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Abstract—Modern Internet of Things (IoT) applications trans-
mit sensor data to the cloud where it is subjected to analytics to
provide useful services to users. Unfortunately, IoT sensor data
often embeds sensitive private information that is vulnerable
to leakage when sent to the cloud. Prior work on preserving
IoT data privacy, particularly in the energy domain, focuses on
obfuscating data to prevent extraction of private information.
However, unless done carefully, data obfuscation significantly
reduces the ability to extract useful but non-private informa-
tion from the data. As a result, these existing techniques also
reduce much of the utility derived from deploying IoT devices.
In this paper, we address this problem by designing RepEL,
a new utility-preserving privacy technique, which intelligently
obfuscates smart energy meter data to prevent leaking a home’s
private occupancy information, while retaining the ability to
perform useful energy disaggregation analytics.

To preserve energy data’s utility, our approach creates a
randomized permutation of actual device usage via load replay
while suppressing private user behavior information (such as
occupancy) in the original data. We implement our algorithm
on an embedded gateway node to demonstrate its feasibility and
empirically evaluate our approach using real energy traces from
homes. Our results show that the privacy leak rate for nearly
two-thirds of the homes is below 10%, with four homes having
no privacy leak. At the same time, the change in device usage
for these homes is less than 3%. Further, we also demonstrate
that RepEL has the flexibility to randomly replay loads, which
can prevent adversaries from inferring behavioral patterns from
device usage or use the information to determine occupancy.

I. INTRODUCTION

Recent advances in embedded systems hardware and wire-
less networking have led to the emergence of the Internet
of Things (IoT) that is increasingly monitoring all aspects of
our lives. Many consumer IoT products are now available for
applications such as smart home automation, smart health, and
others. Current IoT products use a cloud-based architecture,
depicted in Figure 1, where the IoT device sends sensor data
to the cloud, where it is subjected to analytics. Further, as
shown in the figure, users often use a mobile app (or a voice
assistant, such as Alexa) to interact with the cloud service and
send commands to the IoT device via the cloud.

Such a cloud-based architecture for IoT devices, while com-
monplace, raises numerous privacy concerns. Since IoT sensor
data often embeds private information about the user, sending
this data to the cloud service implies the cloud analytics
service now has the ability to extract this private information.
In many cases, the embedded private information is orthogonal
to the original purpose for which the data was collected
by the IoT device, and can result in privacy leakage and

unintended consequences. As an example, consider the privacy
problems that arose when Strava, a popular fitness tracking app
used by runners, published anonymized heat maps of popular
running routes. Even though the data was anonymized by
removing user identities, the location information embedded
in the running routes inadvertently revealed the locations of
secret military bases in remote regions [30]. Studies have
shown that similar privacy leakages can occur from the use of
smart home IoT products [19, 24, 25, 31, 32]. For example,
when users operate their smart lights or smart appliances, the
cloud service can infer a home’s occupancy, i.e., whether it is
occupied or vacant. Researchers [26] have shown that inferring
occupancy is the first step towards launching various types
of sophisticated privacy attacks (see Table I) such as when
residents take vacations, when they eat out at restaurants, etc.

While the issue of IoT privacy has broad applicability
to multiple application domains, in this paper, we focus on
privacy in the domain of smart homes and energy. Maintaining
user privacy in the face of cloud-based IoT services is a
challenging problem. One privacy preserving approach is to
use IoT devices “locally” without using any backend cloud
services. However, this prevents the user from taking advan-
tage of many useful features that cloud analytics services can
provide. For example, such services use sophisticated machine
learning to provide tailored recommendations for making the
home more energy efficient or to identify anomalous energy
usage based on comparisons across peer groups. Users can use
these insights and recommendations to reduce energy waste
and cut their energy bills.

Running such analyses locally is often infeasible due to the
computational needs of these analytics algorithms or the in-
ability of a standalone device to perform comparative analytics
across users. Thus, not sharing IoT data with a cloud backend
implies that the user has to forgo useful insights provided
by these services. Another privacy-preserving approach is
to use data obfuscation where the data is transformed by
adding noise, or other means, prior to sending it to the cloud
service [25, 36]. However, data obfuscation methods are a
blunt instrument that, while enhancing privacy, destroy all
useful information embedded in the data, whether private or
not. As a result, running cloud analytics on this transformed
data will produce erroneous results and is no longer useful to
the user. Thus, traditional privacy-preserving techniques are
often not compatible with cloud-based IoT services.

To address these drawbacks, we argue for a utility-



preserving privacy approach where the data produced by the
IoT device is intelligently transformed to strip out private in-
formation while retaining other useful information embedded
in the data. Such an approach will continue to allow cloud
services to perform analytics that is useful to the user while
preventing “mining” of private information. Figure 2 com-
pares such as an approach to the current (non-private) cloud-
based IoT services and recent privacy preserving methods for
energy data. As shown, current IoT services preserve utility
and sacrifice privacy; privacy-preserving data transformations
based on obfuscations preserve user privacy but destroy utility.
Our approach provides utility to users and respects privacy.
While other recent efforts have examined utility-privacy trade-
offs [14, 16], this prior work has focused on theoretical
issues, such as information theoretic analysis of this tradeoff or
mathematically analyzing the impact of adding noise. Systems
and algorithms for realizing these properties are still a nascent
research topic and a key focus of our work.

We demonstrate the feasibility and efficacy of a systems ap-
proach to utility-preserving privacy by focusing on IoT-based
energy meters that are common in smart homes. Examples
include Sense, Engage, and others [33], all of which monitor
the total electricity usage of the home at a fine granularity
and transmit this data to the cloud for sophisticated energy
analytics. Our approach can enhance the privacy of such
energy devices by suppressing private occupancy information
in the data while preserving the ability of their cloud services
to perform advanced energy analytics.

