job requests in
the future (advance reservations). Correct runtime esti-
mation help JAWS minimize the risk that resources will
be revoked from a job before it completes. We are ex-
perimenting with providing “minimal-impact” deadline
scheduling: performance models can be used to predict
the minimal amount of resources a job needs to complete
before a given deadline (i.e., “just in time”). This is useful
in situations where unplanned events require jobs to be
completed before a deadline, but the job scheduler seeks
to minimize the impact on other jobs.

Informed workspace collocation and coscheduling.
Understanding the relationship between resource allot-
ments and application performance enables JAWS to as-
sist the resource control plane to make intelligent deci-
sions about efficiently assigning virtual workspaces to
underlying hardware resources. For instance, using in-
formation supplied by JAWS, the resource control plane
may collocate a virtual workspaces with complementary
resource profiles: a CPU-intensive workspace may be
collocation with an I/O intensive one.

4.1 Active Learning of Models in NIMO

In our current JAWS prototype, the job scheduling
policy enhances its understanding of job resource de-
mands by interacting with NIMO [21]: a system that
uses active learning techniques to learn accurate perfor-
mance models. Previous work on NIMO learned mod-
els that predict application performance on physical re-
sources; here we use NIMO to learn application perfor-
mance models for jobs running inside virtual workspaces.

NIMO leverages the explicit resource control exposed in
JAWS to learn accurate models proactively and quickly.
Figure 3 outlines the interactions between JAWS and
NIMO.

NIMO builds a performance model to estimate the
performance of an application running within a virtual
workspace. The performance model estimates applica-
tion runtime using three inputs: (1) theresource profileof
the resources assigned to the workspace (e.g., CPU cycles
and network bandwidth for VMs), (2) thedata profileof
the input dataset, and (3) theapplication profilethat cap-
tures the behavior of the application resulting from the
interaction of the application, the resources assigned to
it, and its data profile.

NIMO uses active learning to expose systematically
and proactively the relevant training data samples re-
quired for building an accurate performance model. To
collect one sample training data point, NIMO requests
a specific virtual workspace within which to run the
job. While a job is executing, NIMO gathers instru-
mentation data from passive instrumentation streams us-
ing common tools (e.g., sar, tcpdump) with no changes
to application or system software. The instrumenta-
tion data is then processed to produce a training sample
data point. NIMO collects multiple samples to build its
models by proactively running applications within virtual
workspaces with different resource profiles.

The choice of virtual workspace specifications for
collecting the training data points in NIMO is guided
by design of experiments(DOE) [9] active learning [4]
branches of statistics to do automated and intelligent
gathering of training samples from a potentially large
space of resources and input datasets for a given appli-
cation. DOE offers off-the-shelf algorithms for quickly
identifying relevant parameters and interactions that af-
fect application performance. Active learning algorithms
can identify the next application run, i.e., the virtual
workspace specification and the input dataset for the ex-
ecution, that will maximize the accuracy of the model
learned from previous runs of the application. Further
details on active learning algorithms are in [21].

JAWS provides an ideal environment for NIMO to ap-
ply active learning techniques to learn application per-
formance models. Explicit resource control in JAWS
through the resource control plane enables NIMO to ob-
tain a desired workspace configuration, e.g., JAWS can
easily configure a virtual workspace for NIMO with a
specific CPU and memory configuration. Since JAWS
configures such workspaces in a matter of seconds, it en-
ables NIMO to collect a vast set of training data samples
simultaneously and with ease.

In prior work, NIMO used physical resources to col-
lect the training sample data to learn the performance
models. With physical resources, the data collection re-

5

Application Description
CardioWave [16] Cardiac electrophysiology simulation (MPI)
BLAST [2] Search genomic dataset for matches on proteins and nucleotides
NAMD [15] Simulation of large biomolecular systems (MPI)
Terraflow [23] Computes flow routing and flow accumulation on massive grid-based terrains

Table 1: Applications submitted to JAWS.

quired a tedious and time consuming set up of physical
machines with varying CPU, memory, network, and stor-
age configurations. Moreover, the range of configurations
was also limited by the available diversity and the num-
ber of physical resources. It took a month to learn and
validate the performance models for the applications dis-
cussed in Section 4.3.

