
AI on the Edge: Characterizing AI-based IoT
Applications Using Specialized Edge Architectures

Qianlin Liang
University of Massachusetts, Amherst

Amherst, U.S.A
qliang@cs.umass.edu

Prashant Shenoy
University of Massachusetts, Amherst

Amherst, U.S.A
shenoy@cs.umass.edu

David Irwin
University of Massachusetts, Amherst

Amherst, U.S.A
irwin@ecs.umass.edu

Abstract—Edge computing has emerged as a popular paradigm
for supporting mobile and IoT applications with low latency or
high bandwidth needs. The attractiveness of edge computing
has been further enhanced due to the recent availability of
special-purpose hardware to accelerate specific compute tasks,
such as deep learning inference, on edge nodes. In this paper,
we experimentally compare the benefits and limitations of using
specialized edge systems, built using edge accelerators, to more
traditional forms of edge and cloud computing. Our experimental
study using edge-based AI workloads shows that today’s edge
accelerators can provide comparable, and in many cases better,
performance, when normalized for power or cost, than traditional
edge and cloud servers. They also provide latency and bandwidth
benefits for split processing, across and within tiers, when using
model compression or model splitting, but require dynamic
methods to determine the optimal split across tiers. We find
that edge accelerators can support varying degrees of concur-
rency for multi-tenant inference applications, but lack isolation
mechanisms necessary for edge cloud multi-tenant hosting.

I. INTRODUCTION

Edge computing has recently emerged as a complement
to cloud computing for running online applications with low
latency or high bandwidth needs [33]. Internet of Things (IoT)
and mobile applications are particularly well-suited for the
edge computing paradigm, since they often produce streaming
data that requires real-time analysis and control, which can be
optimally performed at the edge. Conventional edge computing
comes in two different flavors. Cloudlets [34] represent one
popular paradigm of edge computing that entails deploying
server clusters at the end-points of the network; by deploying
traditional servers at the edge, cloudlets enable “server-class”
applications to be deployed at the edge rather than the cloud.

Edge gateways represent a different flavor of edge com-
puting that involves deploying embedded nodes, individually
or in groups, to serve as the hub for applications such as
smart homes. Such edge gateways provide more limited com-
pute capabilities at the edge, but nevertheless provide useful
functionality, such as data aggregations and local on-node
processing for certain low-latency tasks. These two flavors of
edge computing provide very different tradeoffs. The latter
paradigm utilizes small form-factor hardware (e.g., Raspberry
Pi-class nodes), has low cost, low power consumption and also
constrained compute capabilities, which increases reliance on
the cloud. Cloudlet-style edge computing, on the other hand,
provides much greater compute capabilities at the edge, but

incurs higher hardware costs, larger form factor servers, and
higher power consumption; there is also less reliance on the
cloud for many applications.

Recently a third flavor of edge computing has emerged
that combines the key advantages of both the cloudlet and
edge gateway paradigms. This paradigm, which we refer to
as specialized edge architectures, has become possible with
the advent of special-purpose hardware designed to accelerate
specific compute- or I/O-intensive operations. In particular,
a number of edge hardware accelerators, such as Intel’s
Movidius Vision Processing Unit (VPU) [21], Google’s Edge
Tensor processing Unit (TPU) [17], Nvdia’s Jetson Nano and
TX2 edge GPUs [28], [29], and Apple’s Neural Engine have
emerged with the specific goal of supporting edge-based AI
applications, including computer vision, visual and speech
analytics, and deep learning inference.

By customizing silicon to a single, or a small, class of
applications, these hardware accelerators claim to provide
major performance improvements at much lower cost and
energy points when compared to traditional general-purpose
hardware. As a result, it is now possible to embed “wimpy”
edge nodes with these accelerators and approach the compute
capabilities of general-purpose servers (e.g., cloudlets) for
specific applications.1 Figure 1 depicts a 10 node cluster of
low-end Pi-class nodes equipped with Jetson Nano GPUs;
this entire embedded GPU cluster costs about $1,500 (or
approximately the cost of a single traditional server), consumes
only 90w at full GPU load, and measures 13x8x8 inches, an
order of magnitude smaller footprint than a server rack. As
a result, it opens up new possibilities for edge deployments
in power-constrained or space-constrained settings that are not
feasible with conventional flavors of edge computing.

In this paper, we address the question of how to rethink the
design of edge-based AI applications in light of specialized
edge architectures. Using an empirical approach, we seek
to quantitatively understand the benefits and limitations of
these architectures when compared to more traditional edge
and cloud-based systems. In particular, we seek to answer
three sets of research questions: (1) What are the price,
performance, and energy tradeoffs offered by emerging edge

1Of course, cloudlets can also be equipped with hardware accelerators,
further enhancing their capabilities.

Fig. 1. A 10-node cluster of low-power Jetson nano GPUs.

hardware accelerators when compared to traditional edge and
cloud computing? (2) How should modern IoT applications
exploit the distributed processing capabilities of specialized
edge nodes and the cloud by employing various types of split
processing? (3) How suitable are edge accelerators for sup-
porting concurrent edge applications from multiple tenants?

