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Abstract
Monitoring and controlling electrical loads is crucial for

demand-side energy management in smart grids. Home au-
tomation (HA) protocols, such as X10 and Insteon, have pro-
vided programmatic load control for many years, and are be-
ing widely deployed in early smart grid field trials. While
HA protocols include basic monitoring functions, extreme
bandwidth limitations (<180bps) have prevented their use in
load monitoring. In this paper, we highlight challenges in de-
signing AutoMeter, a system for exploiting HA for accurate
load monitoring at scale. We quantify Insteon’s limitations to
query device status—once every 10 seconds to achieve less
than 5% loss rate—and then evaluate techniques to disaggre-
gate coarse HA data from fine-grained building-wide power
data. In particular, our techniques learn switched load power
using on-off-dim events, and tag fine-grained building-wide
power data using readings from plug meters every 5 minutes.
Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscella-
neous; K.6.2 [Management of Computing and Informa-
tion Systems]: Installation Management—Performance and
usage measurement; J.7 [Computer Applications]: Com-
puters in Other Systems—Command and control
General Terms

Design, Measurement, Management
Keywords

Home Automation, Load Monitoring, Smart Grid
1 Introduction

Recently, smart grid initiatives have focused research at-
tention on improving the electric grid’s efficiency.1 Smart
grids are important due to a long-term upward trend in
energy costs and a growing consensus that carbon emis-
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sions contribute to climate change. Since home and of-
fice buildings represent a major fraction (73%) of grid con-
sumption [7], the design of smarter buildings that interact
with the smart grid to reduce consumption is also impor-
tant. Smart buildings use demand-side energy management
to self-regulate their energy footprint to reduce overall en-
ergy consumption and peak power usage, while better align-
ing consumption with renewable generation [17]. Demand-
side management requires buildings to 1) continuously mon-
itor the power consumption of electrical loads and 2) re-
motely control when and how much power each load con-
sumes, e.g., to enable automated demand response. Al-
though load monitoring and control are closely coupled in
demand-side management, two disjoint sets of technologies
have evolved to perform these tasks in smart homes.

On the monitoring front, researchers have developed nu-
merous techniques to enable fine-grain tracking of elec-
tric usage at various spatial and temporal dimensions, e.g.,
[8, 9, 11, 12, 15]. Several past efforts focus on outlet-level
monitoring, and in some cases control, of electric loads us-
ing wireless technologies, such as 802.15. These technolo-
gies are still expensive for typical homes, which may contain
several tens to hundreds of outlets. For instance, while not
commercially available, ACme meter components cost $85
plus time for assembly and calibration [10, 13], while Tweet-
a-watt components cost $60 per meter plus time for assem-
bly [5]. Similarly, the commercial PloggSE plug meter costs
$215 per outlet [4]. A less expensive option is to deploy a
single sensor at a home’s electric panel to monitor aggregate
usage, and use NILM techniques to disaggregate individual
loads. While many inexpensive building-wide meters exist,
e.g. the TED 5000 costs $200, accurate disaggregation of in-
dividual loads requires higher resolution data, e.g., 1000s of
samples per second, than these meters typically support.

On the control front, Home Automation (HA) protocols,
such as X10 and Insteon, were designed explicitly for re-
mote load control. The protocols enable programatic actua-
tion of outlets and switches hard-wired into a building and
controlled from a central server, via command-line or re-
mote web/smartphone interfaces, using the building’s pow-
erlines for communication. HA protocols are also mature
standards: X10 was introduced in 1975 and Insteon in 2005.
Since the protocols are embedded into “normal” power out-
lets and switches, they are inexpensive, with X10 and Insteon
versions available for under $15 and $40, respectively. Once
designed for hobbyists, HA has now become mainstream and



is widely used in smart homes that require automation or re-
mote load actuation. Unfortunately, these protocols are not
capable of tracking fine-grain power usage, since they only
expose coarse-grain usage events, e.g., on-off-dim switch
transitions or periodic outlet power consumption.