Our utility-preserving privacy system for energy data, called
RepEL (Replay Energy Loads), uses edge computing for
its utility-preserving energy transformations. Specifically, it
exploits edge nodes such as smart home gateways that are
common in smart homes to interact with the energy meter
for implementing its privacy data transformation algorithm.
Our hypothesis is that by intelligently permuting the usage
patterns of appliances and devices, our system can thwart
timing-based occupancy attacks while retaining key appliance
usage energy information necessary for performing cloud
energy analytics. In designing, implementing and evaluating
our RepEL approach, we make the following contributions.
• We present the problem of utility-preserving privacy in

the energy domain by emphasizing occupancy-based pri-
vacy attacks and disaggregation-based energy analytics.

• We then present RepEL, a utility-preserving privacy algo-
rithm, that transforms energy data in real-time to hide pri-
vate occupancy information while retaining the ability to
perform energy-efficiency analytics. Our technique uses
an edge gateway node and an energy-storage battery to
implement its record and replay privacy transformations.
Further, our algorithm uses Metropolis-Hasting statistical
sampling method to create a device usage schedule based
on any user-specified distribution to mimic a behavioral
usage pattern and reduce privacy leakage.

• Third, we evaluate RepEL using real energy traces and
ground-truth occupancy and show that it can reduce
privacy leakage from energy meters to below 10% for
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Fig. 1: Two-tier architecture of cloud-based IoT devices.

a majority of the homes, while limiting the change in
device usage (i.e., reduction in utility) to less than 3%.

II. BACKGROUND

In this section, we present background on IoT architectures
and data privacy in the energy context.

A. Cloud-based IoT Devices

Today’s IoT devices rely on a two-tier cloud-based archi-
tecture shown in Figure 3, where a device transmits data to
the cloud over the Internet for analytics processing; the two-
tier architecture also provides remote access to the device via
the cloud. This is the basic architecture assumed in our work.
Common IoT-based energy monitoring devices such as Sense
and Engage are designed to track the total energy usage of a
home at the main electric panel employ this architecture.

B. Occupancy-based Privacy attacks

Occupancy of a home or a building indicates when the
building is occupied. The simplest type of occupancy is binary
occupancy that simply indicates whether the home is occupied
at any instant; occupancy can also be numeric and track how
many occupants are present in the building. While binary
occupancy has traditionally been tracked using motion sensors,
studies have shown that such occupancy information can be
easily determined from patterns of energy usage. This is
because when a building is occupied, its occupants perform
chores or activities such as cooking, laundry, watching TV,
turning lights on or off, all of which manifest themselves in
higher electricity usage or higher burstiness in observed usage.
As a result, periods of occupancy and human activities become
strongly correlated with periods of higher energy usage. This
is depicted in Figure 3 which shows high electricity usage
from foreground loads (e.g. water heater and cooking) in the
mornings and evenings when residents are home; background
loads (e.g. fridge) that always runs in the background does not
reveal occupancy.

Researchers have previously studied these correlations be-
tween energy usage and occupancy [3, 13]. By statistically
analyzing the energy data to detect periods of high burstiness
or high usage, these efforts were able to infer occupancy
periods with accuracies of 70 to 90% [8]. While occupancy
information, by itself, seems innocuous, prior research [26] has
shown that it is the first step towards launching more serious
privacy attacks. Table I shows a list of sensitive information
that is inferred once occupancy patterns of home are known
[26]. As noted, private information such as when residents take
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Fig. 2: Privacy-utility comparison of various methods.
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Fig. 3: Energy consumption data reveals periods of occupancy.

Private Question Granularity needed
When do you take vacations? Hourly
Do you eat out in the evenings? Seconds
Were you home during your sick leave? Hourly
Did you watch the game last night? Seconds
Did you leave your child home alone? Seconds
Did you get a good night sleep? Seconds
Do you eat hot or cold breakfast? Seconds

TABLE I: Private questions that can be learnt from occupancy
patterns (see [26]).

vacations (inferred from long unoccupied periods), whether
they eat out in the evenings (inferred from lack of occupancy
and lack cooking activities in the evening), etc., can be learned
once occupancy patterns are known.

C. Disaggregation-based Energy Analytics

Load disaggregation is a form of energy analytics that uses
the total energy usage trace of a building, which is the sum
of the energy usage from individual appliances and loads,
and extracts (“disaggregates”) the individual load usage from
the total usage. The approach, also referred as Non-Intrusive
Load Monitoring (NILM), is possible since each load or device
exhibits a unique energy signature and these patterns manifest
themselves in the total usage when the device is active. This is
shown in Figure 3 where usage patterns from the refrigerator,
water heater, etc., are still visible in the aggregate energy usage
trace. NILM methods exploit these unique energy signatures
to discern those patterns and determine individual load usage
from the total usage using methods ranging from step detection
[15] to FHMM-based machine learning [5, 21, 22].

Disaggregation is usually the first step for performing
more sophisticated energy analytics in the cloud. By itself,
disaggregation reveals a breakdown of energy usage from
various appliances (or groups) as shown in Figure 4. Once
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Fig. 4: Disaggregated usage for a sample home.

this information has been learned, cloud services can perform
more advanced analytics such as anomaly detection to de-
termine if the total usage of the home or the usage in any
disaggregated category is higher than the norm. Anomalies
can also be determined through comparative analytics [17]
where the home’s disaggregated usage is compared with other
peer homes that are also reporting to the cloud to determine
inefficient categories. Such analytics can even provide spe-
cific recommendations on what the homeowner should do to
become more energy-efficient [17] and reduce energy bills.

