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ABSTRACT
Heating, ventilation, and air conditioning (HVAC) systems account
for over 50% of the energy consumed by commercial buildings.
While “smart” HVAC technologies, such as learning thermostats,
are widely available for residential use, commercial buildings typi-
cally rely on legacy systems that are difficult to upgrade and require
facility managers to manually set HVAC schedules. In this paper,
we propose a novel Machine Learning-driven technique to automat-
ically learn custom occupancy-based HVAC schedules for buildings
across a large campus. While our technique is compatible with any
occupancy sensor, we leverage the existing wireless networking
infrastructure that is omnipresent across any modern campus. We
analyze building WiFi activity, specifically from smartphones, to in-
fer detailed spatial occupancy patterns in each building, and present
an algorithm that learns from these patterns to derive a custom
HVAC schedule. Our approach is adaptive and dynamically adjusts
its schedules as occupancy patterns change, much like a learning
thermostat. To evaluate our techniques, we analyze data from sev-
eral thousand WiFi access points deployed in 112 office buildings
on a university campus. Our analysis reveals significant differences
in occupancy patterns across and within buildings, motivating
the need for our adaptive learning-based approach. Compared to
the current static approach, our results demonstrate that learning
HVAC schedules from mobile WiFi activity across the campus can
yield a 37% reduction in waste time, a measure of energy savings,
and a 3% reduction in miss time, a measure of user comfort.
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1 INTRODUCTION
Buildings consume nearly 40% of the energy and over 70% of the
electricity in advanced economies. The dominant component of a
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building’s energy usage, accounting for more than 50%, is its Heat-
ing, Ventilation, and Air Conditioning (HVAC) system. In recent
years, there has been significant work in the research community
and industry to optimize HVAC energy usage in buildings. For ex-
ample, smart thermostats [12, 17] use sensors to track occupancy
patterns within a home, and then analyze these patterns to auto-
matically learn and program a thermostat schedule. Many smart
thermostats are now commercially-available for residential use, in-
cluding the Honeywell Lyric [18], Nest [21], and Ecobee [8]. These
smart thermostats eliminate the need for users to manually operate
or program their thermostats to save energy.

Prior work on smart thermostats has primarily focused on resi-
dential spaces, i.e., homes, with simple HVAC systems and only a
few (often one) thermostats. In contrast, there has been much less
attention on optimizing HVAC systems for commercial buildings,
which in aggregate consume nearly as much energy as the resi-
dential sector. The lack of work is due, in part, to the complexity
of commercial HVAC systems in large buildings, which often use
custom equipment with limited interfaces that are not easily up-
graded. These systems are also inherently unique: they are designed
for each building’s specific characteristics, and include sensor and
control points deployed at custom locations. Thus, upgrading these
systems requires more than simply installing a few new thermostats.
Given this complexity, the interface to these commercial HVAC
systems is typically narrow, enabling facility managers the ability
to statically program a building’s daily HVAC schedule based on
expected work patterns, e.g., 9 AM - 5 PM on weekdays. Unlike
residential HVAC systems with smart thermostats, commercial sys-
tems often do not expose a rich programmatic interface accessible
by third-party software.

While facility managers may account for weekends and holidays
in setting schedules, once set, they rarely change them. Further,
while some rooms may have their own thermostat that permits
local occupant control, users cannot control or change the facility
manager’s schedule. As a result, these static ad hoc HVAC sched-
ules are often not aligned with building occupancy, which changes
temporally and spatially. For example, occupancy patterns may
differ across floors, reducing the effectiveness of using a single
schedule for the entire building. In addition, per-building and per-
floor occupancy patterns may change over time and across sea-
sons. While there has been some prior work in occupancy-driven
HVAC control [1, 2, 4] it is not applicable to the vast majority of
commercial buildings that use schedule-based HVAC control that
requires setting a repeating schedule. Further occupancy-driven
control often requires deploying additional occupancy sensors in
each building [5, 9], which is not trivial at campus scale.
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To address the problem, we propose scalable, data-driven tech-
niques to infer custom HVAC schedules for office buildings across
a large campus. Our techniques automatically analyze occupancy
information to learn HVAC schedules that optimize for repeating
occupancy patterns. Our system, called iSchedule, is designed to
operate with most modern building management systems that em-
ploy schedule-based HVAC control. Our system currently leverages
the existing wireless networking infrastructure that is omnipresent
across any modern campus. Similar to prior work on occupancy
detection from soft sensors [3, 4, 11], we analyze building WiFi
activity, specifically from smartphones, to infer detailed spatial
occupancy patterns across the campus, and present an algorithm
that learns from these patterns to derive an “optimal” HVAC sched-
ule for each building. Facility managers can either set the derived
HVAC schedule manually, or, for those systems with a program-
matic interface, use software to dynamically set the schedule. In
designing our system, we make the following contributions.
Campus-scale Analysis: We analyze anonymous WiFi activity
logs from 4674 access points deployed in over 112 buildings of
various ages and types on a university campus. We show that occu-
pancy patterns vary considerably both across types of buildings (e.g.
academic department, dormitory, dining hall, library, gymnasium,
etc), within a building (floors and rooms), and seasons. Our study
motivates the need for an adaptive learning-based approach due
to the complexity of manually setting and tuning HVAC schedules
for a large building, or a group of campus buildings.
Machine Learning-based HVAC Scheduling: We present a
machine learning-based approach based on an ensemble gradient
boosting regressor that predicts occupancy for each floor or zone
of a building based on observed WiFi activity. This predicted occu-
pancy is used to derive an optimal HVAC schedule for each floor
or zone of a building. Although we use WiFi activity as a proxy for
occupancy, our approach is easily adapted to occupancy data from
other types of sensors. Since occupancy patterns within a building
may change over time, our technique is capable of continuously
learning new occupancy patterns as they are observed and then
making dynamic scheduling adjustments to compensate.
Implementation and Evaluation: We conduct a detailed exper-
imental evaluation of iSchedule using WiFi data from 112 campus
buildings to demonstrate that our system can learn schedules that
closely follow the observed occupancy patterns in a diverse set of
buildings on our campus. We show that our approach is able to
reduce waste times by 37% and miss times by 3% across buildings,
which reduce energy waste and increase user comfort. Our experi-
ments also demonstrate the ability of our techniques to dynamically
detect changes in occupancy patterns and make appropriate adjust-
ments to the HVAC schedule for each building.