In this work, NIMO uses JAWS to collect the
model training data. Since JAWS can configure virtual
workspaces with strict limits on resource usage, it enables
NIMO to request a range of resource configurations to
collect sufficient training data for learning accurate mod-
els. Using JAWS, NIMO accomplished the model learn-
ing and validation within a day.

4.2 JAWS interaction with NIMO

To determine the resource specifications for a virtual
workspace, JAWS queries NIMO for the application per-
formance model. NIMO answers such queries by ei-
ther returning the model, or suggesting a new virtual
workspace specification within which the job must run.
Figure 3 illustrates both alternatives:

• Exploit model- NIMO returns learned models to
JAWS. JAWS uses the model to determine the vir-
tual workspace specification within which to run
the job. However, if NIMO chooses to return
the model before an accurate model is ready, the
model exploitation may result in an inefficient vir-
tual workspace specification for the job.

• Explore model- In the absence of application per-
formance model or if the model is still inaccurate,
NIMO returns a virtual workspace specification to
JAWS and collects proactively a new training data
sample for learning the model. However, explo-
ration may result in longer job runtimes and inef-
ficient assignment of resources to the job.

Exploration versus exploitation is a classic dilemma in
active machine learning. Exploration improves the per-
formance model by gathering more training data points
and may ultimately improve job runtimes and resource
efficiency. However, excessive exploration provides di-
minishing returns at a cost: resources may be wasted to
improve performance marginally. NIMO deals with the
exploration versus exploitation dilemma in several ways:

• In addition to requesting virtual workspaces for a job
submitted to JAWS by another client, NIMO itself
may become a JAWS client, and proactively request
multiple virtual workspaces with different resource
profiles to run the application. This allows NIMO
to collect quickly the training data samples to con-
verge to an accurate model. To minimize the impact
of these exploration runs on other clients, the job
management policy may assign these requests low
priority in the request queue.

• Since NIMO can monitor job execution, it can com-
pare the model-predicted runtime to the observed
runtime of a job and decide if its models are suf-
ficiently accurate. If NIMO decides that its mod-
els need to be refined, it can re-enter the exploration
phase to collect more sample points.

• The frequency of job submissions for a given appli-
cation may help determine the right balance between
exploration and exploitation; for instance, NIMO
may decide to do extensive exploration for an ap-
plication that is run thousands of times as opposed
to one that is only run a few times.

4.3 Initial Results

Our initial results show that instantiating one (or more)
VMs for a job is practical for common job lengths. Our
prototype testbed consists of 72 IBM x335 rackmount
servers with 2.8Ghz Intel Xeon processors and 1GB of
memory each running Xen 3.0.4. VMs use a flash-cloned
root filesystem from a Network Appliance FAS3020 filer
connected via iSCSI. In total, it takes 12 seconds to flash-
clone a root image and bring up (e.g., login via ssh) a new
VM.

We use JAWS to execute streams of jobs drawn from
a mix of three bio-medical and one GIS application. Ta-
ble 1 describes the applications. We present some key re-
sults that demonstrate that : (a) informed provisioning of
virtual workspaces can enable efficient use of resources
in the resource control plane; and (b) using active learn-
ing NIMO learns accurate application models.

Figure 4 shows BLAST’s runtime for different vir-
tual workspaces, comprised of a single VM, with a dif-
ferent CPU and memory allotments. The figure shows
that there exists a CPU and memory threshold that re-

6

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60 70 80 90 100

bl
as

t’s
 R

un
tim

e
(s

ec
)

 Xen’s Cpu Share (%)

Memory=100
Memory=200
Memory=300
Memory=400
Memory=500
Memory=600
Memory=700
Memory=800
Memory=900

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500 600 700 800 900

bl
as

t’s
 R

un
tim

e
(s

ec
)

 Xen Mem Share (MB)

CPU=10
CPU=20
CPU=30
CPU=40
CPU=50
CPU=60
CPU=70
CPU=80
CPU=90

CPU=100

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500

 10 20 30 40 50 60 70 80 90 100 100
 200

 300
 400

 500
 600

 700
 800

 900
 0

 500
 1000
 1500
 2000
 2500
 3000
 3500

blast’s
 Runtime (sec)