Note that it is possible to perform load disaggregation
even when the home has a net-metered solar installation. Net
metering causes the electricity meter to record the difference
between the total energy usage and the solar energy pro-
duction, rather than the actual demand, which can confuse
disaggregation algorithms. However, this is easily addressed
by performing solar disaggregation[9], which uses weather-
based models to separate out the actual energy load and
the solar energy generation from the aggregated net-metered
values. The separated output of solar disaggregation can then
be fed to a load disaggregation algorithm to further compute
a breakdown of the energy usage from individual loads.

D. Limitations of Preserving Energy Data Privacy

Prior work on privacy for energy data has not considered
the issue of preserving utility in the data when transforming it
for privacy. This body of work is based on data obfuscation,
a method to alter the energy consumption recorded by the
energy meter to prevent privacy attacks.

One approach, depicted in Figure 5(a) uses an energy
storage battery “behind” the meter. Typically, when a device
is in use, it draws power from the grid and this power draw
is recorded by the energy meter. Some, or all, of the power
draw of this device can be masked by serving it from the
battery. In this case, since the device is effectively powered
by the battery, it does not draw any additional power from
the grid and its usage becomes invisible to the energy meter.
Such a battery-based load smoothing approach, of which Non-
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Fig. 6: Threat model for energy privacy.

Intrusive Load Leveling (NILL) and Lazy Step (LS) [25, 36]
are two examples, smooth out the energy usage patterns seen
by the meter through controlled charging and discharging of
the battery. In doing so, the smoothened energy trace recorded
by the meter no longer reveals high periods of energy use that
are correlated to occupancy periods, but it also removes the
ability to perform disaggregation-based analytics.

The second obfuscation approach, depicted in Figure 5(b),
is based on noise injection [10] and involves randomly turning
a large load on or off to create a noisy energy usage pattern at
the energy meter; the approach in [10] employed an electric
water heater to inject such noise. Since the random noise gets
superimposed onto the actual usage, it prevents occupancy
detection based on analyzing burstiness in the usage but
also prevents load disaggregation. Table II compares existing
privacy preserving methods with our approach.

E. Problem Statement

Given an IoT energy meter that records whole house energy
usage, the goal of our work is to carefully transform the
recorded usage such that cloud-based energy analytics can
still be performed on the data, like before, while preventing
occupancy-based attacks on this data.

III. REPEL: A UTILITY-PRESERVING PRIVACY SYSTEM

In this section, we present the threat model assumed in our
work, followed by the design of our RepEL system.

A. Threat Model

The focus of our work is on IoT data privacy and not
security. Thus, the issue of security of IoT systems where
malicious adversaries steal data by hacking into the system,
while a valid threat, is beyond the scope of our work.

Adversaries. The threat model assumed in our work is illus-
trated in Figure 6. We assume a homeowner who has deployed
an IoT energy meter in their smart home. The smart home is
assumed to contain a smarthome hub or a gateway node with
limited computational capabilities. As shown, the IoT device
and the gateway node are under the control of the homeowner
and the homeowner can deploy any apps or code of their
choice on the gateway (typically, a Raspberry PI-class node).
The IoT energy meter streams recorded data to a cloud server;
data is assumed to be encrypted during transmission. Once the
data reaches the cloud, it is assumed to be under the control
of the cloud service provider. The service provider is allowed
to run any analytics of their choice on this data, and in our
case, represents the adversary.1

As noted in Sec I, we assume it is impractical to run
the energy meter as a local-only device without any cloud
support as a possible privacy solution. This is because the
types of advanced analytics that run in the cloud require
significant computational resources—while it is feasible to
perform simple types of disaggregation analytics locally on
today’s gateway-class nodes, more advanced machine learning
analytics are beyond their computational capabilities. Further
energy analytics that involves peer comparisons inherently
need access to data from multiple devices, which can not be
done locally. Consequently, our threat model assumes that the
cloud provider is a necessary component in our system despite
their ability to perform adversarial privacy attacks on the data.
Attack vectors. We assume that the cloud service provider
will perform disaggregation analytics on the data prior to
performing more advanced energy analytics. Doing so reveals
both the energy usage from individual loads as well as the
timing of when such loads were operated. The total energy
usage pattern as well as the timing information about when
various devices are used in the home then become attack
vectors for learning when the home is occupied and then
using occupancy for more sophisticated attacks (see Table I).
While users may wish to reveal how much energy their loads
are using for disaggregation-based energy analysis, they need
to prevent the adversary from inferring the precise timing of
when these appliances are being used (since doing so reveals
private activity information as well as occupancy). Hence, the
attack vectors considered in our work are (i) inferring binary
occupancy information, and (ii) inferring the timings of when
individual loads are operated within the household.

B. Overview

Next, we describe the intuition behind the RepEL approach.
Our approach relies on a small energy storage battery in
the home (e.g., Tesla Powerwall) and a gateway node that
intelligently controls this battery (see Figure 7). This setup is
identical to the battery-based load smoothing privacy methods
in [25, 36]. Note that, our approach does require a battery
in the home, similar to the privacy methods in [25, 36], and

1The service provider can also share this data with third parties, who then
provide the analytics services, but this distinction is not important to our work.