2 BACKGROUND AND PROBLEM
Our work focuses on commercial and office buildings located on an
organization’s campus. Each building’s heating and cooling are con-
trolled by a commercial HVAC system. Unlike a residential HVAC
system, which is controlled by a thermostat, a commercial HVAC
system is typically controlled through a Building Management Sys-
tem (BMS). The building’s facility manager interacts with the BMS
to set a heating and cooling schedule and temperature setpoints: this
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Figure 1: Schedule- versus Occupancy-based HVAC Control
schedule specifies when the HVAC equipment should be turned on
over the course of a day and the temperature setpoints for the high
and low occupancy periods. The BMS then automatically operates
the building’s HVAC equipment based on the specified schedule, a
process we refer to as schedule-based HVAC control.

The schedule is typically determined based on the facility man-
ager’s intuitive understanding of the building’s occupancy patterns.
For instance, in a typical office environment, employees may arrive
between 8 am and 9 am and leave for home between 4 pm and 5
pm, and the building may be lightly occupied during non-business
hours or on weekends. In this example, the facility manager may
program the BMS to heat or cool the building between 8am to
6pm and use a higher cooling or lower heating temperature during
the other off-peak hours. Doing so, ensures users are comfortable
when the building is highly occupied while saving energy when it
is largely unoccupied.

Modern BMS systems enable a different schedule to be set in
different parts of a building—e.g., a different schedule on different
floors—if the per-floor occupancy patterns differ. However, to fully
exploit this functionality, a facility manager needs to determine
fine-grain schedules for different parts of a building, and dynam-
ically fine-tune it as occupancy patterns change over time. Such
manual operation is cumbersome and error-prone and does not
scale across a large campus, where a facility manager may oversee
tens-to-hundreds of buildings. As a result, existing schedule-based
HVAC control tends to be driven by simple, manually-chosen static
schedules, which miss many opportunities for reducing energy use
by carefully exploiting temporal and spatial occupancy differences
within and across campus buildings.

To address these limitations, we argue that the process of deriv-
ing schedules for commercial HVAC systems should be automated.
To do so, we need a system that monitors occupancy patterns in
campus buildings, automatically learns an optimal schedule for
each part of a building based on the observed occupancy, and dy-
namically modifies the schedule as occupancy patterns change.
Such a system should be sufficiently robust to tailor its schedules to
the different types of spatial occupancy patterns seen in different
types of campus buildings, e.g. classrooms, academic units, library,
dining halls, on a university campus. It should also automatically
tailor schedules for temporal variations seen across weekdays and
weekends and across seasons.

Figure 1(a) depicts the architecture of such a schedule-based
HVAC control system—hard or soft sensors are first used to in-
fer occupancy in each building. Occupancy data is then “mined”
to extract repeating patterns, from which an “optimal” schedule
is learned and fed to the BMS for schedule-based control of the
commercial HVAC system.
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An essential first step in such a learning-based system is to derive
occupancy, which captures how many people are present in each
part of a building and at what times. Hard sensors such as motion or
door sensors can be used to track occupancywithin each building [1,
2, 6, 22, 25]. However, such instrumentation is not ubiquitous in
office buildings and can be expensive and laborious to install in
existing buildings. Researchers have shown that occupancy can
also be learned through “soft sensors” that are already deployed
for other reasons. For example, occupancy can be learned through
swipe card door access systems, calendar software, or through
wireless network activity [11, 19, 20, 26]. Since WiFi infrastructure
is now ubiquitous in offices and campus buildings, our work uses
existing wireless networks rather than requiring hard sensors to
infer occupancy information. Doing so enables easy deployment of
our system in today’s campuses without requiring the expensive
deployment of hard sensors.

Specifically, our work assumes that most occupants carry mobile
smartphones and the presence of a phone in the vicinity of awireless
access point indicates a user (occupant) at that location. We further
assume that the exact location of each access point within a building
is known a priori. Consequently, simply tracking the number of
mobile devices associated with each AP over time is a proxy (“soft
sensor”) for the number of occupants in that part of the building.
We assume the wireless network infrastructure provides a log of
when amobile device connects and disconnects to each access point,
which is then used to count the number of active occupants over
time. To avoid double counting users, only smartphone log entries
are considered and other devices, such as laptops or stationary
devices are filtered out1.

Problem Statement: Given an office campus with multiple build-
ings, anonymized WiFi association and dissociation logs, and the
mappings of the Access Points to specific locations in each building,
our goal is to automatically learn an HVAC schedule that optimizes
user comfort and energy usage on a fine-grain spatial basis and
dynamically adjusts learned schedules when observed occupancy
patterns change.