We seek to answer these questions through the lens of a
particular class of applications—edge-based vision and speech
processing—using an experimental testbed of several different
edge accelerators and embedded nodes. Our results show that
edge accelerators can yield up to 10-100× better normalized
performance, on a performance-per-watt and performance-per-
dollar basis, than general-purpose edge servers. They also
show that split processing on machine learning inference,
using model compression and model splitting, between device-
edge, edge-edge, and edge-cloud tiers can yield significant
bandwidth savings and latency benefits. Since the benefit can
vary by the model and workload, we also find that such split
processing must be done carefully on a per-application basis to
maximize benefits. Finally, we find that systems optimizations
such as model quantization and RAM model swapping can
enhance the degree of concurrency supported by edge accel-
erators but that their lack of performance isolation and security
can be a hurdle. Overall, our results show significant promise
for specialized edge architectures, but also point to the need to
address open research questions to fully realize their potential.

II. BACKGROUND

In this section, we present background on cloud- and edge-
based IoT applications as well as specialized edge architec-
tures for edge-based AI applications.

Cloud- and Edge-based IoT Applications: Many IoT devices
with networking (e.g., WiFi) capabilities employ a two-tier
cloud architecture depicted in Figure 2(a), where the device
transmits data to the cloud for processing. Examples of such
IoT devices include the Nest thermostat [26], Wemo smart
switch, and LiFX smart lights. It is also increasingly common
for IoT devices to use a three-tier architecture, depicted in
Figure 2(b), that leverages both the edge and the cloud [19].
Application processing is split between the edge and the cloud,
with the edge performing some initial processing of the data
and the cloud providing more substantive processing capabil-
ities. Battery-powered IoT devices, such as smart door locks
that use low-power wireless protocols (e.g., Bluetooth LE),
employ a three tier architecture and rely on an intermediate
edge node [20], [27], [38] to provide a gateway to the cloud.

Edge computing has also shown promise for applications,
such as augmented and virtual reality (AR-VR) [9] [43],
computation offloading [6], [13] [14], and online gaming [37],
which use Cloudlet-style edge clusters with more substantial
compute capabilities to provide low latency processing.

Edge-based AI workloads: An emerging class of edge
workloads, referred to as “AI on the Edge” or edge-based AI,
involves running machine learning or deep learning inference
on edge nodes. Some researchers have argued that such visual
analytics and machine learning inference on edge nodes is
poised to become the “killer app” for edge computing [5] [4].
This application use case has become promising due to the
proliferation of smart cameras and smart voice assistants that
generate significant amounts of video and audio data, which
requires vision and speech processing in real time. Doing so
involves deploying previously-trained deep learning models at
the edge to perform near real-time inference or predictions
on the video and audio data. Such inference may involve
tasks, such as image classification or object detection in video
feeds [18], [24], [40], [42] or speech recognition from voice
assistants to understand spoken commands—all of which have
low-latency and near real-time constraints.2

Special-purpose edge computing and edge accelerators:
Specialized edge computing has emerged as a new paradigm
in edge computing with the advent of edge accelerators that
target acceleration of machine learning and deep learning
inference tasks. Figures 2(c) and (d) depict edge computing
with specialized architectures, where one or more tiers (device,
edge, cloud) employ hardware accelerators. Each tier can
leverage such specialized hardware, when available, to either
boost the processing capabilities of that tier, which implies that
each tier has less reliance on higher-level tiers. Figure 2(d) is
a special case of Figure 2(c), where all application processing
is performed on the device or on the edge using specialized
hardware. In scenarios where the specialized edge is a cluster,
as in Figure 1, more than one edge node may be leveraged for
distributed edge processing.

Table I lists various edge accelerators and their characteris-
tics. Intel’s Movidius Neural Compute Stick (NCS) employs
a Vision Processing Unit (VPU) to accelerate deep learning
models for computer vision tasks, such as object detection
and recognition [21]. Google’s Edge Tensor Processing Unit
(TPU) [17] can accelerate any Tensorflow ML model inference
as long as it is compatible with the Tensorflow-lite framework.
Nvidia’s edge GPUs include the Jetson Nano GPU [28], as
well as the Jetson TX2 [29] GPU, which are both designed to
provide full-fledged GPU capabilities on low-end edge nodes
with a smaller power footprint than desktop- and server-class
GPUs. From a power standpoint, Nvidia’s Jetson Nano uses a
default power budget of only 5W, which is up to 40× lower
than desktop-class GPUs, while Google’s TPU uses a power

2For example, a user who uses a voice assistant to turn on a smart light
bulb using a spoken command expects the lights to turn on in near real time.
Similarly, smart cameras send real-time push notifications when they detect
something suspicious in their video feed, which requires low-latency real-time
processing of video.