Technique Noise Load RepEL
Injection [1] Smoothing [10, 25]

No Occupancy Detection 3 3 3
No Activity Detection 3 3 3

Billing 3 3 3
Appliance Usage Period 7 7 3

Building Efficiency Analysis 7 7 3

TABLE II: A comparison of our approach with prior privacy methods for energy.

we believe that batteries, in conjunction with rooftop solar,
will become commonplace in the coming decade. In some
regions of the world such as India and parts of Africa that have
an unreliable electric grid, batteries are already commonplace
in residential homes to provide backup UPS power during
blackouts. Their adoption in countries such as the USA is also
growing since some states such as California are now requiring
mandatory solar installations on all newly-built homes and
providing generous subsidies for energy storage batteries to be
installed as part of the solar system. As batteries become more
commonplace, our approach becomes feasible using existing
equipment with no additional investment.

The basic idea behind RepEL is to permute and randomize
the order in which loads are seen by the energy meter while
retaining all the original usage patterns exhibited by each
individual load. Thus, each device appears in a randomly time-
shifted and permuted order in the energy usage recorded by the
energy meter. Since all device activities in the original data are
still present in the permuted trace, disaggregation-based ana-
lytics continue to see the same information in the transformed
data; however, since timings of device usage are randomized,
timing-based occupancy attacks are no longer feasible. A
consequence of permuting timing information of foreground
loads is that any analytics that directly depends on timing
information is no longer feasible on the transformed data; this
tradeoff is necessary since timing information directly reveals
occupancy and the only way to preserve private occupancy
information is to supress fine-grain timing information through
permutation.

This time-shifting and randomization is performed using
the battery through a record and replay method. When a
device is turned on by the user in the home, RepEL activates
the battery, and all of the power draws of the device is
serviced by the battery. The energy meter does not see the
presence of the device since there is no grid power draw.
Our system records the entire power usage pattern of the
device during its active period (by measuring the current draw
from the battery). It can then replay the recorded pattern
at a later time by charging the battery intelligently so that
the power drawn during charging mimics the power draw of
the recorded device; since the battery charges from the grid,
the meter “sees” the (mimicked) device at a later time. By
recording and then replaying energy patterns of all foreground
loads in a randomized fashion, our system enables energy
analytics but hides the real timing information of when those
loads were actually used in the home. Note that our system
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Fig. 7: Overview of our RepEL architecture.
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replay — in the control algorithm.

leaves background loads unchanged since they does not reveal
occupancy. In summary, our RepEL system modulates the
battery such that it (i) discharges energy to mask foreground
loads when they operate and (ii) charges the battery to replay
foreground loads at a later time.

C. RepEL Control Algorithm

The objective of the control algorithm is to modulate the
battery and preserve both utility and privacy. An empty battery
cannot discharge energy to mask a load. Similarly, a full
battery cannot charge to replay a recorded energy trace. Since
battery sizes are limited, an intelligent control algorithm must
balance the charge and discharge of the battery to preserve
both privacy and utility. Figure 8 illustrates the three key
steps in the RepEL control algorithm: record, schedule, and
replay. In the record step, the operation of the foreground
loads is registered and stored in a database over a user-
defined time window. This forms the basis for replaying load
at a later stage. The schedule step determines the operation



Key (Loads) Value (Watt)
Dryer [[2305, 1807,...],[2106, 1983,...]]
Stove [[1233,1225,...]]

Microwave [[803, 807,...],[798, 801,...],[800, 800, ...]]

TABLE III: Sample values in the key-value store for recording
foreground loads.

schedule of recorded foreground loads to prevent adversaries
from learning any behavior and preserve utility. Here, a user-
specified probability distribution can be leveraged to generate a
schedule for past loads. Finally, in the replay step, the battery’s
state of charge is used to mimic foreground loads to preserve
privacy. Below, we describe each step in detail.

1) Record: RepEL records the energy consumption of a
foreground appliance in a background process each time it is
operated. We define foreground appliance as load that reveals
human activity (e.g., load from a microwave). RepEL records
energy traces as long as the battery continues to discharge
energy to mask the load. The individual energy traces are
captured using APIs exposed by energy meters or by running
an online load identification algorithm [35]. These traces are
stored in a key-value store, where the key represents the load
type, and the values are a list of traces for different device runs.
Table III shows a sample key-value store for a home over a
period of δ = 1 day with a sampling interval of 1 minute.

2) Schedule: At the beginning of each interval δ, RepEL
schedules the load recorded in the previous time window. A
simple approach to schedule loads is to replay energy traces
in random order. However, our approach allows the flexibility
to replay the load from a user-defined distribution to mimic
a phony operational behavior. In this general approach, if
uniform distribution is selected, the scheduler will randomly
replay the loads. However, if a custom distribution (say
bimodal distribution) is selected, the operation time of the
devices will closely mimic this distribution.

To enable a replay schedule using a target distribution P ,
we employ a Markov Chain Monte Carlo (MCMC) sampling
method called Metropolis-Hastings Algorithm that can produce
samples from any distribution. Since a target distribution
may be difficult to sample from, MCMC approximates the
distribution by generating a sequence of random sample values
from a simpler distribution (e.g., uniform), referred to as the
proposal distribution(Q), rejecting/accepting the samples with
an acceptance ratio α. The acceptance ratio α indicates how
probable is the candidate sample with respect to the target
distribution. A higher acceptance ratio α means the sample is
closer to the desired distribution and vice-versa.

Algorithm 1 presents the pseudo-code to generate a replay
start time of loads from a desired target distribution. It takes
as input a target distribution P , start times τ of K loads, and
iteratively approximates the sample distribution. Specifically,
it picks a candidate start time τ ′k of the kth load from the

State of Charge Action
Battery>=50% Replay the smallest available load.
Battery<=50% Replay the largest available load.