Thus, while monitoring and control systems are impor-
tant for demand-side energy management, they have evolved
independently using disjoint protocols and standards. In this
paper, we examine how to unify a smart home’s monitor-
ing and control substrates into a single infrastructure. Rather
than designing a new substrate from scratch or embedding
control features into today’s dedicated monitoring systems,
we instead investigate how to exploit existing HA protocols
and products to monitor power for individual loads. We
adopt this approach for several reasons.
Commercial Availability and Cost. A variety of HA
products are commercially available, including load control
switches for appliances, lamps, wall switches, and outlets.
Cost is an important consideration when deciding how to
provide remote control and monitoring for a large set of elec-
trical loads. As noted above, these products are inexpensive
and have standard form-factors that fit today’s buildings.
Backwards Compatible. Since many smart homes already
use HA protocols, our approach will augment existing de-
ployments with monitoring functions. HA protocols are al-
ready being widely adopted in early smart grid field trials [3].
Open Standards. Finally, both Insteon and X10 are open
and well-tested standards that vendors are able to integrate
directly into appliances that require more than simple load
control switches, i.e., those with multiple power states and
sophisticated setpoint control algorithms [14].

Despite the benefits, using HA-based protocols for mon-
itoring poses significant challenges.
Scalability. Since HA protocols are intended for sending
short control commands, such as on, off, and status, they
were not designed for high bandwidth communication. In
practice, data rates are often less than 180bps [6]. Further,
the MAC layers for HA protocols do not employ “standard”
features, such as collision avoidance. Thus, monitoring tens
of electrical loads at high resolution is challenging. A key
research challenge is scaling HA protocols to monitor large
numbers of loads despite the protocol limitations.
Accuracy. HA protocols are only capable of monitoring on-
off-dim state changes for switches or coarse-grain power us-
age for plug outlets. Thus, translating switch state change
events and coarse plug power data into fine-grain power us-
age measurements represents another research challenge.

In this paper, we present AutoMeter, which addresses
the scalability and accuracy challenges of using HA proto-
cols for load monitoring. For scalability, we take empirical
measurements from an actual home deployment that quan-
tify the limits of HA protocols when monitoring and con-
trolling large numbers of loads. We show that Insteon’s pro-
tocol limits device status queries to once every 10 seconds
to achieve loss rates less than 5%. To enhance scalability,
we present the early design of a smart polling technique that
adaptively determines the frequency to poll loads, based on
their past usage patterns, without sacrificing fidelity. For ac-
curacy, we present techniques that couple a building-wide
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Figure 1. An overview of AutoMeter’s architecture.
(or smart) meter with HA events to disambiguate energy us-
age of individual loads from aggregate usage measurements.
For instance, we show that a proactive technique for learn-
ing switched load power over 93% accurate, while a reactive
technique is accurate for loads with many events.

2 System Overview
The primary drawback in using HA protocols for load

monitoring at scale is their extreme bandwidth limita-
tions. While more recent powerline-based protocols, such as
HomePlug [2], substantially increase bandwidth, they have
not yet been applied to HA. Instead, these new protocols
target high-bandwidth data from general Internet traffic and
multimedia devices, e.g., HDTVs. We focus on Insteon in
our home deployment, since it is generally more reliable and
provides more bandwidth than X10.

Figure 1 depicts AutoMeter and its two types of Insteon-
enabled sensors: wall switches and plug power meters. An
Insteon-enabled wall switch sends a notification, via a Pow-
erLine Modem (PLM), to a controller running on a server
whenever someone changes the on-off-dim state at the wall.
In contrast, the controller must explicitly query each plug
power meter to determine its power consumption. We dis-
cuss details of our home deployment further in the next sec-
tion. Below, we briefly summarize the Insteon protocol to
highlight its limitations for scalable load monitoring.
2.1 Insteon Protocol

Insteon senders broadcast messages over the powerline,
while receivers listen for messages and send acknowledge-
ments upon receipt. The protocol limits transmissions to
short intervals near where AC current crosses zero: electri-
cal noise impairs communication and is at minimum during
the zero crossing [6]. However, due to harmonic noise from
power supplies or signal attenuation over long distances, it is
still possible that a device may not receive a message.