Device Power (W) Memory Cost Accelerated Workloads
Intel NCS2 VPU 1 - 2 512 MB $99 vision, imaging
Google EdgeTPU 0.5 - 2 8MB $75 8-bit quantized TensorFlow lite model
Nvidia Nano 5 - 10 4 GB $99 any GPU workload; AI
Nvidia TX2 7.5 - 15 8 GB $399 any GPU workload; AI

TABLE I
CHARACTERISTICS OF EDGE ACCELERATORS

Cloud

IoT devices

Cloud

IoT devices

Edge node

Cloud
+ GPU/FPGA

IoT devices
with accelerator

Edge node +
accelerator

IoT devices
with accelerator

Edge node +
accelerator

(a) Two tier (b) Three tier (c) Specialized three-tier (d) Specialized two-tier
Fig. 2. Tiered architectures for IoT applications that use the device, edge, and cloud.

budget of only 2W. From a performance standpoint, all of these
hardware accelerators promise large performance improve-
ments for low-end edge nodes and, in some cases, server-like
performance, even when running on low-end Raspberry PI-
class nodes. Specialized hardware is also becoming available
for end-devices, which allows the processing to be done on
the device itself, when appropriate, rather than sending data
to edge or cloud servers. Examples include the Sparkfun
Tensorflow-lite hardware board for micro-controller-based IoT
devices [15] and the GAP8 IoT processor [35]

In general, specialized architectures use various forms of
distributed processing, with application processing split within
and across tiers. Processing may be split across device, edge
and cloud tiers by leveraging specialized hardware at each
tier, yielding vertical splitting. Processing at each tier can be
further split across nodes within that tier to leverage multiple
hardware accelerators, yielding horizontal splitting. Model
compression [36] and model splitting [23] are examples of
distributed ML inference that use such split processing.

III. EXPERIMENTAL SETUP AND METHODOLOGY

Problem statement: The goal of our work is to empiri-
cally study the feasibility of using a hardware-accelerated
specialized edge tier to achieve “server-class” performance of
cloudlet-style edge servers at the cost, power, and form-factor
of Pi-class edge nodes, with a specific emphasis on edge-based
AI workloads. To do so, our study addresses the following
questions: (1) What are the price, performance, and energy
benefits, if any, offered by edge hardware accelerators when
compared to general-purpose edge and cloud computing? How
do specialized edge nodes compare to traditional edge nodes
with respect to raw performance and normalized performance-
per-watt and performance-per-dollar? How do these benefits
vary with different workloads, such as image/video and audio
processing, and different deep learning models? (2) How
should IoT application exploit distributed and split processing
capabilities offered at various tiers? How are the benefits and

overheads of splitting application processing over centralized
processing at a single tier? Are there scenarios where per-
forming data processing at a single tier is better than splitting
application processing across tiers? (3) How capable are these
edge accelerators for supporting concurrent model execution
to provide multi-tenancy in edge clusters?

Experimental setup: Our experimental setup comprises a
small cluster of single-board computing (“Pi-class”) nodes
that are equipped with four edge accelerator platforms: Intel
Movidius NCS2 VPU, Google Edge TPU, Nvdia Jetson Nano
GPU, and Nvidia TX2 GPU. To compare with more traditional
edge architectures, we also consider a Raspberry Pi3 node as
an example of a resource-constrained edge device, and an x86
server with a 3.0GHz Xeon Skylake CPU as an example of a
cloudlet-style edge server. We also consider a NVIDIA Tesla
V100 GPU on Amazon EC2 p3.2xlarge cloud instance to
mimic a specialized edge server or specialized cloud server.

Workloads: Our workload consists of three common vision-
based image processing and speech-based audio-processing
tasks that arise in many edge-based AI applications:

• Image classification: The goal of image classification is to
assign a text label (i.e., “classify”) to an image based on
its contents. For example, a label such as “apple”, “dog”
or “car” may be assigned by the classifier based on the
image. Typically model inference yields multiple labels
with probabilities on the likely contents of the image.

• Object detection: Object detection is a harder task than
classification since it involves determining all objects of
interest that are present in the image, by computing a
bounding box around each such object, and then assign-
ing a probabilistic label to each object.

• Keyword spotting: Keyword spotting involves processing
an audio stream to detect and recognize the occurrence of
a set of keywords (e.g., ”Hey Siri” function on iPhone).

All three workloads use deep learning models, and there
has been a wealth of research on these problems over the

Workload Model Input size Model Params # Float operations Depth
name size (MB) (M) per inference (M) multiplier

Image Classification MobileNet V2 224× 224× 3 14 3.54 602.29 1.0
Inception V4 299× 299× 3 163 42.74 24553.87 -

Object Detection SSD MobileNet V1 300× 300× 3 28 6.86 2475.24 1.0
SSD MobileNet V2 300× 300× 3 66 16.89 3751.52 1.0

Keyword Spotting cnn-trad-fpool3 99× 40 3.6 0.94 410.89 -
TABLE II

CHARACTERISTICS OF THE DEEP LEARNING MODELS USED IN OUR STUDY.

past decade [16]. Pre-trained deep learning models are now
available for these tasks from multiple sources and these
models are designed to run on a variety of hardware and
software platforms. We use these pre-trained models for our
micro-bechmarking study since it allows us to run the same
standard model on all hardware devices, and also enables
others to repeat our experiments. Our experiments use the
following 5 models: MobileNet V2 and Inception V4 for
image classification, SSD MobileNet V1 and SSD MobileNet
V2 for object detection, and cnn-trad-fpool3 in [32] for
keyword spotting. Table II lists the key characteristics of the
models along with the default model configurations used in
our experiments.