Battery==100%
Delay replaying the smallest available load.
After replaying, call schedule step followed
by the replay step.

Battery==0%
Immediately replay the largest available load.
After replaying, call schedule step followed
by the replay step.

TABLE IV: Replay action policies.

proposal distribution and accepts with some probability α.

τ ′k ∼ Q(τ ′k) = Uniform{τ ′k−1, τ ′k+1} ∀k ∈ K (1)

where τ ′0 = 0 and τ ′k+1 = δ, when k = 1 and k = K re-
spectively and represent the distribution’s support values. The
acceptance ratio α is computed using the target distribution
to ensure that candidate samples from high density regions
of the target distribution have a higher acceptance ratio. The
algorithm returns a list of start times for load replay.

Algorithm 1 Determines start time schedule of loads

1: procedure GETSTARTTIMESCHEDULE(P , K,
iterations)

2: Initialize: τ ∼ GetRecordedStartTime() // gets the
recorded start time of loads from the key value store

3: old prob =
∏K

k=1 P (τk)
4: for i in [1..iterations] do
5: for k in [1...K] do
6: τ ′k ∼ Uniform{τ ′k−1, τ ′k+1}
7: new prob = P (τ1) · ... · P (τ ′k) · ... · P (τK)
8: α = new prob

old prob

9: u ∼ Uniform{0, 1}
10: if α ≥ u then
11: old prob = new prob
12: τk = τ ′kreturn τ

3) Replay: The algorithm uses the start time from the
schedule step as an input to replay the foreground loads.
Table IV describes our replay scheme that determines the
action taken based on the battery’s current state of charge.
Based on this replay scheme, our replay algorithm is simple.
The algorithm uses the schedule generated in the schedule
step to replay a load from the key-value store. When the
state of charge is 50%, our algorithm replays a trace from
the key-value store that has the maximum energy footprint.
This is done to aggressively discharge the battery and avoid
running the risk of an empty battery. On the contrary, if the
state of charge is greater than or equal to 50%, the algorithm
replays a trace that has the minimum energy footprint. This
will delay the battery from getting fully charged. After the load
is replayed, the trace is removed from the key-value store.

If the battery is full, the algorithm cannot adhere to the
start time schedule from the schedule step as load replay
requires charging the battery. Thus, a replay of all load is
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Fig. 9: Implementation details of the RepEL algorithm.

deferred and the schedule step is invoked to get new start
times for scheduling the remaining loads. Further, we resume
load replay when there is sufficient state of charge to replay the
load with the smallest energy footprint. Note that the schedule
step generates a start time for only those loads that have not
been replayed. This is essential to ensure that the utility is
preserved and prevent duplicate load profiles. Finally, if the
battery is empty, we immediately replay a load with the largest
energy footprint, ignoring the original schedule. This ensures
that the battery is charged enough to mask foreground loads
and prevent privacy leaks. Since the original replay schedule
is not followed, the schedule step is invoked to get new start
times for scheduling the remaining loads.

We note that our approach can be extended to a vacation
mode, where the battery can replay loads from the previous
week without recording any new ones until it is depleted
or the owners come back. This will enable privacy of user
even when the home is unoccupied. However, we note that
to enable privacy for long periods(e.g., weeks) will require a
larger battery — a known limitation in all privacy-preserving
algorithms including ours.

IV. IMPLEMENTATION

Figure 9 depicts the implementation details of our RepEL
system. We implemented RepEL’s control algorithm in python
on a Raspberry Pi. We assume energy meters can send
aggregate energy to the cloud. Further, we assume that we
cannot modify energy readings of smart meters after it is sent
from the user’s premises. Thus, our RepEL system is installed
before the energy meters to provide local intervention. As
shown, RepEL communicates with the energy meter to record
the energy data of foreground loads in its key-value store. The
foreground loads can be measured in two ways. In the first
approach, RepEL can get the power consumption of individual
foreground loads from advanced energy monitoring meters.
Most energy meters such as eGauge can submeter individ-
ual loads by monitoring the circuits in the main electrical
panel [12]. These energy meters measure power consumption
at one-second resolution and can be accessed over an API.

In the second approach, we assume that such advanced
energy meters are not available, and RepEL has access to only
the aggregate energy profile of a home. In such cases, we can
use non-intrusive load identification techniques [35] to identify

Characteristics Dataset 1 Dataset 2
# of Homes 19 4 (summer)

Duration 1 Month (2016) 25-66 days (2012-13)
Occupancy Not Available Available

Total Appliances 100 16
# Appliances Runs 6021 1078

Granularity 1 Minute 1 Second
Location Austin, TX Switzerland

TABLE V: Key characteristics of the Dataport and the ECO
dataset

and record the individual loads. Thus, foreground load from
aggregate energy can be inferred and recorded in the key-value
store. At the beginning of each time period δ, RepEL retrieves
the recorded foreground loads from the key-value store and
runs the schedule module to determine load replays. In the
default setting, the schedule step assumes a uniform distribu-
tion to replay loads but any user-defined target distribution can
be specified. Finally, the replay schedule and the energy loads
are provided as an input to the replay module, which replays
the energy load based on the scheme in Table IV. The control
algorithm periodically tracks the battery’s state of charge and
modulates its charge/discharge rate. The replay module sends
commands to the battery management system to charge at a
certain rate, which is continuously modulated to mimic the
foreground load’s energy signature.

