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ABSTRACT
Cloud spot markets rent VMs for a variable price that is typically
much lower than the price of on-demand VMs, which makes them
attractive for a wide range of large-scale applications. However,
applications that run on spot VMs suffer from cost uncertainty, since
spot prices fluctuate, in part, based on supply, demand, or both. The
difficulty in predicting spot prices affects users and applications:
the former cannot effectively plan their IT expenditures, while the
latter cannot infer the availability and performance of spot VMs,
which are a function of their variable price. Prior work attempts to
address this uncertainty by modeling and predicting individual spot
prices based on historical data. However, a single model likely does
not apply to different spot VMs, since they may have different levels
of supply and demand. In addition, cloud providers may unilaterally
change spot pricing algorithms, as EC2 has done multiple times,
which can invalidate existing price models and prediction methods.

To address the problem, we use properties of cloud infrastruc-
ture and workloads to show that prices become more stable and
predictable as they are aggregated together. We leverage this obser-
vation to define an aggregate index price for spot VMs that serves
as a reference for what users should expect to pay. We show that,
even when the spot prices for individual VMs are volatile, the index
price remains stable and predictable. We then introduce cloud index
tracking: a migration policy that tracks the index price to ensure
applications running on spot VMs incur a predictable cost by mi-
grating to a new spot VM if the current VM’s price significantly
deviates from the index price. We implement cloud index tracking
on EC2, and show that it yields a predictable cost near that of the
index price, but with much higher availability compared to prior
work, which aggressively migrates to the lowest cost VM.
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1 INTRODUCTION
To maintain the illusion that infinite resources are always available
on-demand, public cloud providers provision their infrastructure
for their expected peak demands. As a result, a significant fraction
(up to 40% by a recent estimate [34]) of cloud resources are idle. To
recoup some of the capital and operational expenses of maintaining
this surplus computing capacity, cloud providers now offer it in the
form of transient servers [29], which they can revoke at any time.
A prominent example of transient servers are the Spot Instances
offered by Amazon’s Elastic Compute Cloud (EC2). EC2 charges a
variable spot price for spot VMs, which is determined in part based
on variations in their long-term supply, and reserves the right to
revoke them at any time to satisfy higher-priority requests, e.g., for
on-demand or reserved VMs.

Since spot VMs are unreliable and may experience revocations,
spot prices tend to be 50-90% less than the price of on-demand VMs,
which EC2 tries not to revoke. Due to their low price, spot VMs are
highly attractive to large-scale applications. For example, Fermilab’s
Scientific Computing Division used spot VMs to dynamically scale
up their computing capacity by 4× to accelerate the discovery of the
Higgs-Boson [5]. Similarly, machine learning and natural language
processing researchers recently set the record for the largest high-
performance cloud cluster by using 1.1 million vCPUs on spot
VMs [6]. However, while spot VMs offer significant potential for
cost savings, the magnitude of these savings is not guaranteed, is
based on future prices, which are uncertain, and could be negative
if prices or revocation characteristics unexpectedly change. This
lack of predictability presents both technical and policy challenges.

Prior work has addressed many of the technical challenges asso-
ciated with gracefully handling spot revocations by tuning fault-
tolerance mechanisms to mitigate their performance impact [20,
22, 23, 31, 37, 38]. However, applications that execute on spot VMs
must also address cost uncertainty, since there is no guarantee on
how high or low the spot price will go. While variable spot pricing
has many advantages, including improving the supply/demand bal-
ance and ensuring resources are always accessible to users (if they
are willing to pay for them), the resulting cost uncertainty presents
new policy challenges. For example, spot VMs make it difficult for
enterprises to follow standard practices of allocating fixed budgets
for acquiring a fixed amount of cloud resources. Such administrative
complexities may be one reason competing providers, including
Google Compute Engine and Microsoft Azure, introduced a simpler
fixed-price model for transient servers despite the advantages of
variable pricing. Reducing cost uncertainty requires applications
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to both accurately predict spot prices, and then leverage those pre-
dictions to adapt their execution to maintain a fixed cost, e.g., by
delaying execution or migrating to other resources if prices change.

Predicting spot prices is challenging for several reasons. Most
importantly, users generally must predict many different prices. For
example, in EC2, each type of VM in each availability zone (AZ)1
of each region has its own dynamic spot price, resulting in roughly
7500 different dynamic spot prices across 44 AZs in 16 regions. By
comparison, there are only roughly 6000 stocks listed across the
New York Stock Exchange and the NASDAQ. In addition, while a
number of researchers [3, 7, 12, 21, 30, 33, 35, 39] and startups [2,
15, 16] have proposed techniques for modeling and predicting spot
prices, there is no guarantee a one-size-fits-all model exists as prices
are based on local supply/demand conditions that need not correlate
across VM types, AZs, or regions. Further, spot prices in EC2 are
not necessarily market-based, but instead determined by Amazon
based on an internal pricing algorithm, which they often change,
making prior price models and prediction methods obsolete. For
example, Amazon modified its pricing algorithm in late 2017 to
decrease price volatility by altering prices based on longer-term
changes in supply, rather than based on short-term supply and
demand. While we discuss the broader implications of this change
in §8, it invalidated prior price models and prediction methods.

Rather than predict prices, recent work proposes a reactive ap-
proach that instead monitors spot prices and continuously migrates
applications to the most cost-efficient VM, i.e., the VM offering
the lowest cost per unit of resource utilized [25]. This approach
encapsulates applications in containers to enable such stop-and-
copy migrations. EC2’s recent adoption of fine-grained per-second
billing allows this approach to exploit price inversions and arbitrage
opportunities that are both small and brief. However, the approach
does not improve cost certainty or performance predictability, as
the most cost-efficient spot VM may change frequently, e.g., every
few minutes, resulting in frequent periods of unavailability while
migrating to chase the lowest prices. In addition, migrating to chase
low prices incurs an upfront cost overhead due to the migration,
which may not pay for itself over time if prices change (and could
even possibly increase cost). Second order effects may also increase
price volatility if users adopt such an approach en masse, and ev-
eryone starts aggressively chasing the lowest price. This may be
one reason behind the recent change in EC2’s pricing algorithm.

To address the problem, we observe that investors face a similar
issue in financial markets when making investment decisions: since
predicting individual stock prices is challenging, investors base their
decisions, in part, on the characteristics of broader market indices,
such as the Dow Jones Industrial Average, S&P 500, and NASDAQ,
which aggregate the price of many stocks. These indices typically
serve as a reference point, or baseline, for investors to evaluate
their portfolio’s performance and make decisions. In addition, by
aggregating the price of many stocks, these broader indices tend
to be less volatile than any individual stock’s price. As we show,
spot prices exhibit similar high-level characteristics: an aggregate
spot price, or spot index, across many VMs is less volatile and more
predictable than any single VM’s spot price, enabling such a spot
index to also serve as a useful benchmark for making decisions.

1An AZ is akin to a separate data center

Importantly, as we discuss, these characteristics are general and
independent of any particular pricing algorithm. We leverage the
insights above to define an aggregate index price for spot VMs and
use it to develop cloud index tracking: a container migration policy
that tracks the cloud index price to ensure applications running on
spot VMs incur a stable and predictable cost by migrating to a new
spot VM if the current VM’s price significantly deviates from the
index price. In doing so, we make the following contributions.
Cloud IndexDefinition. We analyze historical spot prices to show
that as we aggregate prices they becomemore stable and predictable,
and also discuss the underlying reasons for such a stable index price
based on current cloud infrastructure and workload characteristics.
We then define a cloud index using this approach to serve as a
reference point for what users should expect to pay.
Cloud IndexTrackingMigration Policy. We use our index price
to implement cloud index tracking: a migration policy that, rather
than chase low prices, only migrates applications to a new spot
VM if its prices deviates significantly from the index. We show that
this migration results in a predictable price near that of the index
price and a high availability. We also compare with other migration
policies to expose a tradeoff between cost and availability: chasing
low prices reduces cost (and predictability) but results in more
migrations, which increase overhead and reduces availability.
Implementation and Evaluation. We implement cloud index
tracking in Python on EC2 and release it as open source.2 We eval-
uate cloud index tracking relative to policies from prior work, and
show that it enables more predictable costs and higher availability.