IV. PERFORMANCE AND ENERGY MICROBENCHMARKS

Our first experiment involves comparing raw and normal-
ized performance and power of specialized edge nodes to
more traditional edge architectures comprising (i) resource-
constrained edge nodes (Pi3), (ii) x86 server-based edge nodes
(“cloudlet server”), and (iii) GPU-equipped x86 servers. We
microbenchmark various edge nodes under our three work-
loads (classification, object detection and keyword spotting)
and the corresponding models shown in Table II and measure
throughput and power consumption under these workloads.
Methodology: To ensure a fair comparison across hardware
platforms, we run the same model on all platforms and subject
it to the same inference workload. For image classification
and object detection, we use the CAVIAR test case Scenarios
dataset [31] as our inference workload. For keyword spotting,
we use the Speech Commands dataset [7] as our inference
workload. Although the model and the inference workload
used to drive the model are identical on all platforms, it should
be noted that the deep learning (DL) software platform used
to execute this model varies by device. This is because there is
no single DL software platform that runs well on all hardware
accelerators. While TensorFlow runs on many of our devices,
we found that it almost always had worse performance than
the native vendor-designed tool for running DL inference.

Thus, we choose the native vendor-recommended software
DL platform for each device since it yields the maximum
throughput and best results. Specifically, we use Intel Open-
vino [10] for the Intel VPU, the specialized edgetpu soft-
ware module for Google’s Edge TPU, and TensorRT [11]
for Nvidia’s Jetson Nano, TX2 and cloud GPUs. Finally,
we use TensorFlow to execute our models on all CPUs,
namely Raspberry Pi3 and Intel Xeon CPU. Our through-
put microbenchmark, written in Python, iteratively involves

making inferences using the above inference workloads and
computes throughput in term of inferences per second. In
addition to measuring sequential inference throughout, we
also measure the impact of batching inference requests on
the throughput—since batching is often used in production
settings to enhance the throughput of deep learning model
inference. Our power microbenchmarks measure the mean
power consumption as well as the total energy consumed
during an individual inference request.

We use a combination of hardware and software tools for
our power microbenchmarks. For USB devices such as Intel
VPU and Google EdgeTPU, we use a USB power meter
with data logging capabilities to measure the energy used
and instantaneous power consumption during inference. For
NVidia GPUs, we use nvidia-smi software profiling tool
that provides power statistics for NVidia GPUs [12]. For the
cloud-based Intel Xeon CPU and Raspberry Pi CPU, we use
the Turbostat Linux profiling tools [8] to measure the CPU
power usage; Turbostat also works in virtualized environments
such as cloud servers for power profiling.
Performance results: We begin with microbenchmarking our
hardware accelerators using the image classification workload.
Figure 3 shows the throughput and power usage results for our
two image classification models: Mobilenet V2 and Inception
V4. As shown in Table II, Inception is a more complex model
that is around 7× larger in size and parameters than Mobilenet.
Figure 3(a) depicts the mean inference throughput in terms
of frames/s for various hardware accelerators running these
models; note the log scale on the y-axis depicting throughput.

The figure yields the following observation: (1) All four
edge accelerators provide a significant increase in performance
when compared to a vanilla Pi3 edge node, yielding between
6× to 28× throughput increase for Mobilenet and 3.4×
to 70× throughput increase for Inception. (2) Interestingly,
some of the edge accelerators even outperform a modern x86
server processor, which satisfies their claims of “server-class”
performance using low cost hardware. Both Nvidia GPUs
outperform the x86 CPU by 1.7× to 3.5× for MobileNet and
have comparable to 2× higher throughput for Inception. The
VPU is the slowest of the four and yields about half the CPU
throughput, while the TPU is 5× slower for Inception but
1.9× faster for Mobilenet. (3) Not surprisingly, the cloud GPU
still holds a significant performance advantage over all edge
accelerators with 5× to 8× higher throughput than the fastest
edge accelerator (TX2).

While the throughput microbenchmarks above assume se-
quential inference requests, we next measure throughput us-

Pi
VPU TPU

Nano TX2 CPU GPU
10 1

100

101

102

103

Th
ro

ug
hp

ut
 (f

ra
m

es
 /

se
c)

0.27

2.99

0.93

9.23
18.91

5.36

100.11

3.11

19.64

85.64
43.16

89.19
43.54

729.03
Throughput for image classification

Inception V4
Mobilenet V2

0 10 20 30 40 50 60
Batch Size

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (f

ra
m

es
 /

se
c)

Batch Size vs. Throughput for Inception V4
Nano
TX2
CPU
GPU
VPU

Pi VPU TPU Nano TX20

1

2

3

4

5

Po
we

r (
wa

tt)

2.80

2.00

0.60

4.01

5.08
Power for edge devices running Inception V4

(a) Throughput (b) Batch Throughput (c) Power consumption
Fig. 3. (a)Throughput of edge and cloud devices for image classification. (b) The impact of batch size for edge and cloud devices for the Inception V4 model.
Pi and TPU are not shown here because Pi can only run with batch size of 1 for Inception V4 model and batching for TPU is not supported. (c) Power
consumption of edge devices for the Inception V4 model. The server CPU and GPU consume 131.26W and 111.66W, respectively, for the same model.