V. EVALUATION METHODOLOGY

A. Dataset Description

We use two datasets to evaluate our RepEL algorithm (see
Table V). As discussed below, both datasets have fine-grained
energy traces of appliances from different homes.
Dataset 1: Dataport from Pecan Street Inc. [11] The
dataset contains plug-level energy traces at a one-minute
resolution from residential buildings located in Austin, Texas.
This data was collected for one month. For our evaluation, we
selected 19 homes with at least two foreground appliances.
Overall, there were 100 appliances in the buildings, which
were operated a total of 6021 times by the occupants.
Dataset 2: ECO from ETH Zurich [7] The ECO dataset
includes plug-level power traces of appliances along with
ground truth occupancy data at a one-second resolution. This
data was collected from six homes over a period of 4 months.
However, our analysis uses data from four homes and only
for periods where ground truth occupancy data was available.
Overall, we found that occupancy information was available
for a period ranging from 25 to 66 days. Further, the dataset
consists of 16 appliances, which were operated 1078 times.

B. Experimental Setup

We use a trace-based simulation to evaluate our approach.
However, we also study the feasibility of our approach on a
gateway-class node such as a Raspberry Pi. For our evaluation,
unless stated otherwise, we use a battery size of 13.5kWh2,

2The capacity of a standard Tesla Powerwall batteries is 13.5 kWh.



and the default time period δ is set to one day to record
and replay foreground loads. At the start of this time period,
the foreground loads are scheduled and replayed by our
approach. The foreground load schedule is determined by
sampling the target distribution (set to be uniform) and uses
1500 MCMC iterations to sample. Finally, we use the Non-
intrusive occupancy monitoring (NIOM) algorithm [8] to infer
occupancy patterns and evaluate the efficacy of our approach
in suppressing foreground loads.

C. Performance Metrics

To empirically evaluate our algorithm, we present two
metrics that measure the privacy leakage of devices and the
impact on the utility.
Privacy Leak Rate: We employ a more stringent metric to
define privacy leak wherein partial suppression of the original
foreground load is considered as leakage. This is because par-
tial masked foreground load may be visible on the aggregate
energy meter readings and reveal private information. Thus,
if the foreground appliance is running, but the battery does
not have sufficient energy to mask the load, then we consider
it to leak private information. We evaluate the efficacy of our
algorithm using the privacy leak rate defined as the percentage
of foreground load operations that are not entirely masked by
the energy storage. A value of 0% represents complete privacy,
whereas 100% denotes that the battery was unable to suppress
any foreground load.

privacy leak rate = 100×
N∑
i=1

is leak(i)

N
(2)

is leak(i) =

1,
if ith run of the appliance
and battery is empty

0, otherwise

where N is the total number of runs of all appliances for
a given period.

Device Usage Change: RepEL’s algorithm alters the energy
profile of foreground loads to suppress its footprint in the
aggregate load. However, it replays this load at a later period to
preserve the utility aspect. This maintains the device usage but
obfuscates when the device was operated, preventing adver-
saries from inferring user behavior. The aggregate energy use
of appliances can provide insights such as energy-efficiency
of the device. To analyze the difference between the original
and the replay profile of an appliance, we introduce device
usage change (duc) that captures the error in replaying energy
profile of loads and defined as.

duc = 100×
∑N

i=1(replay profilei − energy profilei)∑N
i=1 energy profilei

(3)

where N is the total number of runs of all appliances for
a given period, energy profilei represents the load of the
ith run, and replay profilei represents the replay of the
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Fig. 10: Replay time distribution of loads across for a sample
home. The loads are shifted from the original start time and
help suppress user behavior information such as occupancy.
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Fig. 11: Privacy leakage distribution of appliances across all
homes using a 13.5kWh battery.

energy load of the ith run. A value close to 0% indicates that
the replay schedule is completely mimiced all the foreground
loads, whereas 100% means the algorithm didn’t replay any
load.

VI. RESULTS

In this section, we summarize the results of exhaustively
evaluating the performance of our algorithm.

A. Impact on privacy leakage

Figure 10 shows the replay time distribution of two loads for
a sample home. A value close to zero indicates that the loads
were replayed at the same time as the original time. As seen
in the figure, the foreground loads linked to user behaviors are
shifted from the original time and ranges from 1 hour to 41.6
hours. Since we use a uniform distribution to schedule replays,
the loads are randomly permuted and replayed throughout the
day. This can thwart any timing-based attacks that infer when
devices are operated and related human behavior. On average,
the replay time of a load is shifted by 19 hours.

We now examine the efficacy of our algorithm in preventing
privacy leakage across all homes. Note that our metric penal-
izes us even when the battery fails to mask a small segment
of the load profile. Thus, the privacy leak metric is strict
and looks at the worst-case scenario. We ran RepEL to mask
private information across all homes in the Dataport dataset
and observed that 4 homes had no privacy leak. Further, nearly
two-thirds of the homes have a privacy leak rate below 10%.
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Fig. 12: Device usage change distribution of appliances across
all homes using a 13.5kWh battery.

We also observe that homes that have higher privacy leak-
age have large loads that are operated for longer durations.
Figure 11 shows the privacy leak rate per-appliance across all
homes. As seen in Figure 11, smaller loads such as ovens
have a zero privacy leak rate. On the other hand, larger
loads such as spin dryers tend to consume more energy. In
our evaluation, we used a 13.5 kWh battery. While this is
sufficient to mask smaller loads, it may not be as effective in
masking appliances with moderately high energy footprint. In
particular, we observe that even for a spin dryer, a large load,
the median privacy leak rate is 5.3%. For smaller loads, the
median privacy leak rate is much less. We also evaluated the
privacy leakage using a battery size of 27 kWh (not shown in
the figure). We found that the median privacy leak rate of a
spin dryer is 0.69% — a reduction of 86.9%.
Result: Transformations made by RepEL preserve privacy by
having a very low privacy leak rate of less than 10%.