 Xen’s CPU
 Share (%)

 Xen’s Mem
 Share (MB)

blast’s
 Runtime (sec)

Figure 4: BLAST’s runtime for different virtual workspace sizes. Allocating more than 300-400 MB of memory, and 60-70% CPU
share does not improve BLAST’s runtime. NIMO active learning automatically learns models that predict such knees, allowing
efficient and effective assignment of resources.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 6 8 10 12 14 16

 M
ea

n
A

bs
ol

ut
e

P
er

ce
nt

ag
e

E
rr

or
(R

un
tim

e
P

re
di

ct
io

n)

 Num Training Sample

blast
namd

cardiowave
terraflow

Figure 5: Accuracy of NIMO models. Using active learning
NIMO quickly converges to accurate performance models with
a small number of training samples.

sult in diminishing improvements to BLAST’s comple-
tion time. The point of diminishing returns occurs at the
knee of the curve: allocating resources past the knee re-
sults in resource waste since job runtime is unaffected.
Prior knowledge of such knees enables multiple jobs to
be collocated on the same physical host without affecting
the runtime of either. The other applications from Table 1
show similar behavior. NIMO learns application models
that can predict such knees.

Figure 5 shows the accuracy of the application mod-
els learned by NIMO. The models predict the runtime
of an application as a function of CPU, and memory
shares assigned to it. 10 CPU× 9 memory configurations
comprise the total number of virtual workspaces. NIMO
uses active learning to collect the relevant training data
samples by running the application within a few virtual
workspaces. The accuracy of the model is evaluated on
all virtual workspaces that are not used for training. The
details of active learning algorithms, and model accuracy
evaluation methodology can be found in [21]. The figure
shows that NIMO can learn a fairly accurate performance
model with a few training sample runs. Of course, the
number of samples will increase as the number of param-

eters that affect the job runtime increase. However, ac-
tive learning systematically explores the parameter space,
collects the relevant training samples, and enables con-
vergence to accurate models quickly.

5 Related Work
Multiple groups have proposed using virtual machines

for running jobs in the grid and other HPC settings [5, 7,
11, 20]. Most previous work with virtual machines in the
grid has focused on the infrastructure required to support
grid-type job execution environments [12, 19]. There has
also been work aimed at enabling virtual workspaces to
isolate grid applications from both other applications as
well as custom execution environments [6, 11].

Some effort has been made to build clusters of virtual
machines, but such work has largely been focused on vir-
tualizing the network layer [22], for example, to enable
transparent migration [10]. The resource control offered
by VMs can be utilized by batch computing systems. For
instance, collocation decisions may be made to increase
the utilization of underutilized servers.

6 Conclusion
This paper proposes to factor resource control out of

traditional batch scheduling services into a resource con-
trol layer called underware. Underware makes it possible
to share a common pool of federated resources among
multiple services. We present a new batch computing
service, called JAWS, that uses the underware control
plane to execute jobs within customized isolated virtual
workspaces. We detail the advantages of separating re-
source management and job management and demon-
strate using the control exposed by underware for active
learning of application performance models in JAWS.
Initial results show that the JAWS approach is promis-
ing: VM overheads are modest compared to common job
lengths, applications have knees where increasing a re-
source allotment does not improve job runtime, and ac-
tive learning on VMs can be fast and effective.

Future work includes study of end-to-end scheduling

7

of jobs using NIMO’s performance models to improve ef-
ficiency through model-guided collocation. This requires
balancing the exploitation and exploration tradeoff. We
are also investigating model-uses for “minimal impact”
deadline scheduling as described in Section 4.

References
[1] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat. PlanetLab

Application Management Using Plush.ACM Operating Systems
Review (SIGOPS-OSR), 40(1), January 2006.

[2] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, and D. Lipman. Gapped BLAST and PSI-BLAST: A
New Generation of Protein Database Search Programs.Nucleic
Acids Research, 25:3389–3402, 1997.