Pi
VPU TPU

Nano TX2 CPU GPU

10 1

100

101

102

Th
ro

ug
hp

ut
 p

er
 W

at
t

0.05

1.50 1.55 1.13
1.60

0.04

0.900.69

12.28

142.73

5.91
8.45

0.35

8.80

Throughput per watt for classification
Inception V4
Mobilenet V2

Pi
VPU TPU

Nano TX2 CPU GPU

10 2

10 1

100

Th
ro

ug
hp

ut
 p

er
 d

ol
la

r
0.008

0.030

0.012

0.093

0.047

0.002

0.014

0.089

0.198

1.142

0.436

0.224

0.015

0.099

Throughput per dollar for classification
Inception V4
Mobilenet V2

(a) Throughput per watt (b) Throughput per unit cost
Fig. 4. Normalized performance per watt and per unit cost for various devices. Price data used for normalization is shown in Table I

Workloads Models Pi VPU TPU Nano TX2 CPU GPU

Image Classification MobileNet V2 3.11 19.64 85.64 43.16 89.19 43.54 729.03
Inception V4 0.27 2.99 0.93 9.23 18.91 5.36 100.11

Object Detection SSD MobileNet V1 1.39 10.66 21.09 23.97 46.90 21.23 499.83
SSD MobileNet V2 1.10 8.37 17.90 19.64 36.34 17.44 372.74

Keyword Spotting cnn-trad-fpool3 15.85 26.65 33.31 299.98 449.15 201.33 2314.91
TABLE III

THROUGHPUT IN INFERENCES PER SECOND

ing input batching. Batching of multiple inputs enables the
hardware accelerator to parallelize model inference, thereby
increasing hardware utilization and the resulting throughput.
We vary the input batch size from 1 to 64 and measure
the inference throughout for different hardware accelerators.
Figure 3(b) depicts the throughput results for the Inception
model (results for Mobilenet are similar and omitted due to
space constraints). The figure shows that batching is very
effective for all GPUs; the throughout increases with batch
size but shows diminishing improvements beyond a batch size
of 16. A batch size of 16 yields 13.94× and 11.85× throughput
increase for Jetson Nano and TX2 GPUs, while a batch size
of 64 yields 30.17× and 23.79×. We also find that batching
is not effective for the VPU. We attribute this behavior to the
smaller memory capacity of these devices that reduces their
effectiveness for batched input processing. Moreover, at the
time of writing, batching is not supported for EdgeTPU.

Power results: Finally, Figure 3(c) plots the mean power

consumption of various hardware devices when performing
inference.3 We also measured the total energy consumed per
inference request but omit those results here since they directly
correlate to the mean power usage. As shown in the figure, the
TPU is the most power-efficienct device and consumes only
0.6 watts during inference, with the VPU being the next most
power efficient with a power consumption of 2 watts. The
Jetson Nano and TX2 GPUs consume 4.01 and 5.08 watts on
average during inference. In contrast, the Tesla Cloud GPU and
the Intel Xeon CPU consume 111.66 and 131.26 watts during
inference, significantly higher than the edge accelerators.
Normalized performance: Figure 4(a) and (b) plot the nor-
malized throughput of various hardware devices with respect
to power and cost. The normalized metrics of performance
per watt and performance per dollar, respectively, enable a
different comparison of these devices in constrast to using

3The plot depicts power consumption of only the accelerator or the CPU
and does not include power consumed by the rest of the node or its peripherals.

raw performance or power. Figure 4(a) plots the throughput
per watt for various devices. When normalized for power
consumption, all edge accelerators outperform the x86 CPU
by 10-100× and become comparable or outperform the cloud
GPU. Due to their low power consumption, the TPU and
VPU offer the highest performance per watt across all devices.
Overall, the performance per watt is 25.5 to 77% higher for the
various edge accelerators when compared to the cloud GPU
for the Inception workload. For Mobilenet, the TPU and VPU
yield a 16× and 1.3× better performance per watt than the
cloud GPU, respectively. Figure 4(b) plots the throughput per
dollar cost for all devices. Once again, we see that all edge
accelerators provide a higher throughput per dollar cost than
the cloud GPU and x86 CPU due to their low cost. Even the
TX2 GPU, which has a relatively high list price of $399, yields
a 1.3× better performance per dollar cost than the cloud GPU.