2 BACKGROUND AND MOTIVATION
Renting VMs for a variable price that is a function, in part, of
supply or demand is advantageous, since it can attract additional
demand (and revenue) for unused resources. Since cloud platforms
incur large capital expenses to provision their infrastructure, they
have a strong incentive to maximize its utilization and revenue. In
addition, variable pricing also increases resource obtainability [9],
as users can always acquire resources if they are willing to pay a
high enough price for them. In contrast, under a fixed price model,
a cloud platform may run out of resources under periods of high
demand, requiring it to reject any additional resource requests, as
shown in prior work [17]. Companies are often wary of relying
entirely on cloud platforms for their computing infrastructure due
to the risk that they will not be able to acquire resources when
necessary, which can result in large monetary losses. Thus, variable-
priced spot VMs are a useful alternative for acquiring resources
when on-demand VMs are unavailable, as users can always acquire
spot VMs if they are willing to pay a high enough price.

However, variable pricing also has a number of drawbacks, largely
due to its increased complexity. For example, to enable accessibility
for a high enough price, EC2 must be willing to revoke spot VMs
from their current users and provision them to users willing to
pay more. Such revocations, which are akin to failures, incur an
overhead that reduces the performance capacity (and thus value)
of spot VMs [27, 32]. Many applications also either fail or perform
poorly under unexpected and frequent revocations, and require
significant modifications to gracefully handle them. In addition,

2Available at https://umass-sustainablecomputinglab.github.io/cloudIndex
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Figure 1: Price of a representative Linux server (r3.4xlarge)
across two availability zones in us-east-1 region in 2017.

variable pricing also introduces cost uncertainty, as there is no guar-
antee on the price of resources and thus an application’s ultimate
execution cost. This is not amenable to many enterprises, which
allocate fixed budgets for acquiring a fixed amount of resources.

Unfortunately, current methods for predicting spot prices to
estimate application cost are ineffective for a number of reasons. In
particular, the sheer number of spot VMs with their own dynamic
spot price makes prediction challenging. In EC2, there are currently
16 regions worldwide, each with 2-6 AZs, and some with over 50
types of VMs, resulting in more than 7500 spot prices to predict.
This scale will continue to increase as Amazon has plans to add 6
new regions and 17 more AZs in the near future [1]. Each of these
spot VMs has its own spot price dynamics, which reflect, in part, its
own unique local supply and demand conditions. To illustrate the
challenge, Figure 1 shows that even the same spot VMs in different
AZs of the same region may exhibit widely different spot price
characteristics (in this case, a r3.4xlarge Linux instance in four
AZs of the us-east-1 region). Accurately predicting these different
price dynamics for effectively the same resources, as well as the
other 7500 spot VMs, without additional information is not feasible.

In addition, even if accurate price predictions were possible, they
would likely become obsolete once EC2 altered its pricing algorithm.
As prior research has noted [7], EC2 is not required to set its spot
prices based purely on supply and demand, since it both operates
the market and owns all the resources. In fact, EC2 has modified its
spot pricing algorithm multiple times, most recently in late 2017,
when it altered the pricing algorithm to reduce the magnitude and
volatility of spot prices by tying them to longer-term changes in
supply, rather than both supply and demand [18]. While we discuss
the broader implications of this change in §8, it served to make prior
spot price prediction methods invalid. Importantly, the complexity
and cost uncertainty of using spot VMs under variable pricing likely
discourages users from adopting variable priced spot VMs, and may
be one reason competitors have adopted simpler fixed-price models
for similar types of revocable transient VMs.

Recent work seeks to reduce this complexity by encapsulating
cloud applications in resource containers and transparently migrat-
ing them to the most cost-efficient spot VM as prices change [25].
However, this approach of chasing the lowest price has some draw-
backs. In particular, chasing low prices does not actually reduce
cost uncertainty: since the lowest price may vary considerably,

enterprises still cannot accurately predict the amount of spot re-
sources they can purchase for a fixed budget. In addition, repeated
migrations to chase low prices can incur an unacceptable overhead
for some applications. For example, containers use stop-and-copy
migrations, which result in downtime while their memory image is
copied from one VM to another. Prior work attempts to ensure mi-
grations “pay for themselves” by only triggering them if a new spot
VM is sufficiently cheaper than the current spot VM [25]. However,
spot price changes can still cause a net loss for any migration.

More importantly, many applications may perform poorly if VMs
are frequently unavailable. Examples of such applications include
long-running applications that are occasionally interactive, such
as data sinks for Internet-of-Things (IoT) devices and BitTorrent
file trackers, as well as distributed applications that follow a bulk
synchronous parallel (BSP) programming model implemented by
many popular big data frameworks, such as Hadoop, Spark, and
many others. The former may perform poorly, since VMs may
not be available when necessary to provide access to storage or
data, while the latter may perform poorly, since all VMs running
workers must synchronize at pre-defined barriers, causing frequent
periods of unavailability to result in stragglers that delay other
workers. While these applications offer some flexibility to migrate
to lower prices and restart after revocations, as they can tolerate
occasional unavailable periods, the level of availability does affect
their performance. Prior work does not consider the application-
level cost of such unavailability when making migration decisions.
As we discuss, our approach to cloud index tracking considers both
cost predictability and availability in determining when to migrate.

2.1 Aggregate Spot Price Characteristics
Prior work often analyzes historical spot VM prices, and models
them by selecting a distribution that best characterizes the data.
As discussed earlier, such models generally do not apply across all
spot VMs, and often become obsolete after changes to the pricing
algorithm. Thus, to improve cost predictability, we instead exam-
ine two underlying general properties of the spot prices based on
common cloud infrastructure and workload characteristics.
Dependent Spot Prices. Cloud platforms offer a wide range of
VMs with different capacities to allow users to select the VM that
best fits their application’s workload characteristics. While these
different VMs have their own spot price, they are generally provi-
sioned out of a fixed number of physical machines. For example,
EC2 offers 23 general-purpose VM types, e.g., the t2, m3, m4, m5, etc.,
that are likely hosted on only 4 different types of physical machines
based on EC2’s offering of only 4 dedicated non-virtualized hosts.
Since the supply of physical machines does not significantly change
over short timescales, e.g., hours or days, the spot prices of VMs
within the same class are likely not completely independent. That
is, despite, say, the m4.large and m4.16xlarge having different
spot prices, their price and revocation characteristics are likely par-
tially correlated. Of course, many factors may affect the spot price,
including administrative policies that determine how to allocate
physical machine resources between VM types and demand for
each type. Prior work has largely ignored this underlying physical
reality, and has often assumed that price and revocation character-
istics are independent and identically distributed. This potential
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dependent relationship between spot prices of different VMs further
complicates modeling individual spot prices that share the same
types of physical machines. Aggregating the price of dependent
VMs should mitigate these dependent effects.
Stable Idle Capacity. In addition, while any VM’s spot price may
vary significantly, recent work and publicly-released traces of cloud
data center resource utilization suggest that idle capacity is not only
large, but also relatively stable [34]. For example, Microsoft recently
detailed workload and utilization characteristics for Azure data
centers [14] (along with publicly-released traces [10]) that showed
that, even though CPU utilization varies on the order of half the
data center’s capacity, most users do not dynamically scale their
allocated capacity to match their utilization. As a result, Azure does
not experience large changes in resource allocations at the customer
or data center level. Specifically, the reported median volatility for
VM allocations was 6.3% hourly, 2.6% daily, and 3.2% weekly at the
data center level. These results align with observations of Google
data centers [9], where researchers found large fractions of idle
capacity are highly available (>98.9%) over multi-month periods,
which also indicates a relatively stable level of idle capacity.