[3] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Spren-
kle. Dynamic Virtual Clusters in a Grid Site Manager. InProceed-
ings of the Twelfth International Symposium on High Performance
Distributed Computing (HPDC), June 2003.

[4] V. Fedorov. Theory of Optimal Experiments. Academic Press,
1972.

[5] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes. A Case For Grid
Computing On Virtual Machines. InProceedings of the Twenty-
third International Conference on Distributed Computing Systems
(ICDCS), May 2003.

[6] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor, and
X. Zhang. Virtual Clusters for Grid Communities. InProceedings
of the Sixth International Symposium on Cluster Computing and
Grid (CCGRID), May 2006.

[7] W. Huangy, J. Liuz, B. Abaliz, and D. K. Panda. A Case for High
Performance Computing with Virtual Machines. InProceedings
of the 20th ACM International Conference on Supercomputing
(ICS), June 2006.

[8] D. Irwin, J. S. Chase, L. Grit, A. Yumerefendi, D. Becker,and
K. G. Yocum. Sharing Networked Resources with Brokered
Leases. InProceedings of the USENIX Technical Conference,
June 2006.

[9] R. Jain. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. John Wiley & Sons, May 1991.

[10] X. Jiang and D. Xu. Violin: Virtual Internetworking on Overlay
Infrastructure. InProceedings of the Third International Sym-
posium on Parallel and Distributed Processing and Applications
(ISPA), July 2003.

[11] K. Keahey, K. Doering, and I. Foster. From Sandbox to Play-
ground: Dynamic Virtual Environments in the Grid. InPro-
ceedings of the Fifth International Workshop in Grid Computing
(Grid), November 2004.

[12] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J.
Figueiredo. VMPlants: Providing and Managing Virtual Ma-
chine Execution Environments for Grid Computing. InProceed-
ings of the Seventeenth Annual Supercomputing Conference (SC),
November 2004.

[13] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely. Are user
runtime estimates inherently inaccurate? InProceedings of the
Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP), June 2004.

[14] B. Lin and P. A. Dinda. VSched: Mixing Batch and Interactive
Virtual Machines Using Periodic Real-time Scheduling. InPro-
ceedings of the Eighteenth Annual Supercomputing Conference
(SC), November 2005.

[15] J. C. Phillips, R. Braun, et al. Scalable Molecular Dynamics with
NAMD. Journal of Computational Chemistry, 26:1781–1802,
2005.

[16] J. Pormann, J. Board, D. Rose, and C. Henriquez. Large-Scale
Modeling of Cardiac Electrophysiology. InProceedings of Com-
puters in Cardiology, September 2002.

[17] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A. Yumerefendi,
and J. Chase. Toward a Doctrine of Containment: Grid Hosting
with Adaptive Resource Control. InProceedings of the Nineteenth
Annual Supercomputing (SC), November 2006.

[18] E. Robinson and D. J. DeWitt. Turning Cluster Management into
Data Management: A System Overview. InProceedings of the
Third Biennial Conference on Innovative Data Systems Research
(CIDR), January 2007.

[19] P. Ruth, X. Jiang, D. Xu, and S. Goasguen. Virtual Distributed
Environments in a Shared Infrastructure. InComputer, May 2005.

[20] S. Santhanam, P. Elango, A. Arpaci-Dusseau, and M. Livny. De-
ploying Virtual Machines as Sandboxes for the Grid. InProceed-
ings of the Second Workshop on Real, Large Distributed Systems
(WORLDS), December 2005.

[21] P. Shivam, S. Babu, and J. Chase. Active and Accelerated
Learning of Cost Models for Optimizing Scientific Applications.
In Proceedings of the International Conference on Very Large
Databases (VLDB), September 2006.

[22] A. Sundararaj and P. Dinda. Towards Virtual Networks for Virtual
Machine Grid Computing. InProceedings of the Third USENIX
Virtual Machine Technology Symposium (VM), May 2004.

[23] L. Toma, R. Wickremesinghe, L. Arge, J. S. Chase, J. S. Vit-
ter, P. N. Halpin, and D. Urban. Flow computation on massive
grids. In Proceedings of the ACM Symposium on Advances in
Geographic Information Systems, November 2001.

8