To increase reliability and range, all Insteon devices also
act as repeaters that automatically repeat messages they hear
a fixed number of times, based on the hops field, as depicted
in Figure 2. Additional hops effectively increase each mes-
sage’s length by a factor of (1+hops). The simple broad-
casts and hops alleviate the need for complex routing pro-
tocols to transfer messages. The protocol avoids flooding
and collisions when repeating, since all devices synchronize
retransmissions using the 60Hz AC powerline frequency—
each transmission begins exactly 800 microseconds before
the zero crossing and ends exactly 1023 microseconds after
the zero crossing. Thus, when repeating, all devices transmit
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Figure 2. Depiction of the Insteon powerline protocol.

the same data at exactly the same time for the same num-
ber of times. Note that Insteon does not prevent two devices
from sending different messages at the same time, although,
since all devices are repeaters, they inherently wait for in-
transit messages to end before starting a new transmission.

The protocol supports two types of messages: 10 byte
standard messages and 24 byte extended messages, which
require 6 and 13 zero crossings to transmit, respectively.
Since there are 120 zero crossings per second with 60Hz AC
power, a standard message takes 50ms to transmit and an
extended message takes 108.33ms, with no additional hops.
While Insteon’s maximum theoretical bandwidth is 2880bps,
in practice, devices typically use three hops and acknowl-
edgements, which reduces the maximum bandwidth by 16X
to 180bps. In addition to repeated messages, a sender that
does not receive an acknowledgement within a timeout will
retransmit a message up to five times. For noisy lines that
require retransmissions, actual bandwidth may be less than
180bps with three hops. Finally, Insteon uses RF commu-
nication (900MHz) to supplement the powerline, either to
cross phases in multi-phase systems or to extend its range.
2.2 Protocol Limitations

We experiment with Insteon in our home deployment and
in isolation to evaluate its performance, and determine an
appropriate query rate for plug power meters. Setting the
query rate presents a tradeoff: a rate too high saturates avail-
able bandwidth and results in the loss of either asynchronous
switch notifications or load control commands; a rate too low
results in less accurate plug power data. In our experiment,
we vary the time between issuing plug meter queries, and
determine both the percentage of queries lost (Figure 3) and
the percentage of wall switch events lost (Figure 4). We ran
each experiment for 10 minutes and turned switches on and
off 50 times; the time between switch events was uniformly
random between 0 and 20 seconds. We performed a similar
experiment in isolation in an office building using adjacent
outlets and replacing the wall switch with a PLM.

Each meter query includes three standard messages and
one extended message (a standard query message from PLM
→meter, an extended response message from meter→ PLM
with the power data, and a standard acknowledgement for
each message). We use 3 hops for all experiments. We can
only control the hops for the initial message sent from the
PLM; the other messages always use 3 hops and originate
from device firmware that we cannot change. As a result, al-
tering the hops on the initial message does not significantly
alter the results. Based on the protocol specification, each
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Figure 3. Insteon does not accommodate fast query rates
for plug power meters.

meter query takes 4*(0.05+0.05+0.1083+0.05) = 1.0333 sec-
onds. We use the specification to model both the percentage
of queries we expect to receive and the percentage of switch
events we expect to lose for different query rates.

We model below the probability of losing a switch event
(Slose) as a function of the interarrival time of plug me-
ter queries (Ti) and the length of an individual meter query
(Tq = 1.0333), assuming no retransmissions from losses. Our
model also assumes that when two transmissions collide,
e.g., a switch event and a meter query, the device physically
closer to the PLM is successful in transmitting.