If compute capacity were i) an entirely fungible resource, such
as other commodities, e.g., oil, electricity, corn, etc., ii) all of a data
center’s idle capacity were offered in a single market (for one per-
unit price), and iii) application’s were fully flexible, then a stable idle
capacity implies that its clearing price would be largely stable and
predictable (as both the supply and demand are stable). While the
assumptions above are not practical, a cloud index price, discussed
below, offers a first order approximation that enables us to benefit
from these observations and characteristics.

2.2 Market Index
A stable idle capacity implies that modeling prices in aggregate
across many VMs, rather than for each individual VM, should yield
more stable and predictable prices. Two granularities are natural
choices for aggregation: i) all spot prices of VMs within a fam-
ily, which we assume are hosted on the same hardware resources,
e.g., general-purpose, compute-optimized, and storage-optimized
servers, and ii) all VMs within a data center (i.e., AZ in EC2) or
region (composed of multiple AZs). The former should eliminate
dependencies related to sharing a common hardware base, while
the latter should reflect the idle stable capacity we infer from prior
work and publicly-available traces.

Aggregating spot prices across many VMs is equivalent to com-
puting a market index, which is a statistical measure of the value
of a collection of items. Such market indices are commonly used in
economics and finance to make decisions. For example, the Con-
sumer Price Index (CPI) measures the changes in the price level of
a pre-determined market basket of consumer goods purchased by
typical households. Economists use the annual percentage change
in CPI as a measure of inflation, which in turn guides a variety of
economic policies. Similarly, stock market indices, such as the Dow
Jones Industrial Average, the S&P 500 and the NASDAQ, report the
statistical measure of a prominent set of publicly traded stocks, and
are considered to be broad indicators of the economy.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l 
(c

e
n
ts

/h
r)

Global spot markets

Global on-demand

Figure 2: Index price level and spread across all Linux spot
VMs in EC2 (2406 over 14 regions).

As computation evolves intomore of a commodity and an increas-
ingly important investment, technology companies may also lever-
age such an index to succinctly describe the behavior of variable-
priced spot VMs. As in economics, an index provides a useful bench-
mark for quantifying resource cost, and, as we discuss next, is more
stable and predictable than individual spot VM prices.

3 CLOUD INDEX DEFINITION
A cloud index succinctly quantifies the aggregate spot price char-
acteristics of a large group of spot VMs. Below, we describe our
approach to computing a cloud index, and then apply it to spot
VMs in EC2 to characterize its salient features.

3.1 Cloud Index Definition
Cloud platforms separate VMs into different types and set a different
price based on both their CPU and memory capacity. Network
bandwidth and storage, including I/O bandwidth and space, are
typically decoupled and separately billed. In EC2, the compute
capacity of VMs (and dedicated hosts) ranges from 1 to 349 EC2
Compute Units, or ECUs, which represent a relative measure of
a CPU’s integer processing power, while the memory capacity
varies from 0.5GBs to nearly 2TB. EC2 includes both compute-
optimized and memory-optimized VMs which have higher CPU
and memory capacity, respectively, relative to the other. Thus, one
issue in defining a cloud index is computing a normalized per-unit
price for CPU and memory resources to fairly compare the per-unit
price of VMswith different resource allocations. Since the geometric
mean is a common method for averaging different items, such as
memory and CPU, with different numerical ranges, our cloud index
uses it to compute a normalized price per unit of resource for each
spot VM. Specifically, we define the normalized price P̂i (t) of a spot
VM i at time t per unit of CPU and memory resource as below,
where Pi (t) represents VM i’s spot price (in $/hour) at time t , while
Ci andMi represent its CPU and memory capacity.

P̂i (t) =
Pi (t)

√
Ci ·Mi

(1)

Real-world indices must justify their composition, weighting,
and consistency. In the case of a cloud index, these attributes are
straightforward to select and justify. The composition determines
the set of spot VMs to include in the index. As discussed previously,
two natural groupings would be to include all VMs within a data
center (or AZ) or all VMs within a VM family. The composition
could also be tailored to the resource constraints of a particular
application. The weighting defines the relative impact that each
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Figure 3: Index price for 3 AZs within the us-west-1 region.

spot VM’s price has on the index value. Real-world indices often
use either equal weighting, which weights each item equally, or
size-proportional weighting, which weights each item by some
size metrics, such as volume. Since EC2 does not publish any de-
tails about the volume (or number) of different VMs, we use equal
weighting. Finally, consistency quantifies the stability of the index
to changes, i.e., the addition or removal of items, over time. Since
we normalize prices and weight spot VMs equally, introducing new
spot VMs or removing deprecated ones is possible without altering
the intuitive meaning of the index, i.e., in that it still represents the
normalized average per-unit cost of spot VM resources. In the past,
EC2 has imposed a cap of 10× the on-demand price for spot VMs to
communicate their temporary unavailability. To ensure consistency,
we exclude prices as long as they are equal to this cap. Given this,
we define our cloud index I(t) below for a selected group of N VMs.
Note that the index price is a relative measure of cost, since its units
and absolute value are based on the geometric mean of CPU and
memory capacity above.

I(t) =

N∑
i=1

P̂i (t)

N
(2)

3.2 Spot Price Data Analysis
We apply our cloud index above to historical spot prices to quantify
their stability and predictability at different levels of aggregation,
based on the insights from §2.1, to understand how the index can
aid in decision making. We focus on data for Linux VMs in select
geographical regions. Even though other OS configurations and
regions have different absolute prices, they are qualitatively similar.

Figure 2 shows the index price for all 2406 active Linux spot
VMs worldwide over a six month period in 2017. The graph shows

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l 
(c

e
n
ts

/h
r) US-West-1a    Compute-optimized

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l 
(c

e
n
ts

/h
r) US-West-1a    Memory-optimized

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l 
(c

e
n
ts

/h
r) US-West-1a    Storage-optimized

Figure 4: Index price for different families of VMs in EC2.

that average spot prices per unit of resource are highly stable, with
prices roughly 0.5¢/hour, or roughly an 80% discount over a similar
index price for Linux on-demand VMs shown at the top of the
graph. Figure 3 then shows the index price for Linux spot VMs
across three AZs in the us-west-1 region. Similar to Figure 2, the
AZ-level index shows much more stable and predictable behavior
than the price of individual spot VMs in Figure 1. While the average
index price over the six month period across the AZs is similar,
the index price variations are uncorrelated, likely because each AZ
experiences its own local supply and demand dynamics.

We plot similar index prices across both VM families and a region.
Figure 4 shows index prices for compute-, memory-, and storage-
optimized VMs in the us-west-1a AZ. While the volatility of the
index price for VM families is slightly higher than at the AZ-level,
likely because it aggregates over fewer spot VMs, it also remains
largely stable and predictable. Similarly, Figure 5 shows the corre-
sponding regional price index for the us-west-1 region, which, as
expected, shows slightly less volatility than the per-AZ prices in
Figure 3 due to more aggregation. In this case, the per-unit regional
spot index price is ∼16% less than that of EC2’s global spot index
price, indicating that us-west-1 has a lower price than average.
Summary. Our data analysis above shows that spot index prices are
highly stable and predictable even when the underlying individual
spot prices are stochastic. We observe this trend consistently for groups
of spot VMs at the global, regional, AZ, and family levels.