2.1 Relation to Prior Work
Occupancy monitoring and optimizing HVAC efficiency has re-
ceived significant attention in recent years. This section describes
the differences and specific contributions of our work in relation to
these past efforts.
Occupancy-driven versus schedule-driven HVAC control: Efforts such
as Sentinel and others [1, 2, 4] have shown how occupancy sensors
can directly control HVAC systems. The basic approach, depicted
in Figure1(b), uses observed periods of high and low occupancy to
directly control HVAC systems and save energy during off-peak
periods. This approach, while novel, is not compatible with most
existing BMSs that employ schedule-driven control (Figure 1(a)). In
the latter approach, occupancy data is first used to learn a repeating
schedule, which then is then set in the BMS to control the HVAC
system. Thus, occupancy information only indirectly, rather than
directly, influences HVAC operation.

1Note that the system only needs to count the number of active devices at an AP and
does not need to track individual users—identifiable information such as device MAC
addresses can thus be anonymized.

While direct occupancy-driven control approaches may be ap-
propriate for buildings with local (e.g., room-specific) HVAC units
[13], they are not viable for the majority of centralized commercial
HVACs controlled through BMS schedules. In addition, given their
experience with schedule-based control, many facility managers
may be uncomfortable with ceding direct HVAC control to software.
Thus, by deriving repeating occupancy-based schedules, we enable
facility managers to retain some control over HVAC usage.
Residential versus Commercial: In residential settings, efforts such
as smart thermostat [17], iProgram [12], as well as products such
as Nest, Ecobee, and Lyric, have been used to improve HVAC
energy-efficiency. Such smart thermostats, as well as all “dumb” pro-
grammable thermostats, use schedule-based HVAC control, where
occupancy information (from onboard sensors, phone GPS, or even
electricity meters [12]) is analyzed to automatically learn a cus-
tom schedule. Occupancy sensors may occasionally turn on “away”
mode, but they do not exercise direct control. User feedback has
also been used to optimize HVAC use [10, 16]. While homes need
only binary temporal occupancy larger commercial buildings need
spatial occupancy data. Thus, our work can be seen as analogous
to these residential efforts but applied to commercial buildings—a
more complex problem.
Inferring Occupancy: There has been significant work in deriving
occupancy information both for residential and office buildings.
Prior work on deriving occupancy information falls into three cat-
egories: (i) design of novel occupancy sensors, (ii) use of existing
soft sensors [24], and (iii) use of energy analytic methods to learn
occupancy [2, 6, 7, 9, 10, 14–16, 20, 23]. However, most approaches
only derive occupancy and do not apply it for HVAC control. As
shown in Figure 1(a), deriving occupancy data is only a necessary
first step for smart HVAC control and is not sufficient for addressing
the broader control problem. One closely related technique com-
bines soft sensing with HVAC scheduling [3]; human occupancy
is sensed by monitoring human-induced HVAC heat loading and
is used as feedback to modify an existing schedule. While our sys-
tem, iSchedule, also derives HVAC schedules, it instead leverages
WiFi-based soft sensors for predicting occupancy. WiFi-based soft
sensors can more explicitly derive occupancy counts since there is
a direct mapping between numbers of device associations and num-
bers of occupants. In contrast, our system is easily deployed across
an entire campus rather than relying on more specific feedback
from advanced HVAC functionality, which could be limited to more
recently constructed buildings with newer HVAC units. Further-
more, HVAC-based soft sensors can only operate at the granularity
of already defined zones; WiFi access points are typically deployed
at a higher spatial density, enabling a building manager with data
needed to potentially redefine zones in the future.

3 CAMPUS-SCALE ANALYSIS OF BUILDING
OCCUPANCY

A key hypothesis of our work is that occupancy patterns often
vary spatially within a building (across floors and zones) and across
building types, and temporally across days and seasons.

To validate this hypothesis, we analyzed occupancy patterns
across all buildings on our university campus over several months.
WiFi connectivity is ubiquitous on our campus—4674 access points
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Figure 2: Normalized occupancy across campus buildings.

are deployed in 112 campus buildings. We gathered anonymous
WiFi association and disassociation logs for all 4674 APs over a
6 month period ranging from the beginning of Fall to the end of
Spring; we included intervals when campus was closed (winter and
spring breaks). The mapping of each AP to a building and a specific
floor within that building is maintained by our campus IT office,
which enabled us to analyze the number of active WiFi users in
each building and each floor over the course of the day. We used the
number of active smartphone users as a proxy for actual occupancy—
a reasonable assumption due to the ubiquity of smartphones today.
Due to the scale of our campus level analysis we use occupation
computed by counting WiFi devices as our ground truth when
evaluating the efficiency of various schedules; this technique has
been demonstrated to be sufficiently accurate in prior work [4].

Impact of Building Type: Figure 2 shows the mean weekday oc-
cupancy for different hours of the day for several different build-
ings on our campus. Specifically, the figure shows occupancy for
an academic department, a classroom building, an administrative
building, a research lab and a dining hall. To ensure comparison
across buildings, normalized occupancy is shown and we assume
for our discussion here that a building is occupied whenever oc-
cupancy levels are more than 20% of the peak, while a building is
considered unoccupied if levels are less than 20%.

The figure shows that occupancy patterns vary significantly by
building type. The administrative building shows an 8am-5pm occu-
pancy pattern. The academic building, which has student labs/offices
has higher evening use as well and shows an 8am-8pm pattern. The
occupancy patterns of the classroom building closely follow the lec-
ture schedule. The research labs show a 9am-7pm schedule, while
dining halls have peak occupancy during meal hours (e.g., breakfast,
lunch and dinner hours). These results show that HVAC schedules
need to be aligned with occupancy patterns and building type. The
occupancy will vary depending on how the building is used.