Next, we repeat the above experiments for the object detec-
tion and keyword spotting workloads. Table III summarizes the
inference throughput obtained for various hardware devices
under various deep learning models and workloads. While
there are some variations in throughput across audio and image
workload and different models, the broad results from Figure
3 hold for these results. All edge accelerators provide very
significant throughput improvements over low-end edge nodes,
such as the Raspberry Pi, and many outperform even a x86
server processor. Broadly, the TX2 edge GPU provides the
highest throughput across the four edge devices; performance
can be roughly ordered as VPU, TPU, Jetson Nano, and TX2
for various workloads. The cloud GPU continues to provide
the greater raw performance across all devices, but becomes
comparable or slightly worse than the accelerators on a a
normalized performance per watt and performance per dollar
basis (not shown here to due to space constraints)—similar to
the trends shown in Figure 4.
Key takeaways: On a raw performance basis, we see a
rough performance order across edge accelerators for inference
workloads, namely VPU < TPU < Nano < TX2. Edge
accelerators provide performance that is within one-half to
3.5× that of x86 server processors. When normalized for
power and cost, edge accelerators easily outperform traditional
server processors by 10-100× and become comparable to or
better than even server GPUs. All edge accelerators exhibit
very low power consumption, ranging from 0.6W to 8W,
which is more than an order of magnitude lower than the server
CPU and GPU. These results indicate that specialized edge
architectures are very attractive for edge applications in power
or space-constrained settings. Further, they have the potential
to replace traditional (“cloudlet-like”) x86 edge servers for
deep learning inference workloads.

V. SPLIT PROCESSING ACROSS APPLICATION TIERS

Next, we evaluate the benefits of hardware accelerators for
distributed or split processing of edge-based AI workloads. We
consider both model splitting and model compression, which
are the two types of split processing that have been proposed.

A. Model Splitting

Our first method, model splitting, allows a deep learning
model to be split across multiple nodes within or across tiers.
In sequential splitting [23], the first k layers of the n layer
model run on the first node accelerator and the remaining n−k
layers run on the next node or tier. In this case, the inference
request is initially sent to the first node and the intermediate
output of the kth layer is then sent over the network to the
(k + 1)st layer running on the second node for subsequent
processing. Model splitting can also be done in parallel, where
a portion of each of the n layers is deployed on the first node,
with the remaining portions of each layer deployed on the
other node [46]. In this case, both nodes process the input
data in parallel by feeding it through the layers of the model.
Model splitting offers two possible benefits. First, in case
of sequential splitting, if the output of an intermediate layer
is smaller than the input, splitting the model at this layer
consumes less network bandwidth than sending the original
input to the higher tier for inference. Second, model splitting
is also useful when the full model does not fit into the memory
of a hardware accelerator; in such cases, the model can be
split—sequentially or in parallel—across two or more edge
nodes within a tier, enabling all processing to be performed at
the edge tier even though no single accelerator can host and
run the entire model.

Our first experiment evaluates the benefits of model splitting
using sequential splitting for image classification (using our
Inception V4 and MobileNet V2 models). Our experiments
were performed by splitting the model between an Edge TPU
and a cloud GPU. For each model, we systematically vary k,
the layer after which the model is split between the two nodes,
and measure the size of the intermediate output transmitted
between layers k and k + 1. Note that the inference result
will always be the same regardless of the chosen k, and only
the data transmitted between the split models varies with k.
We compare this overhead to the non-split model inference
where the entire model runs on a single node, and the input
image data is sent over the network to that node using (i)
uncompressed RGB format, (ii) lossless PNG compression and
(iii) lossy JPEG compression.

Figure 5(a) shows the result obtained by splitting the
Inception V4 model for image classification. As shown, the
intermediate output produced by each layer varies from layer
to layer. Interestingly, we find that all layers produce an
intermediate output that exceeds the size of the input data
when using using lossless or lossy compression to transmit
the input. Only transmitting the input data in uncompressed
RGB format incurs more network overhead. Thus, splitting at
any layer will consume more bandwidth than sending JPEG
or PNG compressed images to a non-split model. This result
shows that, for Inception V4, there is no benefit from splitting
the model between the edge and the cloud tiers, and it is better
to either deploy the full model entirely on the edge tier and
avoid all data transmissions to the cloud, or deploy the model
entirely in the cloud by sending compressed inputs to the non-

In
pu

t
Co

nv
2d

_1
a_

3x
3

Co
nv

2d
_2

a_
3x

3
Co

nv
2d

_2
b_

3x
3

M
ix

ed
_3

a
M

ix
ed

_4
a

M
ix

ed
_5

a
M

ix
ed

_5
b

M
ix

ed
_5

c
M

ix
ed

_5
d

M
ix

ed
_5

e
M

ix
ed

_6
a

M
ix

ed
_6

b
M

ix
ed

_6
c

M
ix

ed
_6

d
M

ix
ed

_6
e

M
ix

ed
_6

f
M

ix
ed

_6
g

M
ix

ed
_6

h
M

ix
ed

_7
a

M
ix

ed
_7

b
M

ix
ed

_7
c

M
ix

ed
_7

d0

1000

2000

3000

4000

5000

In
te

rm
ed

ia
te

 O
ut

pu
t s

ize
 (K

B)

Outputs size vs. Compressed Image size
Compressed, lossy
Compressed, lossless
Uncompressed RGB
Intermediate Output