B. Impact on device usage

We measure the utility by determining the change in the
device usage due to record and replay of foreground loads. It
is important to note that our approach only replays a load when
there is sufficient battery capacity available. And, the replay
is non-preemptive, that is, the battery decides to replay the
entire load only when it has sufficient capacity. This ensures
that the energy data, and thus its utility, is maintained for any
energy-efficiency analysis. We ran RepEL on all the homes
in the Dataport dataset and found that more than two-thirds
of them have device usage change that is less than 3%. Seven
homes had perfect accuracy and no change in device usage.

We next analyze the appliances that impact device us-
age change. Figure 12 shows the device usage change per-
appliance across all the homes. We observe that homes with
large loads tend to have higher change in device usage. As
shown in the figure, the median device usage change is nearly
zero for almost all of the foreground loads. For spin dryers,
one of the large loads, the average change in device usage is
6.91%. We also evaluated the change in device usage using a
bigger battery size of 27 kWh. We found that spin dryers can
preserve up to 98.1% of its original usage.
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Fig. 13: Figures on the left column depict the final energy
consumption of a home as seen by third-parties. The right
column shows the disaggregated energy trace determined
using a NILM algorithm (Combinatorial Optimization[5]). (a)
Original Trace. (b) Lazy Stepping (c) RepEL.

Metric LS2 RepEL
MAPE 64.25 6.53
MSE 4.07e+11 1.36e+10

Relative Error 0.26 0.06

TABLE VI: Disaggregation accuracy of RepEL and L2.

Result: Tranformations made by RepEL maintain utility with
less than 3% error in device usage from the ground truth.

C. Preserving load disaggregation analytics

We ran the combinatorial optimization algorithm3, a NILM
technique, to perform energy disaggregation on the output
from different privacy preserving techniques. Figure 13 depicts
the energy consumption of a home as seen by third-parties
using RepEL and Lazy stepping algorithm (LS2) [36]. As
shown in the figure, LS2 changes the original trace to ”flat”
steps, thereby including very little actual usage information.
However, RepEL algorithm maintains the likeness of the
original trace but randomizes the order. The plots on the right
show the disaggregated output of NILM where our NILM
output resembles the original. This is quantified in Table VI

3The combinatorial optimization technique identifies a set of appliances
that reconstructs the original trace[5].
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Fig. 14: Comparison of an occupancy detection algorithm’s
performance on the original trace with our approach.

which shows lower errors for RepEL; MAPE and mean square
errors for LS2 are an order of magnitude higher;
Result: RepEL enables energy disaggregation with high ac-
curacy on transformed data, while LS2 yields high errors.

D. Preventing occupancy detection

We now show the effectiveness of our algorithm in mask-
ing occupancy patterns. To do so, we ran a state-of-the-
art occupancy detection algorithm [8] on RepEL and LS2
outputs to determine occupancy for a given home. We use
the Matthews Correlation Coefficient (MCC) to compare the
quality of detection as it provides a balanced measure even
when there is an imbalance in the occupancy patterns, i.e., the
case where the homes are less occupied or always occupied.
A correlation coefficient of +1 indicates that the observed and
predicted match perfectly, whereas 0 shows that the predictions
are random, and -1 represents total disagreement.

We use the ECO dataset for our experiment since it contains
ground truth occupancy for each home. Figure 14 shows the
MCC values for RepEL and LS2 for each of the 4 homes. As
can be seen, both approaches yield low MCC values, which
indicates good efficacy for masking occupancy. LS2 yields
MCC values of -0.04 to 0.07, while RepEL yields MCC value
of 0.03 to 0.11 for homes 1, 2 and 4. Note that RepEL has
a higher MCC value of 0.33 on Home 3 since it represents
the worst case for our approach by virtue of being occupied
for long periods—this limits the ability of RepEL to exploit
unoccupied periods to replay loads. Even so, this worst case
scenario still yields a relatively low MCC of 0.33. LS2, in
contrast, flattens the usage to mask occupied period and yields
a lower MCC. Overall, RepEL sacrifices a small amount of
privacy relative to LS2 in exchange for large gains in data
utility. Figure 13 shows that LS2 nearly entirely eliminates
any utility in the data, as LS2’s disaggregation output is not
reflective of the ground truth data.
Result: RepEL is effective at preventing occupancy detection.

E. Impact of varying battery sizes

We now analyze the impact of battery sizes on preserving
both privacy and utility of different appliance types. Figure 15
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Fig. 15: Effectiveness of our algorithm in preserving privacy
and utility for different battery sizes.

shows the range of privacy leak rates across all homes with
varying battery sizes from the Dataport dataset. As shown in
the figure, an increase in battery size reduces privacy leakage.
This is because larger battery sizes can provide energy for
longer periods, and thus, masks foreground loads. In particular,
we observe that using a battery size of 27 kWh, the privacy
leak rate of the median home is 1.92%.

Figure 15 shows the change in device usage across all the
homes with varying battery sizes. The graph shows that the
change in device usage reduces with an increase in battery
size. This is because a larger battery size can replay foreground
loads for a longer duration, and thus, mimic more foreground
loads. In particular, we observe that using a battery size of 27
kWh, the change in device usage of the median home is nearly
zero, indicating that we can entirely preserve the utility.