Spatial Differences Within Buildings: Next we analyze whether
different parts of a building can exhibit different occupancy pat-
terns and by how much. Our analysis of the 112 buildings showed
that buildings do exhibit spatial differences in occupancy patterns.
This is illustrated in Figure 3, where Figures 3(a) and 3(b) depict
occupancy patterns of two buildings on our campus - an academic
department and the library. In Figure 3(a), the academic building
has one floor comprising of administrative staff, offices, and class-
rooms, while two other floors comprise faculty offices and research
labs. Not surprisingly, occupancy patterns for the floor with staff
offices and classrooms is markedly different than those of floors
with faculty offices and research labs.
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Figure 3: Spatial differences in occupancy inside an aca-
demic and library building.
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Figure 4: Library Occupancy depicted as a heatmap on a
Tuesday from10:00 - 11:00AMshows the differences in occu-
pancy across and within two different floors and motivates
the use of unique schedules for different floors and zones.

Similarly, the different floors of our campus library house dif-
ferent functions, as shown in Figure 3(b). One floor consists of the
learning commons (LC) that are open 24×7 with student study desks
and small breakout rooms for group study. Other floors contain
library staff offices (LO), Quiet Study Area (QSA), Resource Center
(RC) and checkout desks (Cafe/SC) or aisles of books (BS). As a
result, we see very different patterns for these floors.

Finally, we show how occupancy across zones within a given
floor of a library differ in Figure 4. In this figure, normalized occu-
pancy is represented as a heatmap and demonstrates how different
floors within a building can see different occupancy patterns. In
these plots, we show the occupancy of the first and fifth floors
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from 10:00 - 11:00 AM on a Tuesday. We note that the top left side
of floor 1 (panel a) has a study area that is crowded, while the
lower side of floor 1, which has a cafe is less occupied. On Floor
5 (panel b) we see the study areas are occupied but with different
occupancy percentage. Zone-based scheduling can further optimize
HVAC usage – the top-left portion of Floor 1 has more than 10%
occupancy from 9:00 AM - 11:45 PM on the day the heatmap was
plotted, while the bottom portion of Floor 1 was more than 10%
occupied from 9:30 AM - 5:45 PM. In contrast, the bottom right
region of floor 5 sees similar occupancy levels from 9:00 AM - 7:00
PM, while the top most region was occupied from 9:45 AM - 5:15
PM. These observations all motivate the ability to set independent
HVAC schedules across both floors and zones.

Overall, our results show that whenever a single building has
different types of occupants or houses different types of users in
different floors, spatial occupancy patterns will vary.
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Figure 5: Weekday versus weekend occupancy within a re-
search lab building, gymnasium and a dining hall.
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Figure 6: a) Occupancy of the first floor of a classroom build-
ing during different days of the week b) Occupancy of a stu-
dent research lab during Spring, Fall and Spring Break

Temporal Variations: The previous results analyzed spatial occu-
pancy patterns across different types of buildings on a campus and
also within a building. Next, we analyze how occupancy patterns
vary on a temporal basis over the course of a week and across
seasons. Figure 5(a) depicts the normalized occupancy patterns
seen in a research lab building, a gymnasium, and a dining hall on
a weekday, while Figure 5(b) depicts occupancy patterns for the
same buildings on a weekend. Not surprisingly, weekend patterns
vary from weekday occupancy; the research lab building sees low
weekend occupancy, the gymnasium sees occupancy at different
hours on the weekend, while the dining halls see a later “start” to
the day on weekends.

Figure 6(a) shows changes in occupancy patterns over the course
of a week for the same building on a particular floor. Since this is
a classroom building containing a series of lecture halls, the occu-
pancy patterns are highly correlated to lecture schedules, which

vary by the day of the week. Finally, Figure 6(b) shows the oc-
cupancy patterns of a research lab in the Fall, Spring, and Spring
break. Note that there are seasonal differences in the Fall and Spring
semester. Unsurprisingly, we see lower occupancy during breaks
when compared to occupancy observed during Fall and Spring.

Due to space constraints, this section depicts only a summary
of key results from an extensive analysis of 112 buildings. These
results collectively validate our hypothesis that there can be signif-
icant differences in occupancy patterns within a building, across
buildings, and that the occupancy patterns can change over longer
periods (e.g. seasons).

4 LEARNING HVAC SCHEDULES
In this section, we describe iSchedule’s data-driven learning algo-
rithm that automatically learns HVAC schedules from occupancy
data across campus buildings.

We assume that our system receives a raw log of smartphone as-
sociation and disassociation information to each access point in the
wireless network. Practically every commercial enterprise wireless
network product routinely logs such information (e.g. Cisco, HP
Aruba). The location of each access point within each building is
assumed to be known.2 Given this data, iSchedule learns schedules
as follows:
Step 1: Compute Temporal Occupancy Per Access Point
Our system processes the raw WiFi logs to partition the logs on
a per-access point basis. It then computes the number of active
devices (i.e. users) connected to the AP in each time interval. This
is done by incrementing the number of active users upon each new
device association and decreasing it for each disassociation event.
Doing so yields the number of active users in the vicinity of that
AP during each time interval (e.g., every 15 minutes or hourly) over
the duration of the log.
Step 2: Derive Spatial Occupancy within a Building
Since the location of each AP in a building is known, we can group
all AP’s spatially to obtain observed occupancy within each part of
a building. Any spatial grouping can be chosen (depending on how
fine-grain the HVAC control can be). The default grouping is on a
per-floor basis—by aggregating the temporal occupancy seen by all
APs on each floor, we obtain the number of users that are present
on that floor in each time interval over the duration of the WiFi
log. This yields a spatial distribution of users across the building
and the change in spatial occupancy over time.
Step 3: Use Predictive Model to Infer Floor/Zone Occupancy
Next, our system predicts the occupancy of each floor/zone. We use
a supervised training technique to predict occupancy. A Gradient
Boosting Regressor Ensemble model is trained using the occupancy
data computed in the previous step. In the case of university campus
buildings, the following features are a strong indicator of occupancy
and form our feature set: (i) building name, (ii) building floor or
spatial region, (iii) day of the week, (iv) time interval (e.g. hour of
day or a 15 minute interval , 9:00 AM to 9:15 AM, etc), (v) semester
of the year (vi) month, (vii) holiday and (viii) year. The floor/zone
occupancy forms the label set.