In
pu

t
Co

nv
ex

pa
nd

ed
_c

on
v

ex
pa

nd
ed

_c
on

v_
1

ex
pa

nd
ed

_c
on

v_
2

ex
pa

nd
ed

_c
on

v_
3

ex
pa

nd
ed

_c
on

v_
4

ex
pa

nd
ed

_c
on

v_
5

ex
pa

nd
ed

_c
on

v_
6

ex
pa

nd
ed

_c
on

v_
7

ex
pa

nd
ed

_c
on

v_
8

ex
pa

nd
ed

_c
on

v_
9

ex
pa

nd
ed

_c
on

v_
10

ex
pa

nd
ed

_c
on

v_
11

ex
pa

nd
ed

_c
on

v_
12

ex
pa

nd
ed

_c
on

v_
13

ex
pa

nd
ed

_c
on

v_
14

ex
pa

nd
ed

_c
on

v_
15

ex
pa

nd
ed

_c
on

v_
16

Co
nv

_1

0

200

400

600

800

1000

1200

1400

1600

In
te

rm
ed

ia
te

 O
ut

pu
t s

ize
 (K

B)

Outputs size vs. Compressed Image size
Compressed, lossy
Compressed, lossless
Uncompressed RGB
Intermediate Output

(a) Inception V4 (b) MobileNet V2
Fig. 5. The intermediate output size of various layers of the models for image classification.

split model. Further, for Inception V4, the only benefit of split
processing is for handling a large memory-footprint model that
does not fit into the memory of a single edge accelerator. In
this case, we can split the model across two (or more) edge
node accelerators to accommodate it and perform distributed
inference within the edge tier using horizontal splitting.

Figure 5(b) shows the result obtained by splitting the
MobileNet V2 model for image classification. We find that the
behavior of this model is different from the previous case. The
figure shows that most layers, except for the first two, produce
intermediate output that is far below the size of the input
data when using lossless compression. We find that splitting
the model at layer 10 (labelled “expanded conv 6”) yields
nearly 8× network savings over using lossless compression
for a non-split model. The maximum savings are obtained
by splitting at layer 16 (“expanded conv 13”) with nearly an
order of magnitude reduction in the used network bandwidth.
Splitting even offers benefits when compared to using lossy
JPEG compression, with layer 16 yielding 30.46% bandwidth
savings. These network bandwidth savings come with a trade-
off however—the total latency of performing split inference on
two nodes is higher that performing a single non-split model
inference, as shown in Table IV. The table shows that the
latency of vertical splitting between the device-edge and edge-
cloud tiers as well as horizontal splitting between edge-edge is
always higher than the non-split inference latency (when using
VPU, edge TPU and cloud GPU as the accelerators for the
device, edge and cloud tiers). Thus, model splitting involves
trading lower network overhead for higher inference latency.

Key takeaways: Taken together, the results above show that
the benefits of model splitting are highly model dependent.
In many cases, significant network savings can be obtained
from splitting the model across tiers in an optimal manner,
but at the cost of higher overall inference latency. In other
cases, split processing is useful only within the edge tier when
the model does not fit in the memory of a single accelerator,

Split Split Latency Non-split
between Node 1 Node 2 Latency

device-edge 52.19ms 4.03ms 14.11ms
edge-edge 13.50ms 4.03ms 14.11ms
edge-cloud 13.05ms 0.50ms 1.45ms

TABLE IV
INFERENCE LATENCY FOR SPLIT VS. NON-SPLIT MODEL. THE

MOBILENET V2 MODEL IS ASSUMED TO BE OPTIMALLY SPLIT AT LAYER
16. NETWORK LATENCY, WHICH IS THE SAME FOR BOTH, IS OMITTED.

while splitting across tiers is not beneficial from a network
standpoint. Since the overheads and benefits will vary from
model to model, adaptive run-time techniques are needed to
analyze these overheads and determine whether to split and,
if so, an optimal split for each particular model.

B. Model Compression

Model compression is an alternative form of split processing
that takes a full deep learning model and constructs a smaller
compressed version of that model with a lower memory
footprint [36]. The smaller model is deployed for performing
inference on a lower tier node with less resources, while
the full model runs on a more capable higher-tier node. For
example, the small model can be deployed on the device
tier with a local accelerator, while the larger model runs on
an edge node with accelerator capability. Alternatively, the
compressed model can be deployed on an edge node with
the full model running on a cloud server (the difference
between these two scenarios is the relative sizes of the device-
edge and edge-cloud models). In either case, inference is
first run on the compressed model; since all models produce
a probability (confidence) value along with each inference
result, the method uses a threshold parameter to determine
if the output of the compressed model is of adequate quality,
in which case the output is assumed to be final. Otherwise
the input data is sent over the network to the full model at
the next tier for a second inference. Such an approach can
provide bandwidth and latency savings—if a majority of the

inference requests are handled by the compressed model, data
need not be sent to the next tier, yielding bandwidth savings,
and inference can be handled locally at lower latencies. The
threshold parameter allows for a tradeoff between accuracy,
bandwidth, and latency.

We now evaluate the efficacy of model compression-based
split processing using hardware accelerators. We consider
two scenarios, a device-edge case where a very small foot-
print model (6.4 MB) runs on the device tier accelerator
(emulated using a VPU, which is the slowest of our ac-
celerators) along with a larger (13MB) model running on
the TX2 edge GPU. We also consider an edge-cloud case
where we run a medium footprint (13MB) model on the
TX2 edge GPU and a larger 23 MB model on the cloud
GPU. We construct these models of varying size using Mo-
bileNet V2, yielding the mobilenet_v2_0.35_96 de-
vice model, mobilenet_v2_1.0_224 edge model and
mobilenet_v2_1.4_224 cloud model.