As noted above, we can also compute an index price for on-
demand VMs in EC2. While EC2’s on-demand price for each VM
type is fixed within each region, it varies across regions, as shown
in Figure 6, which plots the index price across all 14 regions in
EC2. The figure shows that on-demand index prices vary widely
across regions with sa-east-1 having a 57% higher price than



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Supreeth Shastri and David Irwin

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l 
(c

e
n
ts

/h
r) US-West-1

Figure 5: Spot index prices at the regional level
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Figure 6: On-demand index prices vary across regions.

ca-central-1. Interestingly, significant price differentials exist for
regions in close geographic proximity. For example, the index price
for the us-east-1 region in Virginia is ∼20% higher than that of the
us-east-2 region in Ohio. Such disparities may be due to regional
economic factors, such as energy prices, labor costs, or climate.
As with spot VMs, the price differential between on-demand VMs
presents a savings opportunity for location-agnostic applications.

In addition, since on-demand index prices vary across regions,
the relative cost savings from using spot VMs in any region also
varies. For example, while the index levels of the eu-west-1 and
eu-west-2 regions (not shown here) are ∼0.3 and ∼0.45¢/hour on
average, respectively, indicating a 33% price differential in spot
prices, the same price differential is reflected in their on-demand
prices. As a result, the relative percentage savings from using spot
VMs over on-demand VMs is the same in each region, although
eu-west-1 has lower absolute prices. Similar regional price inver-
sions also occur between on-demand and spot VMs. For exam-
ple, though on-demand VMs in ap-northeast-1 are slightly more
expensive than in ap-southeast-1, spot VMs are cheaper, with
the ap-northeast-1 region exhibiting a 60% discount over the
ap-southeast-1 region, as shown in Figure 7.
Summary. Index prices enable users to identify systematic price
differentials, price inversions, and arbitrage opportunities between
different spot VMs and on-demand VMs across AZs and regions.

4 CLOUD INDEX TRACKING
The previous section defined the notion of a cloud index and showed
that cloud index prices are more stable and predictable than indi-
vidual spot prices. In this section, we leverage this insight to design
an approach to cloud index tracking, which runs applications on
variable-priced spot VMs such that they incur a predictable cost. Of
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Figure 7: Indices showing price variations across regions.

course, running embarrassingly parallel, large-scale applications
for a predictable cost is trivial, since they can simply select the
different spot VMs that comprise the index. As a result, we focus
on smaller scale applications composed of a few VMs that cannot
rely on their sheer scale to smooth their costs.

Our approach to cloud index tracking is simple: we first filter
the set of candidate spot VMs that satisfy an application’s resource
requirements, and then compute a cloud index on the remaining
spot VMs, a described in Equation 2, to obtain a target cost. We
then select the “best” spot VM that meets some target objective;
§4.2 outlines different spot VM selection policies that yield different
tradeoffs between VM availability and cost objectives. If prices or an
application’s workload changes, such that the selected spot VM no
longer satisfies the target objective, then we transparently migrate
the application to another spot VM that does satisfy it. As we discuss
in §4.1, such a spot VM should always exist. Cloud index tracking
is reminiscent of both index tracking in finance, which constructs
securities to track the price of a reference index, and active trading,
which buys and sells stocks over short time horizons to benefit
from price volatility. Of course, there are differences between these
financial products and compute resources, as we discuss below.

4.1 Index Tracking by Server Hopping
In finance, index tracking is a rule-based investment mechanism
that seeks to match the financial returns from a portfolio to the
performance of the price index that it tracks. Index tracking en-
ables investors to “buy the market,” rather than attempting to “beat
the market” by selecting their own individual investments. Index
tracking has become increasingly popular, since if prices fully re-
flect all available information, as assumed by the efficient-market
hypothesis [11], then consistently beating the market by accurately
predicting prices is impossible. Our approach derives from the same
intuition: while it is difficult to predict the price of individual spot
VMs, the index price of groups of spot VMs are more predictable.
However, our approach focuses on matching a single VM’s cost to
the index price, rather than a large group of VMs. To track the cost
benefit of a selected spot VM i with respect to a reference cloud
index I, we define the equation below, whereGain(t1, t2) represents
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the gain in the index between times t1 and t2 that spot VM i was
held, while P̂i , Ci andMi denote the spot VM’s normalized index
price, CPU, and memory capacity, respectively.

Gain(t1, t2) =
t2∑

t=t1

(I(t) − P̂i (t)) ·
√
Ci ·Mi (3)

The equation above simply denormalizes the index price I in
Equation 2 to compute the gain in cost relative to it for a VM with a
specific CPU and memory capacity. That is, if the normalized price
of spot VM i is less than that of the cloud index, then the gain is
positive. Note that in the equation P̂i (t) essentially represents an
index price for only spot VM i . Of course, since a single spot VM’s
price may change over time, maintaining a positive gain relative to
the index price may require migrating to another server.

Recent advances in container and nested virtualization, datacen-
ter networking, and fine-grained, i.e., per-second, billing models
enable applications to frequently migrate from one cloud VM to
another in response to real-time price and workload dynamics.
For example, prior work on Superclouds [28] live migrates appli-
cations in response to geographically shifting workloads, while
HotSpot [25] migrates applications to the most cost-efficient spot
VM. However, such dynamic migration policies are designed as
localized greedy optimizations: they incur upfront migration costs,
e.g., downtime or degraded performance, for a future benefit, e.g.,
better performance or a lower cost. In contrast, our primary goal
is ensuring predictable costs by preventing a spot VM’s cost from
significantly deviating from the index cost. In this case, every migra-
tion reduces the accrued gain relative to the index from Equation 3.
To account for this loss, we compute the overhead of migration,
which requires paying for two spot VMs i and j for the migration’s
durationTm , and accounting for the lost work over that time. Thus,
we compute Loss(i, j) from migrating from i to j as below.

Loss(i, j) = (Pi (t) + Pj (t)) ·Tm (4)

By tracking an application’sGain and Loss over time using Equa-
tion’s 3 and 4, we can compute its cost relative to the index. If the
cost relative to the index is negative, then we should migrate the
application to maintain the index price. Since the index price is sim-
ply an average across many spot VMs, there must be spot VMs with
a price equal to or below the index price. As a result, if the price of
the current spot VM rises, there should always be a cost-efficient
option for migration. The equation computes the monetary cost of
the migration, i.e., the cost to maintain two VMs over its duration.

To ensure that we maintain the index price when migrating, we
only trigger migrations when the total cost of the migration is less
than the index price, as shown in Equation 5 below. The term on
the right sums the cost of source and destination VMs during the
migration, as well as the cost to execute the work delayed by the
migration (resulting in the 2 factor). Assuming a simple stop-and-
copy migration, as generally implemented by resource containers,
the application does no work over the duration of the migration.
In addition, as we discuss next, applications are also not available
during the stop-and-copy migration. Figure 8 illustrates this loss of
work and unavailability when migrating from VM i to j over time
Tm (shown by the gray area). These losses can decrease the accrued
Gains from above under aggressive migration policies that chase
low prices by migrating to the lowest cost VM. Migrating under
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Figure 8: Illustration of the overheads of migration, includ-
ing double-paying for VMs and lost work.

the condition below ensures that migrations only occur when they
maintain the index level. The equation simply accounts for the cost
of the migration and the lost work above, and then re-normalizes
the prices for comparison with the index price.

I(t) > P̂i (t) + (2 · P̂j (t)) (5)

One advantage from cloud index tracking relative to greedy ap-
proaches is that it should scale well with increased adoption. If
everyone adopts greedy approaches that chase low prices by ag-
gressively migrating to the lowest cost VM, then prices are likely to
becomemore volatile. In contrast, if everyone adopts index tracking,
spot VM prices should become increasingly stable as everyone’s tar-
get price represents the fair market value of the idle cloud capacity.
This stability should reduce the migrations required to maintain
the index price, resulting in less lost work and higher availability.

4.2 Selection and Migration Policies
Before presenting our cloud index tracking policy below, we first
present two other migration policies that expose a tradeoff between
cost and availability. We compute the cost of using the policies
based on their gain and loss using the equations in the previous
section. We compute availability based on the number of migrations
and their associated downtime, as depicted in Figure 8.
Cost-centric Policy.This policy’s goal is to greedilymaximize cost
savings by aggressively migrating to the spot VM that is most cost-
efficient when accounting for the application’s resource utilization,
as described in prior work [25]. To account for resource utilization,
we re-normalize the VM’s cost from Equation 1 based on the actual
resources utilized at time t , namely Cutil ized andMutil ized .