2Since a user may own multiple mobile devices, we avoid double counting by only
counting mobile phones connected to an AP and ignoring other device types.
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The first two features capture building-specific information, the
day of the week captures occupancy variations driven by working
versus non-working days, while the time interval captures occu-
pancy at a certain time of that day (e.g. 9:00 AM to 9:15 AM on
Mondays). The semester (spring/fall/summer) captures seasonal
effects, while holidays capture whether classes are currently in
session (e.g. weekends, spring breaks and winter breaks). Note that
most of these features are general and can be applied more broadly
to any commercial building; specific features, such as semester, can
be replaced by a more generic feature, such as the current month.

Our predictive model is based on a regression-based learning ap-
proach, which uses a gradient boosting regressor. We use a boosting
ensemble method that incrementally builds base estimators so that
each sequential estimator is trained to reduce the bias of the earlier
estimators. For the model, we used the least squares regression
loss function, which is optimized by each estimator. For parameter
selection, a 10-fold cross validation technique was used.
Step 4: Classify Intervals as High/Low Occupancy
In this step, our system performs a binary classification of each
time interval as high or low occupancy based on the occupancy
predicted in the previous step. To do so, we first compute a prob-
ability distribution of the number of users observed in each part
of a building ( e.g. probability distribution of users seen on a floor).
We define the maximum occupancy of a floor or zone as the high
percentile of this distribution. Next, we select a threshold value τ ,
that represents a fraction of this maximum occupancy – fractional
occupancies above or below this threshold are marked as high (H)
or low (L) occupancy respectively. This step yields a trace for each
portion of a building where each interval is marked H or L over
the entire duration of the WiFi trace. As an example, if the max
occupancy of a floor is 100 and τ = 10%, then any interval with the
floor occupancy exceeding 10 users is marked H and others marked
L.Parameter τ can be tuned by the facility manager to chose a suit-
able tradeoff between building occupant comfort and energy saving.
If a high value of τ is chosen then the model becomes aggressive by
turning off HVAC equipment more frequently, while a low value
of τ causes the model to become less aggressive and leaves HVAC
equipment on for longer periods.
Step 5: Learning a Schedule from the Predictive Model
In the final step, we derive the actual HVAC schedule. To do so, we
consider all seven days of the week and use the model to predict the
occupancy for each floor of each building for every time interval of a
day. Then, we convert the predicted occupancy in H or L occupancy
periods as described in step 4.

We consolidate each sequence of H periods into a single interval
where the HVAC must be turned on and consolidate each sequence
of L periods into intervals where the HVAC should be turned down.
Smoothing can be used to eliminate small periods of H or L periods.
This yields a schedule, which gives periods for each day of the week
on how the HVAC should be operated on each floor and building
(e.g., turn on HVAC from 8:30 AM-5:45 PM on the 3rd floor of the
library on Monday and again from 8:00 PM-10:00 PM).

Such a schedule is automatically learned and uses the precise
occupancy pattern in each part of a building to compute a custom
schedule for different parts of a building.

5 DYNAMIC ADAPTATION OF LEARNED
SCHEDULES

The previous section described our learning algorithm, which au-
tomatically learns a customized HVAC schedule for each spatial
region of a building based on the occupancy patterns observed in
that region. However, occupancy patterns are not stationary and
will slowly (or abruptly) change over time. These changes in occu-
pancy patterns may occur for a number of reasons: the building or
floor may get re-purposed for a different class of users. For exam-
ple, an academic building may become administrative space with
new types of users moving in or there may be subtle changes in
occupancy patterns with different types of users over time (e.g.,
due to changing of class schedules or different user patterns).

Regardless of the cause, the learned schedules cannot remain
static—they must adapt and evolve with changing occupancy pat-
terns. In other words, once learned, the HVAC schedule must be
dynamically and periodically recomputed and adjusted. The algo-
rithm presented in the previous section can be enhanced in one of
two ways to support adaptation.
Continuous Adaptation: In this method, WiFi activity data is
ingested every day and spatial occupancy observed within each
building during that day is added to the historical trace. The predic-
tive model is re-learned using all data, including the newly ingested
information, and the HVAC schedule (step 5) is re-computed. The
frequency with which the schedule is recomputed is configurable
(e.g., daily, weekly, monthly, etc).
On-demand Adaptation: A limitation of the continuous adapta-
tion approach is that it wastes computational resources when no
significant changes to occupancy are observed, as the model is
re-trained periodically, regardless of whether it is necessary. On-
demand adaptation is an alternate approach that triggers re-training
only when the prediction deviates from observed occupancy.

As before, new WiFi activity data arrives continuously and is
added to the historical data repository. The system then periodically
invokes the previously learned predictive model to predict high
and low occupancy labels for a recent time interval. The model
predictions are compared to the actual occupancy levels observed
in the newly captured WiFi-based occupancy data. If the model
predictions match the observed levels, then the occupancy patterns
are same as before and neither the model nor the HVAC schedules
need to be adjusted. On the other hand, if the recently observed
occupancy levels begin deviating from model predictions, then our
system triggers a re-training of the predictive model and uses the
new model to recompute the HVAC schedules.