Slose =
Tq

2∗Ti
=

0.5166
Ti

(1)

We also model the probability of receiving a query
Qreceive as the function below. If we issue queries at an inter-
val greater than the query length, then we expect to receive
every query. For intervals less than the query length, we ex-
pect queries to increasingly collide with each other.

Qreceive =

{
1 : Ti > 1.0333
Ti
Tq

= Ti
1.0333 : Ti < 1.0333

Figure 3 demonstrates that performing our experiment in
isolation results in a massive drop in the percentage of meter
queries received once the query interarrival time hits the pro-
tocol’s saturation point at 1.0333 seconds. The drop is more
sudden than the model, since the model does not account
for retransmission of lost messages, which immediately col-
lapses the channel. Our home experiment shows query losses
slightly before the saturation point, likely due to losses from
powerline noise, collisions with switch events, and the re-
sultant retransmissions. Figure 4 shows the percentage of
wall switch events lost during the experiment. We lose less
switch events after the saturation point at 1.0333 seconds in
our home deployment than the model indicates. For the in-
frequent switch events, retransmissions of lost messages in-
creases the percentage the controller receives.
2.3 Smart Polling

Our results motivate a more efficient scheduling ap-
proach for querying plug meters. We are currently inves-
tigating a smart polling technique that schedules plug me-
ter queries to bound the amount of energy not detected by
AutoMeter. Currently, in our home deployment, we issue
queries in round-robin fashion every 10 seconds, which re-
duces the probability of losing a wall switch event to near
5%. Since our deployment currently has 30 plug meters,
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Figure 4. Asynchronous wall switch events may collide
with plug meter queries, causing losses.

we query each plug meter once every 5 minutes. The in-
sight behind smart polling is that continually querying loads
that remain in a single power state, e.g., off or on, for long
periods of time wastes precious bandwidth. Instead, smart
polling tracks the maximum power consumption Pmax for
each load over time, and determines per-load query rates
based on an energy bound Emiss that limits the amount of
energy we may miss by not querying each load over a spe-
cific interval. Thus, smart polling queries larger loads, e.g.,
microwaves, at higher rates than smaller loads, since they
contribute more to overall energy consumption.

As a simple example, if we compute the time between
queries for each device as Emiss/Pmax, then with Emiss =
0.05kWh (about 0.10% of our home’s average daily energy
consumption) a 3kW microwave requires a monitoring in-
terval of 1 minute to ensure that we detect any power state
change that contributes at least 0.05kWh. In contrast, a LCD
television that increases consumption by 200W when turned
on requires a monitoring interval of 15 minutes. Since only
a small number of plug loads in our deployment draw more
than 1kW and most draw under 400W, monitoring intervals
on the order of minutes should be sufficient in most cases to
ensure a small bounded energy error. We are also exploring
optimizations to this basic approach that modify each moni-
toring interval based on the duration and period of a device’s
power state changes, i.e., to query a periodic load only once
per period. We believe smart polling will increase both the
accuracy of coarse plug meter data, as well as the number of
devices we are able to effectively monitor.
3 AutoMeter Deployment

We deployed our AutoMeter prototype in an average 3-
bedroom, 2-bath house. The house has 34 wall switches,
which control lights and exhaust fans. We replaced 30
of these mechanical wall switches with 20 Insteon Switch-
Linc Relays and 10 Insteon SwitchLinc Dimmers. The 30
switches control 24 loads, since the house has two 4-way
switches and two 3-way switches. As discussed below, we
use a TED meter to monitor other switches. We use 30 In-
steon iMeters to monitor plug loads in the home. The iMeters
monitor all but 12 of the home’s permanent plug loads. The
unmonitored loads, e.g., night lights, electric toothbrushes,
etc. consume little power in aggregate. We use a TED
5000 in the home’s electrical panel to measure building-wide
power consumption each second. The TED transmits data
over the powerline to a gateway server. Since TED is also
able to monitor power for 6 circuits using additional CTs, we