P̆i (t) =
Pi (t)√

Cutil ized ·Mutil ized
(6)

The cost-centric policy then chooses the spot VM i that provides
the best value P̆i at time t . The policy only optimizes for cost, and
does not consider availability. The policy selects and migrates to a
new spot VM anytime it observes a lower cost spot VM emerge due
to changes in spot prices or an application’s resource utilization,
and the cost overhead of migration is less than the expected cost
benefit from the lower price. Note that the cost-centric policy does
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not consider the index price or Equation 8 when triggering a new
selection and migration.
Availability-aware Policy. This policy’s goal is to maximize avail-
ability, rather than cost savings, by minimizing the number of mi-
grations, and the associated downtime. To do so, the policy seeks
out spot VMs with the most stable prices that also yield a cost
less than the index price. To identify such spot VMs, the policy
computes the standard deviation of each spot VM’s price over a
pre-defined window in the past. Then, from among the spot VMs
with a price below the index price, it picks the one with the lowest
standard deviation. As above, the policy computes the price with
respect to the resources the application is utilizing at time t . As
noted above, there will always be at least one spot VM with a price
below the index price. The policy does not trigger a new selection
and migration until its current spot VM’s price rises above the
index price. As a result, the policy only migrates when necessary
to maintain the index price, and primarily selects VM’s based on
their price stability and thus availability.
Balanced Index Tracking Policy. We define our cloud index
tracking policy to be balanced and mind the gap between the two
policy extremes above by considering both cost and availability
when making decisions. To do so, we observe that the higher the
variability in a VM’s spot price, the higher the probability of trigger-
ing a migration to another VM to maintain the index price, which
decreases availability. Thus, variability and availability are related
to each other. In finance, the Sharpe ratio [24] is common metric
for balancing cost and variability in prices. The Sharpe ratio Si
estimates an asset’s risk-adjusted returns: for an asset i , it is the
ratio of the expected difference between the asset’s returns Ri and
the risk-free returns Rf r ee divided by the standard deviation of
the asset’s returns σi . Here, we adapt the standard Sharpe ratio by
replacing Rf r ee with our cloud index (I) to represent the returns we
should expect, and replacing Ri with P̆i (or the price of the current
VM per unit of resource utilized), where σi is the standard deviation
of P̆i . We compute P̆i and siдmai over the same window.

Si (t) =
Iд(t) − P̆i (t)

σi
(7)

The numerator estimates a VM’s “return” relative to the index
price, and the denominator quantifies its “risk” of deviating from
the index price and thus requiring a migration that results in un-
availability. Higher values of this ratio are better, since they indicate
a low cost and a high stability, i.e., availability. Thus, this policy

triggers a migration when the current VM no longer has the highest
modified Sharpe ratio, or balance factor, and Equation 5 holds.

5 IMPLEMENTATION
Our implementation builds on prior work on dynamic cost-driven
migration in HotSpot, which implements the reactive cost-centric
migration policy described in the previous section [25]. HotSpot
applications run in containers that are self-migrating: a daemon
runs on the VM (external to the container) and operates a feed-
back loop that continuously monitors and analyzes spot prices and
application resource utilization, and aggressively migrates to the
lowest cost spot VM. HotSpot already includes the mechanics for
price and utilization monitoring, requesting a new spot VM and
terminating a previous one, and migrating a network-accessible
container between spot VMs (using a stop-and-copy migration).
The HotSpot daemon is embedded into an Amazon Machine Image
(AMI) external to the container, and starts on boot-up. As a result,
the system requires no external infrastructure, e.g., such as a remote
master server that monitors prices and triggers migrations.

We build on HotSpot to implement cloud index tracking in this
paper. Specifically, our implementation runs applications inside
of Linux Containers (LXC), which only reliably support stop-and-
copy migration and not live migration. In addition, migrations
require applications to use remote storage, i.e., Amazon’s Elastic
Block Store (EBS), and virtual networking, i.e., Amazon’s Elastic
Network Interface (ENI). Each containerized application manages
itself without any external coordination with applications running
on remote VMs. Hotspot was implemented in python and integrates
with EC2’s boto3 library, LXC bindings, and various administrative
shell scripts. We retain the monitoring and migration components
but replace HotSpot’s greedy cost-centric migration policy with
our cloud index tracking policy from the previous section.

Figure 9 illustrates the modifications and extensions relative to
HotSpot. In particular, we implemented a standalone utility that
takes as input an application’s resource requirements and computes
the index price for a selected AZ, which can be used to estimate an
application’s total cost for a given running time. Thus, the utility
enables users to know their expected cost before starting an ap-
plication. We integrate a library version of this standalone utility
into our cloud index tracking module, which polls the price and
utilization monitoring engine once every 5 minutes to update the
gain from index tracking. This update also triggers the selection and
migration policy, which iterates through all spot VMs that satisfy
the resource requirements to determine whether to migrate to a
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Figure 10: Synthetic spot prices (left), and the cost-availability tradeoffs of different policies for our baseline job (right).
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Figure 11: Utilization phases for 3 jobs depicted in the left graph. The color of a phase indicates the best matching server type
(from Figure 10), and green-gray stripes indicate the existence of two best matching servers. The right two graphs show the
cost-availability tradeoff for different migration policies for each job.

new VM based on the migration policies described in §4.2. For the
most populous AZ (us-east-1a with 106 spot VMs), one iteration
of this feedback loop, including monitoring, tracking, and server
selection, takes an average of ∼2s to complete. The container mi-
gration uses a direct memory-to-memory transfer, which saves the
container’s state to the source VM’s memory, transfers it directly
to the memory of the destination VM, and then restores it, to mini-
mize the downtime and unavailability from migration. Migration
latencies are ∼1s/GB with a migration of a 32GB RAM container
taking ∼30s, and increasing linearly for larger memory sizes [25].

6 EVALUATION
Our evaluation demonstrates the tradeoff between availability and
cost exposed by the migration policies in §4.2, and shows that cloud
index tracking’s balanced policy combines predictable and low costs
with high availability. We first evaluate cost and availability for all
policies under different synthetic price characteristics and appli-
cation workload scenarios using a real prototype running on EC2.
We then use real price data from EC2 and workload traces from
a production cluster to drive simulations, and compare cloud in-
dex tracking with existing static approaches, such as SpotFleet [4],
that do not migrate as conditions change, and highly reactive ap-
proaches, such as HotSpot [25], that continuously chase low prices.

6.1 Cost-Availability Tradeoff
We compare the cost-availability tradeoff of selection and migra-
tion policies from §4.2 using our prototype implementation on EC2.
We generate synthetic application workloads and pricing signals
to enable precise control over the different parameters that affect
the cost-availability tradeoff. As a result, we replace a small set of
EC2 API function calls in our prototype, such as those that query

real-time spot prices, with simulated calls. We also run a synthetic
job that enables us to precisely control its CPU and memory us-
age. Specifically, we use the lookbusy synthetic load generatior,
which can be configured to consume a precise amount of CPU and
memory resources [8]. Our baseline lookbusy job runs for 1 hour
on a reference m4.2xlarge and has 2 distinct resource utilization
phases, each thirty minutes long. The first phase consumes 4 vC-
PUs at 100% utilization and 16GB memory, while the second phase
consumes 2 vCPUs and 8GB memory.