F. Preserving privacy via custom target distribution

RepEL’s algorithm allows a user to define a custom target
distribution for scheduling loads, which provides the flexibility
to replay a load at any specific time and mimic a particular
activity. We illustrate this flexibility by replaying different
runs of the foreground loads from a house in the Dataport
for the entire duration. Figure 16(a) shows the normalized
runs of foreground loads using the original trace of a home.
We observe that we can infer behavioral patterns from the
graph, such as the occupants usually watches television in the
evening, depicted by increased usage between 10 pm to 11
pm. Similarly, cooking activity shows two peak periods — a
morning peak and an evening peak.

Figure 16(b) shows the replayed schedule of the foreground
loads based on a uniform distribution for the entire duration.
As shown in the figure, our algorithm randomly scrambles
the actual device usage period and replays load based on
the target distribution. Since our target distribution is set to
uniform, all the appliances are scheduled to replay uniformly.
Thus, no adversary can determine a behavioral pattern de-
vice usage or use the information to determine occupancy.
Similarly, Figure 16(c) shows the replayed schedule for the
same set of power traces based on a bimodal distribution as
target distribution. As shown in the figure, the replay of the
appliances is two mimic two peak periods — a morning and
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Fig. 16: RepEL replays foreground loads based on any target distribution to preserve privacy.
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Fig. 17: Figure (a) and (b) shows the execution time of MCMC
sampling with varying input parameters on a Raspberry Pi.

an evening peak.
Result: RepEL has the broad ability to mimic any target
distribution for scheduling and replaying loads.

G. Feasibility study on a Raspberry Pi

We analyze the execution time of our algorithm on a
Raspberry Pi 3 and also study the feasibility of running
disaggregation analytics locally on a gateway class node. Note
that record and replay steps in our algorithm are executed in
real-time. Hence, we only analyze the run time of the schedule
step in our algorithm for varying time windows τ and the
number of foreground loads.

We first set the time window δ to one day and run our sim-
ulation multiple times to determine the variability in execution
time. Figure 17(a) shows the run time of the schedule step for
an increasing number of foreground loads. As shown in the
figure, the execution time increases with an increase in the
number of devices. This is because the schedule step entails
sampling the target distribution for each appliance to determine
the possible start times for replaying the load. In particular, we
observe that with five foreground devices, our algorithm takes
less than 2 seconds to learn the start time for replaying the
recorded appliances. With 25 foreground appliances, it takes
less than a minute to compute the replay start times. Thus, it
is feasible to run the sample step with almost no interruption
to the record and replay steps.

Figure 17(b) shows the run time of the schedule step for
varying time windows on a single home with ten foreground
loads. We observe that the schedule step less than 5 seconds
with time periods of one day or less. Even when the time
window is set to a week, the schedule step takes less 32
seconds. Note that the schedule step runs at the start of the time
window and can run in the background. Hence, our algorithm
can be easily implemented using off-the-shelf components.

VII. RELATED WORK

Recent studies have shown that energy usage from smart
meters can reveal a significant amount of private information
[5, 15, 29, 34]. As recent work demonstrates, energy consump-
tion from a home can leak a person’s daily activities [34],
home occupancy patterns [3, 20, 23], and types of appliances
at home [5, 15, 28, 29]. Unlike traditional privacy attacks,
these non-intrusive techniques do not require additional sensor
information to leak private information. For instance, stud-
ies have shown that simple statistical metrics of aggregate
power usage can help predict when a home is occupied [20].
Similarly, operating an interactive load such as a television
usually indicate occupancy [8]. Prior studies have also shown
how non-intrusive techniques that can disaggregate energy
to identify power contributed by individual appliances. Such
techniques typically use hidden Markov models to identify
different appliance signatures [6].

Mitigating such privacy attacks have been studied before [4,
10, 18, 25, 27, 36]. Prior studies have mostly focused on
obfuscating the energy signal by adding noise to mask the
variance in the load and provide privacy guarantees [25].
In [1], the authors proposed a differential privacy model by
adding Laplacian noise to the data. However, the addition of
such noise in the data does not preserve the device signatures
in the signal, and does not thwart occupancy detection. Noise
can be easily added in the energy signal by charging or
discharging energy storage or through the use of loads such
as water heaters [10, 25, 32]. Such control of energy storage
can smooth out the load to prevent leakage of information.
However, such techniques that smooth out the variations do not
preserve the utility of the data. In contrast, our work suppresses
any information that may cause occupancy leakage while pre-
serving the utility of the data. Finally, drawing from concepts



in differential privacy, there has been work to show that power
consumption of televisions can be made differentially private
using batteries [2, 4]. However, unlike our approach, these
techniques do not prevent occupancy attacks or attempt to
preserve the device usage signature, which can be used to
determine the usage of the appliances.

VIII. CONCLUSIONS

In this paper, we considered the privacy of energy data
from smart meters and argued that while existing techniques
enhance privacy, they do not preserve utility as they destroy
all useful information embedded in the data, whether private
or not. We presented the notion of utility-preserving privacy,
which prevents privacy leakage while retaining the ability to
perform energy-efficiency analytics. We designed and imple-
mented RepEL, a utility-preserving privacy approach, that
maintains appliance usage information while thwarting pri-
vacy attacks by randomly replaying energy loads to suppress
private information leaks. We implemented our algorithm on a
Raspberry Pi to demonstrate its feasibility and used real energy
traces to analyze its performance. Our results showed that the
privacy leak rate for nearly two-thirds of the homes is below
10%, with four homes having no privacy leak. At the same
time, the change in device usage for these homes is less than
3%. Further, we demonstrate that RepEL has the flexibility
to randomly replay loads, which prevents adversaries from
inferring behavioral patterns from device usage.
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