Name Proactive Reactive (#) Actual
kitchen:lights:dim 257W 290W (62) 260W
kitchen:sink 67W 69W (15) 65W
kitchen:lights1:dim 190W 192W (13) 195W
hall:lights1:dim 193W 39W (5) 195W
guest:lights:dim 255W 279W (10) 260W
guestbath:fan 51W 147W (36) 50W
guestbath:overheadlight 101W 100W (107) 100W
guestbath:sinklight 57W 60W (55) 60W
livingroom:dininglights:dim 128W 38W (25) 130W
livingroom:firelights:dim 148W 925W (8) 130W
livingroom:sideporch:dim 121W 850W (7) 130W
livingroom:lights1:dim 255W 361W (9) 260W
livingroom:lamp 17W 18W (61) 18W
frontporch:light 12W 185W (16) 20W
stairs:light1 72W 70W (20) 65W
masterbath:overheadlight 102W 100W (147) 100W
masterbath:fan 54W 110W (114) 50W
masterbath:sinklight 58W 59W (313) 60W
master:lights:dim 256W 26W (19) 260W
master:closet:a 12W 20W (57) 20W
master:closet:b 12W 9W (15) 20W
bedroom:lights:dim 254W 258W (21) 260W
bedroom:maincloset 18W 19W (14) 20W
bedroom:linencloset 22W 20W (38) 20W
bedroom:closet 22W 22W (35) 20W

Table 1. Table of switch power using proactive and reac-
tive learning versus actual power consumption.

use it to monitor loads not connected to SwitchLincs or iMe-
ters, including a clothes dryer, garbage disposal, dishwasher,
basement lights, HRV duct heater, and the electrical compo-
nents of the gas furnace, including an exhaust fan. In total,
the sum of the energy use from the plugs and switches is
96.7% of the energy use of the TED over the last two weeks.

We implement AutoMeter’s controller on a low-power
and compact GuruPlug server. The server attaches to an In-
steon PLM, which plugs into a standard outlet, via USB.
Our software leverages the open-source plmtools package,
which includes the plmsend and plmcat programs to send
and receive raw Insteon messages using the PLM. We wrote
an Insteon monitoring daemon using these programs to 1)
detect asychronous notifications broadcast on the powerline
whenever a switch turns on, off, or dims, and 2) continu-
ously query the iMeters every 10 seconds. Since the switch
notifications do not encode the dim percentage, our daemon
issues a status query to determine it whenever the dim level
changes. Unfortunately, the commercial HouseLinc software
that supports the iMeter is not designed for constant mon-
itoring, since it forces users to manually enter daily events
that specify iMeter query times, which must be at least one
minute apart. Thus, we reverse-engineered the iMeter proto-
col and modified the insteon command-line program in the
plmtools package to support querying iMeter power, as well
as sending asynchronous messages, i.e., not waiting for a re-
ply from plmcat. The modifications allow us to issue iMeter
queries at arbitrarily fast rates; we use this functionality for
the experiments in the previous section.

The controller stores a timestamped record of each
switch event and plug meter power usage in a SQLite
database. We store the devices’s name and the event times-
tamp, in addition to either the on-off-dim state between 0
and 100 or the plug power consumption. The controller also
fetches the second-level TED data from TED’s webserver,
and stores it in the database. The controller uploads its
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Figure 5. Histogram of events for each 10W power bin for selected switches using the reactive learning technique.