To enable repeatable experiments, we generate synthetic spot
price traces for 4 spot VMs: the m4.large, m4.2xlarge, c4.2xlarge
and r4.xlarge. We choose these VMs, since the vCPU allotment
varies between 2 and 8, and their memory capacity varies between
8GB and 32GB, which covers the entire spectrum of our applica-
tion’s resource utilization. We model their dynamic spot prices as
follows: the m4.large has an average price of 4.5¢/hour with a
standard deviation of 0.5; the m4.2xlarge has an average price of
8.5¢/hour and a standard deviation of 0.5; the c4.2xlarge has an
average price of 6.5¢/hour with a standard deviation of 1; and the
r4.xlarge also has an average price of 6.5¢/hour with a standard
deviation of 1.1. Figure 10(left) illustrates these spot prices charac-
teristics for each VM. Note that these average prices are absolute,
and cover a range of costs per unit of CPU and memory. For exam-
ple, the c4.2xlarge is 2¢ cheaper per hour than the m4.2xlarge,
but has the same vCPU allotment and 16GB less memory. In our
experiments, we generate a new spot price uniformly randomly
each minute such that the hour-long price trace adheres to the
average prices and standard deviations above across all 60 price
changes. As in EC2, we assume a per-second billing model.
Baseline Job Performance. Figure 10(right) shows both the cost
and availability from running our baseline job above under the 3
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Figure 12: Cost-availability tradeoff of different policies as
the price volatility changes. The x-axis is the increase in the
standard deviation of prices relative to Figure 10.

different policies—cost-centric, availability-aware, and balanced—
from §4.2. We normalize the cost on the y-axis to that of the ref-
erence VM that costs the index-level, i.e., the average across all
VMs. We observe that all policies yield a lower cost than the cloud
index, indicating that the price differentials in our synthetic traces
are large enough to incentivize even the availability-aware policy,
which prioritizes stability, to migrate. Also, as expected, the cost-
centric policy, which aggressively chases low prices, has the lowest
overall cost, while the availability-aware policy, which discourages
migrations, has the highest availability. Our balanced policy, which
uses a modified Sharpe ratio to consider both cost and price vari-
ability, achieves a balance between cost and availability, coming
within 12% of the cost-centric policy’s cost and within 1.7% of the
availability-aware policy’s availability.
Changing Job Characteristics. We next modify the baseline job
from above to vary its resource utilization. We depict the modified
resource utilization patterns in Figure 11(left). The resource varia-
tions are such that the application could be executed on at least one
of the four target spot markets at all loads. Figure 11(right) shows
the effect on cost and availability from running the three different
jobs. As the figure shows, the availability-aware policy does not
change across the jobs, as it optimizes for stability and not cost
savings, so it performs no migrations in each case. However, both
the cost-centric policy and the balanced policy incur increasing cost
overheads as the application’s resource utilization becomes more
volatile. The increased volatility in utilization causes the policies to
trigger more migrations, since, even though the spot prices remain
the same, the price per unit of utilized resource has become more
volatile. Thus, the cost overhead and downtime due to migrations
increases, as the job’s resource utilization becomes more volatile.
Since the balanced policy does not react to changes in prices or
resource utilization as quickly as the cost-centric policy, as it also
considers price volatility in determining whether to migrate, its
cost increases are less. For the same reason, the balanced policy
maintains a higher availability compared to the cost-centric policy.
Changing Spot Price Characteristics. We also vary the spot
price characteristics relative to our baseline experiment above. To
do so, we increase the standard deviation of the price changes by
the percentage represented on the x-axis of Figure 12. A higher
percentage indicates an increase in price volatility. The left graph
shows that both the cost-centric and balanced policies improve their
cost as market volatility increases, even though the average prices
have remained the same. The price volatility creates an opportu-
nity to benefit from price differentials by migrating. Interestingly,

the availability-aware policy, when forced to migrate under more
volatile conditions, lowers its costs as well, although not as much
as the other two policies. As expected, the right graph shows that
availability decreases as the price volatility increases due to the
increasing number of migrations. As before, the balanced index
tracking policy lies between the cost-centric and availability-aware
policy, having a cost and availability between the two extremes.
Result. The balanced index tracking policy, which uses a modi-
fied Sharpe ratio that considers both price magnitude and volatility
when making migration decisions, balances both cost and availability,
achieving a low cost near that of the cost-centric policy and a high
availability near that of the availability-aware policy.

6.2 Cloud Index Tracking on EC2
We use simulation to evaluate cloud index tracking on real EC2
price traces using production job traces over a long period of time
under different policies. We experiment with three policies and two
different types of jobs, as described below. For these experiments,
we use EC2 spot prices from the us-west-1 region from 2017/03
through 2017/08. We run 3 trials, one for each of the region’s AZs
(1a, 1b, 1c), whose index prices are shown in Figure 3, and report
the maximum, minimum, and average in the graphs. While each
AZ consists of 79 Linux spot VMs, every job considers only the
set of spot VMs that meet its minimum resource requirements. We
evaluate three policies: a static approach, the cost-centric policy
from above, and our balanced index tracking policy. The static
approach selects the optimal spot VM based on its average price
and workload characteristics, and runs on the VM until it is revoked,
i.e., when its price rises above the on-demand price, and or the job
completes. The static approach is similar to EC2’s SpotFleet tool,
which uses the same policy. Our cost-centric policy is similar to
HotSpot [25] and other approaches that aggressively migrate to
chase low prices. Finally, our balanced policy uses index tracking.

We examine the performance of two different applications that
are sensitive to downtime and unavailability. Applications that are
not sensitive to unavailability can use the aggressive cost-centric
migration policy, as there is no penalty for frequent migrations
beyond their associated cost overhead.
Long-running, Occasionally-Interactive Applications. Exam-
ple applications include data sink servers for IoT devices, cryptocur-
rency miners, and peer-to-peer file trackers. These applications can
tolerate occasional downtime and restarts due to revocations, but
increasing unavailability does decrease the application’s utility. We
simulate running these applications for a 6 month period, such
that they require a minimum of 2 vCPUs and 10GB memory. While
their performance degrades below this resource capacity, it does
not scale up with additional resources. Given this level of resource
consumption, we can migrate the application using a stop-and-copy
migration with a downtime of 30s. Finally, the application incurs
a downtime of 90s on a VM revocation to acquire and configure a
new spot VM, and then restart the application.

Figure 13a shows both the overall cost and availability of running
the application on spot VMs over the 6month period under each pol-
icy. To establish a baseline, we simulate running the application on
the cheapest on-demand VM (the r4.large) that meets its resource
requirements, and then normalize the execution cost of all policies
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Figure 13: Cost-availability comparison of different policies for both long-running jobs (a) and BSP jobs (b).

to this baseline. The figure shows that all 3 policies are substantially
cheaper than using on-demand VMs, ranging from 29% the cost (for
the static policy) to 11% the cost for the cost-centric policy. Both
the cost-centric and balanced index tracking policy have a cost
near that of the index price, represented by the dotted line, with
both achieving >50% cost reduction relative to the static approach.
However, the static policy and balanced policy achieve three 9s
of availability, while the cost-centric policy has a 95% availability.
This indicates that aggressively chasing low prices yields little cost
reduction relative to index tracking, but significantly reduces avail-
ability. Over the 6 month period, the static policy experienced an
average of 4.33 revocations and 0 migrations; the cost-centric policy
experienced no revocations and migrated 4208 times on average;
and the balanced index tracking policy experienced 1 revocation
and only migrated 24.66 times on average.
Bulk Synchronous Parallel Applications. Many big data frame-
works that run in data centers, such as Hadoop and Spark, follow
a bulk synchronous parallel (BSP) programming model. These ap-
plications run parallel tasks on different servers that periodically
synchronize with each other. As a result, the downtime, or per-
formance degradation, for one task can negatively impact other
tasks, as all tasks must reach the synchronization point, i.e., barriers,
before the application can proceed. We experiment with BSP appli-
cations by randomly selecting 1000 jobs from a publicly-available
Google cluster trace [19]. Internally, each of these jobs comprise
multiple worker tasks, ranging from 10 to 500, that execute on sep-
arate servers, but periodically synchronize during their execution.
The traces report the CPU and memory consumption of each task
every 5 minutes. The job running times vary between 10 and 720
minutes. We execute each job under the different policies. Based on
the BSP characteristics above, our simulator i) restarts tasks if its
VM is revoked, which causes other tasks to pause until the restarted
task catches up, ii) pauses all tasks when any task is migrating, since
other tasks must wait for the migrating task to synchronize, and
iii) requires all tasks to complete before the job finishes.