Thus, a new model is learned only when needed and only for
those buildings (or parts of a building) where significantly different
occupancy patterns are observed. The threshold error ϵ between
model predicted and actual observations that trigger a re-learning
is configurable: a smaller ϵ triggers more frequent re-computations
and schedule adjustments and vice versa.

5.1 Discussion
Selecting τ : The value of τ can be selected by the facility manager
to choose a suitable tradeoff between building occupant comfort
and energy saving. Since our algorithm learns building occupancy
independent of a particular schedule, our model supports any value
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Figure 7: Accuracy of iSchedule’s learning algorithm.

Building Type Weekday Weekend
Classroom 8:00 AM to 8:00 PM Off

Administrative 8:00 AM to 6:00 PM Off
Academic 8:00 AM to 6:00 PM 10:00 AM to 4:00 PM
Dining 7:00 AM to 10:00 PM 7:00 AM to 10:00 PM

Research Lab 8:00 AM to 7:00 PM 10:00 AM to 4:00 PM
Library 24 hours 8:00 AM to 8:00 PM

Student dorm 24 hours 24 hours
Student Union 8:00 AM to 8:00 PM 10:00 AM to 6:00 PM

Table 1: Statically determined schedules for when theHVAC
should be turned on in different types of buildings

of τ . Selecting high values of τ results in more aggressive schedule
since HVAC is turned off for periods of occupancy lower than the
threshold. Such schedules have a high energy saving but may not
necessarily have high comfort. On the other hand, lower values
of τ results in a non-aggressive schedule. Therefore, we allow this
parameter to be adjusted based on building occupant feedback.
Residential Buildings:While our approachworks well for a broad
range of office buildings, any campus building that sees “residential”
usage requires special handling. Specifically, our technique assumes
that lack ofWiFi activity corresponds to a lack of occupants. In campus
buildings with residential environments such as student dorm or
campus hotel, students or hotel guests sleep at night and, thus, are
present in the environment despite a lack of WiFi activity. Thus,
turning down heating and cooling overnight due to lack of observed
activity will result in incorrect schedules for these buildings. A
simple enhancement can be made to our algorithm by adding a new
binary feature called “Sleeping Zones”. The computed schedules are
then adjusted to keep the HVAC system operational during night
hours (e.g. 11 PM - 6 AM) in all areas marked as sleeping zones.

6 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the efficacy of our
learning-based algorithm and its ability to dynamically adjust sched-
ules based on changing occupancy patterns. We use data from 112
buildings on our university campus for our experimental evaluation.
We compare the schedule derived from iSchedule against those de-
rived fromWiFi-based occupancy and static pre-set schedules. As a
baseline for comparison, we assume the set of static schedules that
are shown in Table 1; these static schedules are based on a facility
manager’s expectation of how different buildings are used.

For the purposes of our evaluation, we use the WiFi occupancy
data and our learning-based algorithm to learn a schedule for
each building and various floors of each building. We compare
the learned schedules, which are based on actual occupancy data,
to the statically chosen schedules, and also quantify whether the
learned schedule yields increased energy savings and user comfort.

Energy savings are computed as the reduction in waste time
(WT) when compared to the static schedule, where waste time is
defined as the duration for which the HVAC system is turned on
even though an area is in a low occupancy period. The increase
in user comfort is computed as the reduction in miss time (MT)
when compared to the static schedule, where miss time is defined
as the duration for which the HVAC system is off while an area is
in a high occupancy period (causing user discomfort). We formally
define waste and miss time in the Appendix.

6.1 Accuracy of our algorithm
In Figure 7(a) we compare the generated HVAC schedule to the
actual occupancy.We see that based on theWiFi occupancy detected
we find the low and high occupancy periods as marked by H or
L Occupancy. This string of H or L Occupancy generated by the
system is then smoothed to remove any short intervals of H or L
and the smoothened HVAC schedule is obtained. We find that the
HVAC schedule generated by iSchedule closely matches the HVAC
schedule generated from WiFi data. Further, Figure 7(b) shows
the model error computed for a wide range of building types for
different values of τ . We trained our model on the historic training
dataset and predicted the HVAC schedule for the next 15 days with
the adaptation feature disabled. The error was computed against
the WiFi building occupancy. We find that our model has a high
accuracy of 95.35% with a coefficient of variation of 3.15%. Finally,
Figure 7(c) shows the error computed for a wide range of building
types for different values of τ for each day of the week. We find
that highest variation in error occurs on Sunday for all values of τ .
Also, for all weekdays the mean error range was 0 - 7% for different
types of buildings and different values of τ .

6.2 Efficacy of Learned Schedules
Table 3 shows weekday and weekend schedules learned for several
different buildings on our campus. These schedules correspond to
the observed occupancy andwe observe several differences between
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Floor Type τ = 5% τ = 10% τ = 15% τ = 20%
Office & Lab 8:00 to 23:59 9:00 to 19:59 9:00 to 18:59 9:00 to 18:29
Faculty Office 9:30 to 19:29 9:30 to 19:29 9:30 to 19:29 9:30 to 18:44

Classroom & Discussion Rooms 7:45 to 22:14 8:00 to 20:59 8:00 to 19:44 8:15 to 19:29
Admin & Lab 7:45 to 22:14 8:45 to 21:14 8:45 to 21:14 8:45 to 18:14

4 AM 8 AM 12 PM 4 PM 8PM 12 AM 4 AM
Time (Hour of the day)

Admin & 
Lab   

Classroom &
 Discussion  

Rooms   

Faculty Office

Office & Lab

Tao = 5%
Tao = 10%
Tao = 15%

Tao = 20%

Table 2: Comparison of Predicted HVAC schedule for each floor of an academic building, derived for τ = 5%,10%,15%,20%.