SQLite database to a centralized off-site MySQL database
each morning for long-term storage. We plan to release Au-
toMeter’s software as open-source for others to use, includ-
ing the updated plmtools package.
4 Load Disaggregation

We explore disaggregation techniques for Insteon wall
switches, which do not report power consumption, and plug
meters, which have coarse query rates. For disaggregation,
we add a device column to our database of building-wide
power consumption data: the column specifies the name of
the switch, plug meter, or circuit meter causing the subse-
quent power variation. Our goal is to tag the building-wide
power data with device names whenever it changes. Since
switch data does not specify the load’s power consump-
tion, we first develop techniques to learn switch power. We
then discuss tagging building-wide power data with specific
switch, circuit, and meter names.
4.1 Learning Switch Power

While individual switched loads (primarily lights) do not
individually consume much power, they are the 12th largest
load in our home in aggregate. If we remove summer-only
loads, e.g., A/Cs, fans, then the switched loads are the 5th
largest load. Recent estimates attribute 5-10% of home en-
ergy and 20-50% of building use to lighting [1].

Since switches send notifications every time they turn on,
off, or dim, learning a switched load’s power consumption
should be straightforward: simply record the change in the
building-wide power data whenever a switch changes state.
Learning switch power is more complicated for two reasons:
1) multiple power events may occur within the building me-
ter’s monitoring granularity and 2) power and timing errors
may occur in the building meter. In particular, we observe
frequent timing errors that delay new power readings due
to communication problems, since TED timestamps read-
ings only after they have been successfully transmitted to the
gateway over the powerline. While we observe simultaneous
events, monitoring building-wide power every second miti-
gates their impact. Simultaneous events are a more signifi-
cant issue for coarser monitoring intervals. We discuss both
proactive and reactive techniques to learn switch power con-
sumption that is robust to both coarse data and data errors.

In our proactive approach, we write a simple program
to remotely toggle each switch one by one from the Insteon
PLM, and observe the change in building power 2 seconds
before and 10 seconds after toggling. For the experiment,
we turn off most loads in the home to decrease simultane-
ous power events from other devices and data errors, which

are proportional to the home’s total load. Table 1 reports the
power for each switch, as well as the switched load’s rated
power, and shows the approach is over 93% accurate on av-
erage across all loads. While the proactive approach is accu-
rate, not all buildings will be able to shutdown most loads to
reduce errors and cycle through every load in order to deter-
mine power usage. Thus, we also explore a reactive approach
that learns power usage over time based on collected data.

The approach also computes the change in building-wide
power whenever a switch changes state; again, we use 2 sec-
onds before and 10 seconds after the change. We normal-
ize the power step by a switch’s dim level: if the dim level
is 50% then we multiply the power step by two. We con-
firmed the linear relationship between power and dim level
by recording the change in building-wide power as we vary
the dim level from 1 to 100. Due to power and timing errors
or other loads changing their power consumption, the power
step over the interval will not always correspond to a switch’s
power consumption. However, our premise is that over long
periods with many events, the plurality of power steps will
be near the actual power consumption of the switch, since
building loads alter their power states at human time-scales,
e.g., minutes to hours. Thus, our reactive approach groups
every observed power step for each state change for a given
switch into bins, e.g., 5-15W, 15-25W, 25W-35W, etc. We
then select the bin with the most events, average its values,
and record that value as the switch’s power consumption.

Table 1 shows the results of the reactive approach for 2
weeks of data, as well as the total number of switch events
in parenthesis.2 We find that the reactive approach is ac-
curate for switches with many events over the 2 week pe-
riod, and less accurate for rarely-used switches. Interest-
ingly, the approach is not accurate for the exhaust fan in each
bathroom, since they nearly always change state at the same
time as a 100W overhead light or a 60W sinklight. We are
currently augmenting the technique to identify these corre-
lated switches. Figure 5 shows a histogram of the number
of events in each bin for three of the thirty switches. The
data demonstrates how power and timing errors in the build-
ing data, as well as simultaneous power events, cause a wide
range of power values for each switch event, which compli-
cates learning switch power.
4.2 Tagging Power Variations

Tagging power variations in the building-wide data
should also be straightforward: simply observe the interval