Figure 13b(right) shows the cost and availability of executing the
jobs. For the cost, we normalize the y-axis to the cost of running
all jobs on the cheapest on-demand VM that satisfies their resource
requirements. The graph shows that the balanced index tracking
policy not only satisfies the index price, but also exhibits a 30-40%
lower cost than the other two policies. In this case, the performance

of the cost-centric policy degrades due to asynchronous migrations,
i.e., where one or a few workers migrate at different times, which
cause a small number of migrating workers to stall other work-
ers, causing them to waste resources waiting until these migrating
workers reach the synchronization point. Since the cost-centric
policy operates at the level of a single server, and does not consider
synchronization across servers, it performs poorly. In contrast, our
balanced index tracking policy has fewer migrations and they tend
to be synchronous, i.e., where all or most workers migrate at the
same time. Even the static policy, which never migrates, performs
better than the cost-centric policy since it does not incur the over-
head of migration. The static policy incurred a lower cost relative
to the long-running job, since the shorter job lengths reduced the
impact of periodic revocations. The availability follows a similar pat-
tern: the static and balanced policy have 4 and 3 nine’s availability,
respectively, while the cost-centric policy has 96% availability.
Result. Cloud index tracking yields a predictable cost near that of
the index price for both long-running and BSP applications, while also
achieving a high availability.

7 RELATEDWORK
There has been significant prior work on optimizing for variable-
priced spot VMs in different contexts. We summarize this work
below and its relationship to cloud index tracking.
Spot Price Modeling and Prediction. Systems can better opti-
mize for variable-priced VMs if they can model and predict their
prices. As a result, multiple prior works directly or indirectly pro-
pose methods of modeling and predicting spot prices [3, 7, 12, 33,
35, 36]. This work differs from our work in that it focuses on mod-
eling and predicting the prices of individual spot VMs, while our
work examines spot prices in aggregate using a price index. We
show that these aggregate index prices are more stable and pre-
dictable than individual spot VM prices. While individual pricing
models and prediction methods are subject to changing pricing
algorithms, our insight that aggregate prices tend to be more stable
and predictable than individual prices holds across different pricing
algorithms. Prior work often uses pricing models and predictions to
develop bidding strategies [21, 30, 39]. Such bidding strategies are
orthogonal to our work, since we assume a fixed bid. In addition,
EC2’s most recent pricing algorithm does not use user bids, i.e.,
their maximum price, as a direct input to their pricing algorithm.
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HandlingRevocations using Fault-tolerance.A separate thread
of work focuses on optimizing the cost of using spot VMs in the
presence of unexpected revocations due to price increases, which
impose a performance penalty on applications. This work gener-
ally treats revocations as failures and then optimizes the use of
fault-tolerance mechanisms, such as checkpointing and replication,
to balance their performance overhead, which increases running
time and cost during normal operation, with their performance
benefit, which decreases running time and cost if a revocation
occurs [20, 22, 23, 31]. Some of this prior work focuses on spe-
cific applications, such as Spark [20], and does not operate at the
systems level as with cloud index tracking. While this work also
includes spot VM selection policies, which balance the spot price’s
magnitude and volatility, the policies are static and do not dynami-
cally and transparently migrate applications as prices and resource
utilization change over time, as with cloud index tracking.
Cost-centric VM Selection and Migration Policies. A number
of prior works have implemented intelligent spot VM selection
and migration policies. For example, Smart Spot Instances [13] and
Supercloud [28] leverage nested VM migration policies to satisfy
various objectives, such as lower cost and access latency, respec-
tively. However, neither approach exposes a similar cost-availability
tradeoff, or increases the predictability of costs. As discussed in
§5, our index tracking policy builds on prior work on HotSpot,
which implements a cost-centric selection and migration policy
that aggressively migrates to the lowest cost spot VM [25]. As we
show, while HotSpot decreases costs, its frequent migrations result
in high overhead and unavailability. As a result, HotSpot is most
effective for applications that can tolerate any amount of downtime
and unavailability. In contrast, we focus on applications that can
tolerate some downtime and unavailability, but where their utility
decreases the more downtime they experience. We show that cloud
index tracking is able to achieve a predictable cost near that of the
index price, which is highly stable, while also achieving high avail-
ability. Finally, we have also used a cloud index to inform which
regions and AZs have lowest and least volatile prices [26].

8 CONCLUSION
This paper observes that as we aggregate spot prices for a group of
VMs, the aggregated price becomes more stable and predictable, and
then discuss the underlying reason for this stability based on current
cloud infrastructure and workload characteristics. We leverage this
insight to design a cost-predictive migration policy, which we call
cloud index tracking, that automatically migrates to a new spot VM
if its current price significantly deviates from the expected index
price. Our evaluation shows that cloud index tracking achieves a
predictable cost, near that of a cost-centric policy that aggressively
migrates to minimize cost, but withmuch higher availability, similar
to that of an availability-aware policy that infrequently migrates
to prevent downtime. Importantly, our insights above about cloud
index prices are independent of a particular pricing algorithm. For
example, EC2 changed its pricing algorithm in November 2017 to
decrease the volatility of individual spot VMs’ prices. However,
despite the change in individual spot prices, the magnitude and
variance of the index price did not significantly change.
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Figure 14: Index price of on-demand and reserved VMs in
the us-east-1 region since EC2’s inception.

EC2 altered their pricing algorithm to track long-term changes
in the supply of idle capacity, rather changes in both supply and
demand, i.e., changes in user bids. Since, as we discuss in §2.1, re-
cent work indicates that idle cloud supply and demand are stable,
individual spot prices, while still variable, have become more stable.
However, this stability appears to be due to applications not adapt-
ing to changes in their workload or prices, as many enterprise cus-
tomers treat their cloud infrastructure similar to their on-premises
infrastructure, i.e., they mirror their static on-premises infrastruc-
ture onto a static set of cloud VMs, which they hold regardless of
their utilization [14]. As applications become more sophisticated
and cloud native, they will increasingly adapt to changes in their
workload and prices, causing the supply of idle capacity to change
more frequently, which will require either price volatility to in-
crease, or an imbalanced supply and demand, i.e., periods where
capacity is idle or at 100% resulting in rejected requests.

EC2 likely changed their pricing algorithm to increase price
stability to imitate similar offerings from Google and Microsoft
that offer transient servers for a fixed-price. While this change
reduced some of the complexity of using spot VMs and much of
their demand-induced volatility, it also eliminated many of their
benefits. By not setting the price based on supply and demand, users
have less visibility into when their VMs may be revoked, i.e., they
could be revoked when the price is above or below their maximum
price, which makes it difficult to optimally configure applications to
minimize the performance impact of revocations [27]. In addition,
users cannot necessarily obtain spot VMs at any time under periods
of resource constraint if they are willing to pay a high enough price,
i.e., by forcing EC2 to revoke VMs from a lower-paying user. Since
cloud platforms are still growing rapidly, and cloud providers try to
provision them to say ahead of the demand growth, these periods of
constraint are currently rare. However, these periods may increase
if the growth of cloud platforms stabilize.

While we focus on the use of cloud indices for tracking short-
term changes in the price of spot VMs, they are also useful as a
general tool for tracking cloud prices over much longer time-scales.
This is especially important when making decisions about longer
term, multi-year investments, such as reserving VMs for multiple
years for an upfront price. To illustrate, Figure 14 shows the index
price trajectory of on-demand and reserved VMs in the us-east-1
region over the last decade. While reserved VMs are cheaper at
any given point in time, they require users to lock in a price for
multiple years. However, on-demand VMs experience steady price
reductions that reduce the savings relative to reserved VMs.
Acknowledgements.. This work is supported byNSF grant #1802523.