0 4 8 12 16 20 24
Duty Cycle in Hours
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Dining

Research_Lab

Gymnasium

Library
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Static Preset
Tau = 5%
Tau = 10%
Tau = 15%
Tau = 20%

Figure 8: Duty Cycle of learned weekday HVAC schedules
for different types of buildings for different thresholds.

Building Type Weekday Weekend
Classroom 8:15 AM to 6:14 PM off
Administrative 8:00 AM to 4:44 PM off
Dining 8:30 AM to 9:14 PM 11:15 AM to 7:59 PM
Research lab 8:00AM to 6:59PM off
Library 8:45 AM to 11:59 PM 1:00 PM to 10:59 PM
Student dorm 24 hours 24 hours
Gymnasium 6:45 AM to 11:44 PM 11:15 AM to 7:59 PM

Table 3: Learned weekday and weekendHVAC schedules for
different types of buildings computed with τ = 5%.
the learned schedules and the statically set ones, which demon-
strates the ability of our approach to capture fine grain occupancy
differences. Figure 8 shows the weekday duty cycle for the same set
of buildings, as shown in Table 3, for different values of τ . These
schedules are derived by iSchedule and we observe several differ-
ences between the duty cycles of the learned and static schedules.
The duty cycles for derived schedules are highest for τ = 5% and
are lowest for τ = 20%; as τ increases, the model is more aggressive
in turning off HVAC equipment. We also observe that the duty
cycle of static schedules are highest for non-residential buildings,
which demonstrates that there is energy wastage by conditioning
buildings when occupancy is low.

Building Type Monday Schedules
Classroom 8:29 AM to 6:14 PM

Administrative 7:30 AM to 5:14 PM
Dining 7:45 AM to 9:14 PM

Research Lab 9:45 AM to 6:59 PM
Table 4: Learned HVAC schedules for a Monday.

Next, Table 4 shows the schedules learned for a specific weekday
(Monday) by our algorithm for several types of buildings on our
campus – a threshold of τ = 20% was used to compute these sched-
ules. The table also reveals differences from the static schedules,
which imply that they incur either more waste or miss time.

4 AM 8 AM 12 PM 4 PM 8PM 12 AM 4 AM
Time (Hour of the day)

Learning 
Commons 

Cafe & Self
 Checkout 

Quiet Study
 Area 

Library Office 

Resource 
Center 

Book Stack 

Tao = 5%
Tao = 10%
Tao = 15%
Tao = 20%

Figure 9: Predicted weekday HVAC schedule derived with
different thresholds for a library building with different
types of occupancy on each floor.

Table 2 and Figure 9 show schedules learned for different floors of
an academic building and library. Since there are spatial differences
across floors of each building, a manual schedule that uses a single
schedule for the entire building is sub-optimal. Our approach can
exploit the observed differences in spatial occupancy and choose
different schedules for each floor of a building. We again observe
the floor-specific schedules are in line with observed occupancy
shown in Figure 3.

Handling residential areas on campus: For buildings such as stu-
dent dorms with sleeping residents, our basic algorithm will turn
off the HVAC equipment 12 AM to 8 AM on weekdays and 2 AM to
10 AM on weekends in student dorms due to lack of WiFi activity
in the night. However, our enhanced algorithm can handle sleeping
zones and, as shown in Table 3, leaves HVAC equipment on for 24
hours on weekdays and weekends when the semester is in session,
while reverting to a normal schedule during summer breaks when
the residence halls are vacant.

6.3 Impact on Energy Use and User Comfort
While the previous results highlight the ability of our approach to
automatically derive schedules that closely match observed occu-
pancy, we now quantify the benefits of these derived schedules in
terms of energy saving and user comfort. We vary the threshold τ
that determines the low occupancy period for each building on our
campus and use our algorithm to generate a schedule for that τ . We
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compare the derived schedule to the static schedule and compute
the increased energy savings and user comfort.

Figure 10 depicts the percentage of waste time for the entire
campus (112 buildings) for different days of the week for varying
values of τ (τ = 5%, 10%, 15% and 20%).
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Figure 10: Waste Time and Miss Time

Figure 10(a) shows an increasing reduction in waste time with
increasing value of τ ; the figure depicts the average reduction in
waste time across all 112 campus buildings for different days of
the week. This occurs because, as the threshold τ is increased, our
algorithm is more aggressive in turning off the HVAC equipment via
the learnt schedules at higher levels of occupancy. The percentage
reduction in waste time is around 3-20% for τ = 10% and increases
to 15-37% for τ = 20%.

Figure 10(b) shows the schedules computed by our approach
are also able to increase user comfort, which is achieved by re-
ducing miss times. The figure depicts the average reduction in
miss time across all 112 campus buildings for different days of the
week. Unlike energy savings, user comfort shows a decreasing trend
with increases in τ . This occurs because, with higher τ , the HVAC
equipment is on for fewer hours, which reduces the opportunity
to simultaneously increase user comfort. The average reduction in
miss times is around 17% for τ = 10% and around 9% for τ = 15%.