2The table has less than 30 switches, since we only learn a single
value for each set of multi-way switches.
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over which we detect a state change and tag the point in the
building-wide data that matches the state change. However,
coarse plug data, in addition to power and timing errors, also
complicates tagging events. To quantify how well we are
able to tag data using the straightforward approach, Figure 6
shows the number of power events from switch, plug, and
circuit meters we are able to tag as a percentage of the total
number of events in the building trace, for different power
thresholds. For each threshold value on the x-axis, the y-axis
shows the percentage of tagged power events ≥ x in the in-
dividual switch, plug, and circuit meters, as compared to the
building-wide meter. The figure demonstrates that our plug,
switch, and circuit meters have nearly the same events as the
building-wide meter as the threshold approaches 900W. For
30W-900W thresholds, the number of events in the individ-
ual meters is 40-60% of the events in the building-wide data.

Some of the missing events are due to power and tim-
ing errors in the building trace, while others are due to the
5-minute granularity of our plug meter data. For instance,
TED’s stated error is 2% of the total load; if the load is 3kW
or greater, power variations of 60W or greater may be the
result of meter inaccuracy. To mitigate errors, we are up-
grading to a building-wide meter that timestamps readings
at the point of measurement, uses a reliable transport proto-
col to send them to our server, and supports additional, and
more appropriately-sized/accurate, circuit CTs to aid in dis-
aggregation. While smart polling should improve the gran-
ularity of plug meter data, we are also investigating NILM
techniques using individual circuits in conjunction with our
coarse plug meter data, similar to those in [15].
5 Related Work

There exist a range of systems for monitoring the power
consumption of electrical loads. These systems present vari-
ous tradeoffs in accuracy, monetary cost, installation time,
and calibration overhead. Early work on NILM recog-
nized the difficulty and cost of instrumenting every individ-
ual building load [9]. Thus, NILM focuses on algorithms
for disaggregating building-wide power to extract individ-
ual loads. While useful, NILM also presents challenges, in-
cluding collecting accurate load power signatures and distin-
guishing loads with similar signatures.

To address NILM’s challenges, a recent approach aug-
ments building power meters with heterogeneous sensors,
as well as strategically-placed circuit and plug meters [11,
12, 15]. The additional data aids in distinguishing events
in building-wide power data. Another approach is single-

point sensing [8], which monitors AC power to detect pre-
cise power signatures at high frequencies, and associate them
with events from specific loads. Our work shows that asso-
ciating these events with power data from a building-wide
meter also presents challenges. While existing approaches
aid in disaggregation, they do not address load control. Un-
like load monitoring, control requires integrating additional
communication and switch hardware with devices. Since we
target AutoMeter for smart buildings with HA-driven load
control, it complements dedicated monitoring systems.

An advantage of AutoMeter for researchers is its use of
widely available commercial out-of-the-box hardware and
open-source software, rather than custom-built research pro-
totypes. One goal of AutoMeter is to support higher-level
smart grid research, e.g., developing load scheduling algo-
rithms, improving NILM via machine learning, strengthen-
ing smart meter privacy, etc. At $40 each, purchasing 100s
of Insteon devices is within the bounds of a modest research
budget—our deployment, including 30 switches, 30 plug
meters, a GuruPlug, and a TED meter, cost $3025.
6 Conclusion and Future Work

In this paper, we demonstrate Insteon’s limitations for
load monitoring, and evaluate straightforward load disag-
gregation techniques using data from an operational deploy-
ment. To further increase AutoMeter’s scalability and accu-
racy, as part of future work, we are experimenting with smart
polling to collect more accurate plug meter data, as well as
improved disaggregation techniques. We are also extending
our approach to buildings larger than single-family homes.
Large buildings are more challenging, since they have many
more loads (resulting in lower query rates) and longer pow-
erlines (resulting in higher loss rates). While originally tar-
geted for residential homes, recent work suggests that pow-
erline communication is applicable to larger buildings [16].
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