Cloud Index Tracking SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

REFERENCES
[1] 2017. AWS Global Infrastructure. https://aws.amazon.com/about-aws/global-

infrastructure/. (Accessed October 2017).
[2] 2017. Cmpute Inc. http://www.cmpute.io. (Accessed October 2017).
[3] Sara Arevalos, Fabio Lopez-Pires, and Benjamin Baran. 2016. A Comparative

Evaluation of Algorithms for Auction-based Cloud Pricing Prediction. In IC2E.
[4] Jeff Barr. 2015. Amazon EC2 Spot Fleet API - Manage Thousands of

Spot Instances with one Request. https://aws.amazon.com/blogs/aws/
amazon-ec2-spot-fleet-api-manage-thousands-of-instances-with-one-request/.
(May 15th 2015).

[5] Jeff Barr. 2016. Experiment that Discovered the Higgs Boson
Uses AWS to Probe Nature. https://aws.amazon.com/blogs/aws/
experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/.
(March 2016).

[6] Jeff Barr. 2017. Natural Language Processing at Clemson University - 1.1 Million
vCPUs and EC2 Spot Instances. https://aws.amazon.com/blogs/aws/natural-
language-processing-at-clemson-university-1-1-million-vcpus-ec2-spot-
instances/. (September 2017).

[7] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.
2013. Deconstructing Amazon EC2 Spot Instance Pricing. ACM TEAC 1, 3 (2013).

[8] Devin Carraway. 2017. Lookbusy - A Synthetic Load Generator.
http://www.devin.com/lookbusy/. (Accessed October 2017).

[9] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro, and John Wilkes. 2014.
Long-term SLOs for Reclaimed Cloud Computing Resources. In SoCC.

[10] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
SOSP.

[11] Eugene Fama. 1970. Efficient Capital Markets: A Review of Theory and Empirical
Work. The Journal of Finance 25, 2 (1970).

[12] Bahman Javadi, Ruppa Thulasiramy, and Rajkumar Buyya. 2011. Statistical
Modeling of Spot Instance Prices in Public Cloud Environments. In UCC.

[13] Qin Jia, Zhiming Shen, Weijia Song, Robbert van Renesse, and Hakim Weather-
spoon. 2016. Smart Spot Instances for the Supercloud. In CrossCloud.

[14] Cinar Kilcioglu, Justin Rao, Aadharsh Kannan, and Preston McAfee. 2017. Usage
Patterns and the Economics of the Public Cloud. In WWW.

[15] Frederic Lardinois. 2016. Spotinst, which helps you buy AWS spot instances,
raises $2M Series A. TechCrunch. (March 8th 2016).

[16] Jordan Novet. 2015. Amazon pays $20M-$50M for ClusterK, the startup that can
run apps on AWS at 10% of the regular price. (April 29th 2015).

[17] Xue Ouyang, David Irwin, and Prashant Shenoy. 2016. SpotLight: An Information
Service for the Cloud. In ICDCS.

[18] Roshni Pary. 2018. New Amazon EC2 Spot pricing model: Simplified purchas-
ing without bidding and fewer interruptions. https://aws.amazon.com/blogs/
compute/new-amazon-ec2-spot-pricing/. (March 13th 2018).

[19] Charles Reiss, John Wilkes, and Joseph Hellerstein. 2011. Google Cluster-usage
Traces: Format + Schema. Technical Report. Google Inc.

[20] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy. 2016. Flint:
Batch-Interactive Data-Intensive Processing on Transient Servers. In EuroSys.

[21] Prateek Sharma, David Irwin, and Prashant Shenoy. 2016. How Not to Bid the
Cloud. In HotCloud.

[22] Prateek Sharma, David Irwin, and Prashant Shenoy. 2017. Portfolio-driven
Resource Management for Transient Cloud Servers. In SIGMETRICS.

[23] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant Shenoy. 2015.
SpotCheck: Designing a Derivative IaaS Cloud on the Spot Market. In EuroSys.

[24] William Sharpe. 1994. The Sharpe Ratio. The Journal of Portfolio Management 21,
1 (1994).

[25] Supreeth Shastri and David Irwin. 2017. HotSpot: Automated Server Hopping in
Cloud Spot Markets. In SoCC.

[26] Supreeth Shastri and David Irwin. 2017. Towards Index-based Global Trading in
Cloud Spot Markets. In HotCloud.

[27] Supreeth Shastri, Amr Rizk, and David Irwin. 2016. Transient Guarantees: Maxi-
mizing the Value of Idle Cloud Capacity. In SC.

[28] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero, Weijia Song, Robert van
Renesse, and Hakim Weatherspoon. 2016. Follow the Sun through the Clouds:
Application Migration for Geographically Shifting Workloads. In SoCC.

[29] Rahul Singh, Prateek Sharma, David Irwin, Prashant Shenoy, and K. K. Ramakr-
ishnan. 2014. Here Today, Gone Tomorrow: Exploiting Transient Servers in
Datacenters. IEEE Internet Computing 18, 4 (April 2014).

[30] Yang Song, Murtaza Zafer, and Kang-Won Lee. 2012. Optimal Bidding in Spot
Instance Market. In Infocom.

[31] Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, and Prashant
Shenoy. 2015. SpotOn: A Batch Computing Service for the Spot Market. In SoCC.

[32] Supreeth Subramanya, Amr Rizk, and David Irwin. 2016. Cloud Spot Markets
are Not Sustainable: The Case for Transient Guarantees. In HotCloud.

[33] Cheng Wang, Qianlin Liang, and Bhuvan Urgaonkar. 2017. An Empirical Anal-
ysis of Amazon EC2 Spot Instance Features Affecting Cost-effective Resource
Procurement. In ICPE.

[34] Josh Whitney and Delforge Pierre. 2014. Data Center Efficiency Assessment.
Technical Report. Natural Resource Defense Council.

[35] Rich Wolski and John Brevik. 2016. Providing Statistical Reliability Guarantees
in the AWS Spot Tier. In HPC.

[36] Rich Wolski, John Brevik, Ryan Chard, and Kyle Chard. 2017. Probabilistic
Guarantees of Execution Duration for Amazon Spot Instances. In SC.

[37] Ying Yan, Yanjie Gao, Zhongxin Guo, Bole Chen, and Thomas Moscibroda. 2016.
TR-Spark: Transient Computing for Big Data Analytics. In SoCC.

[38] Youngseok Yang, Geon-Woo Kim, Won Song, Yunseong Lee, Andrew Chung,
Zhengping Qian, Brian Cho, and Byung-Gon Chun. 2017. Pado: AData Processing
Engine for Harnessing Transient Resources in Datacenters. In EuroSys.

[39] Liang Zheng, Carlee Joe-Wong, Chee Tan, Mung Chiang, and Xinyu Wang. 2015.
How to Bid the Cloud. In SIGCOMM.

http://www.cmpute.io
https://aws.amazon.com/blogs/aws/amazon-ec2-spot-fleet-api-manage-thousands-of-instances-with-one-request/
https://aws.amazon.com/blogs/aws/amazon-ec2-spot-fleet-api-manage-thousands-of-instances-with-one-request/
https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/
https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Aggregate Spot Price Characteristics
	2.2 Market Index

	3 Cloud Index Definition
	3.1 Cloud Index Definition
	3.2 Spot Price Data Analysis

	4 Cloud Index Tracking
	4.1 Index Tracking by Server Hopping
	4.2 Selection and Migration Policies

	5 Implementation
	6 Evaluation
	6.1 Cost-Availability Tradeoff
	6.2 Cloud Index Tracking on EC2

	7 Related Work
	8 Conclusion
	References