Together the results show that across 112 buildings with varied
use, automatically learning HVAC schedules using occupancy data
yields energy savings while also providing a more comfortable
ambient environment to users.
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Figure 11: Daily reduction of waste and miss time
(in number of hours) for a selection of campus buildings

Figure 11(a) and (b) show a breakdown of energy saving and com-
fort for different types of building for τ = 10%. The greatest gains are
observed where learned schedules and actual occupancy varies the
most with the static manual schedules. For example, more energy
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Figure 12: Comparison of Schedule derived fromWiFi Occu-
pancy, iSchedule and Static schedule, whereMT isMiss Time
and WT is Waste Time

savings are seen on weekends than weekdays. On weekdays, the
student union building sees the most savings. Classroom buildings
see more savings on Fridays than other days due to a shorter lecture
schedule on Fridays. Dining shows high energy savings on Fridays
and weekends. Administrative buildings show increased comfort
on weekdays, while research labs show an increase in comfort on
weekends by following the dynamic schedule.

Finally, Figure 12(a) depicts the normalized occupancy of one
illustrative campus building on our campus (the student union) on
Friday. As can be seen, the learned schedule is better aligned with
observed occupancy on that day and the ground truth occupancy
derived schedule. Also, we can see that the derived schedule results
in improved user comfort during the evening hours (8 PM-12 AM);
the static schedule turns down the HVAC even though the building
is at 30% occupancy, while the learned schedule keeps the HVAC
system running to maintain comfort for building users. Finally,
figure 12(b) depicts the normalized occupancy of one illustrative
campus building on our campus (Learning Center, with Classrooms)
on Friday – the learned schedule shows substantial savings over a
static schedule by reducing waste time. It shows the energy savings
during the evening hours (where the static schedule keeps heating
or cooling the building later than necessary).

6.4 Efficacy of Dynamic Adjustments
Finally, we evaluate the efficacy of our technique to adjust to dy-
namic changes in occupancy that may occur in a building. We use
WiFi activity data from an academic building and synthetically
modify the trace data to emulate two types of changes. First, we
shift the observed occupancy to earlier hours, which reflects users
arriving to the office earlier than previously observed data. We
study the impact of users arriving 1 hour and 2 hours earlier than
usual and leaving proportionately sooner, as well as the impact of
users arriving 1 - 2 hours later than usual and leaving proportion-
ately later. Second, we swap every Monday and Friday for a set
of different building types to simulate a change in working hours,
since Monday and Friday occupancy patterns are very different.

Figure 13 and Figure 14 depict our results. In Figure 13(a), we
show the change in error for the first 35 days of a building with 2
levels each having a different type of floor occupancy. Level 1 has
an almost stable occupancy schedule due to administrative offices
while Level 2 has a very dynamic occupancy pattern that differs each
day of the week due to the presence of Classrooms and Discussion
Rooms. We observe that Level 1 converges quickly as compared to
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Figure 13: Adaptability of iSchedule’s learning algorithm for change in occupancy pattern.
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Level 2. Also, we see high error in the first week after the change
in occupancy; this triggers re-training of the model each day which
reduces error. The model learns the new occupancy pattern over
time and achieves accuracy improvements by the end of the second
week – this demonstrates the ability of our approach to adapt to
non-transient changes in occupancy patterns for different types
of floor dynamics. This experiment also demonstrates that our
model adapts to occupancy changes for buildings that have nearly
identical occupancy throughout the week or a highly fluctuating
occupancy across each day. Figure 13(b) shows that for varying
values of shift in schedules the model error converges by the end
of week 2 resulting in accuracy of more than 90%. Figure 14 shows
that for the first week the error is highest resulting in a high MT +
WT value and decreases as the model retrains with new data.

Figure 15 depicts how quickly our algorithm can compute HVAC
schedules for two new buildings that lacks historical occupancy
patterns. In particular, we consider a newly built academic building
and research lab.

In this case, as new WiFi data arrives, the model is retrained and
HVAC schedules updated daily. An academic building has multiple
floors and each floor has a varying schedule over weekdays and
weekends, while the research lab has an almost fixed schedule
across weekdays and weekends. As can be seen, our techniques can
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Figure 16: Utility of historic data
still compute schedules with only a few days of occupancy data and
its accuracy improves gradually as more occupancy data becomes
available – 10 to 28 days of data seems to be sufficient to converge
to good schedules, which shows the agility of our technique.

Finally, Figure 16 shows the model accuracy during a change
of semester (start of Spring Break) for a dining hall. The model,
when trained on only five most recent weeks of data, shows lower
accuracy than the model trained on historic data. From the start of
Spring Break, the model trained on historic data has a high accuracy
of the predicted HVAC schedule, whereas the model trained on the
latest 5 weeks of data shows lower accuracy but gradually learns.

7 CONCLUSION
In this paper, we presented a system for campus-scale HVAC sched-
uling using mobile WiFi data. Our campus-scale analysis showed
spatial and temporal variations in occupancy within and across
buildings and motivated the need for an automated approach for
learningHVAC schedules in campus buildings.We presented iSched-
ule’s supervised learning algorithms and show its efficacy and accu-
racy across a large university campus. Our future work will focus
on shifting HVAC schedules to account for a building’s thermal
inertia, predicted weather conditions, and thermal communication
across zones; these optimizations will further improve user comfort
beyond the presented results. We are also implementing fingerprint-
based WiFi occupancy detection to further improve the accuracy
of zone level scheduling.
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APPENDIX
Formal definition of Waste and Miss Time
Formally, we define the miss time and waste time in terms of con-
ditioning period (CP) below for N time periods with normalized
occupancy N(t) for threshold τ .

O (t ) =



0, N(t) < τ ,
1, N(t) ≥ τ .

(1)

CP (t ) =



1, if the zone is conditioned at time t,
0, otherwise.

(2)

Given CP(t), we then define the average daily miss time and
waste time over a time period N , as shown below.

MT =

∑
t
(O (t ) −CP (t ))

N
∀ t where O (t ) = 1 (3)

WT =

∑
t
(CP (t ) −O (t ))

N
∀ t where CP (t ) = 1 (4)
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