Figure 6(a) shows the accuracy of the three models on
the ImageNet validation dataset (obtained by comparing the
inference results with the ground truth in the dataset). As
can be seen, the smaller the compressed model, the lower
its accuracy. Figure 6(b) shows the network bandwidth usage
for the device-edge and edge-cloud scenarios under varying
thresholds; recall that the threshold determines the confidence
level under which the input image is transmitted to the next tier
for inference by the larger model. A lower threshold implies
we are willing to accept predictions with lower confidence
from the smaller model. As can be seen, as the threshold
increases, a larger percentage of inference requests fail to meet
the desired confidence using the compressed model and require
a second inference from the larger model, which increases the
network bandwidth usage. At a threshold of 0.5, the device-
edge case yields a 18% network savings when compared to
the non-split scenario; the savings for the edge-cloud are
higher at 41% since the larger edge model is able to handle
more inference requests locally than the smaller device model
of the device-edge case. The savings fall to 0.1% and 11%
for a higher threshold of 0.8 for the device-edge and edge-
cloud, respectively, and diminish asymptotically to zero as the
confidence threshold approaches 1.

Figure 6(c) shows the total latency of split processing for
different thresholds. The total latency includes the inference
latency of the compressed model, the network latency to
send data to the larger model if necessary, and the latency
of the second inference if the larger model is invoked. For
the non-split case, all requests incur network latency to send
data to larger model and also include the inference latency
of the larger model. In our experiment, the mean edge-
device network latency was around 4ms and the edge-cloud
latency to the EC2 cloud server was 47.76ms. In contrast, the
inference latency is highest at the device VPU and lowest at the
cloud GPU. The figure shows that for lower thresholds, split
processing offers lower overall latency since the compressed
model is able to produce results of “adequate” quality (i.e.,
above the threshold), which avoids a network hop and a second

inference by the larger model. As the threshold increases,
more results need to be sent to the larger model since the
compressed model is unable to produce results that meet this
higher confidence. This causes the overall latency of split
processing to rise due to more requests incurring a network
hop and a second inference.

The figure also shows a cross-over point beyond which
split processing incurs higher overall latency than non-split
processing—since the overhead of two inferences is higher
than performing a single inference. We find that the cross-
over point occurs at a relatively low threshold of 0.26 for
device-edge and 0.45 for edge-cloud scenarios. This implies
that when subjected to a random set of inputs (from the
Imagenet validation dataset), model compression in not able
to outperform non-split inference when high confidence output
is desired from the smaller model; model compression yields
lower latencies only when we are willing to accept lower
quality results from the compressed model.

We next consider a scenario where the inputs are not random
but skewed towards the common case. In this scenario, we
assume that the compressed model is well-trained for a small
number of frequently occurring inputs. The larger model is
invoked only for less common inputs for which the compressed
model yields less confident and less accurate results. This is a
likely deployment scenario for model compression where the
compressed model is designed to perform well for common
case inputs that are frequent, acting as a “filter” for such
inputs; less common inputs are sent to the larger model, which
is capable of handling a much greater range of inputs, for
further processing. To evaluate such a scenario, we construct
a skewed input dataset using the Imagenet validation dataset
where common-case inputs (e.g., “car”) occur very frequently
and all other inputs (e.g., all other vehicles) occur infrequently.
Figure 7 depicts the latency of the device-edge and edge-cloud
scenario for such inputs. As shown, model compression yields
much lower latency (3× for device-edge and 4× for edge-
cloud) than non-split inference for a wide range of threshold
values—since it performs inference well for the common case,
and avoids a second inference for the majority of the inputs.
The bandwidth savings (not shown here) are similarly higher
than the non-split case for a broad range of threshold values.

Finally, we evaluate the impact of the network latency on
these benefits. While the previous experiment used actual
network latency to the EC2 cloud server, we evaluate the
benefits of cloud latencies under different emulated cloud
latencies. We vary the cloud latency from 20ms to 200ms and
mesure the latency of using model compression relative to the
non-split case. As can be seen in Figure 8, the higher the
latency to the cloud server, the greater the benefits of using
the compressed model to perform a single local inference. For
a theshold of 0.8, 60ms cloud latency yields around 70.39%
latency reduction and 100ms cloud latency yields a 79.83%
lower latency. The figure also shows that higher thresholds
yield lower benefits, since it causes more inputs to be sent to
the larger model. Finally, for very high thresholds such as 0.99,
split processing is always worse than non-split inference, since

Device Edge Cloud0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy 0.41

0.68
0.71

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ba

nd
wi

dt
h

device-edge
edge-cloud
non-split

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

10

20

30

40

50

60

70

80

La
te

nc
y

(m
s)

split-device-edge
split-edge-cloud
non-split-device-edge
non-split-edge-cloud

(a) Accuracy (b) Bandwidth (c) Latency
Fig. 6. Accuracy of compressed models (a) and Bandwidth and latency savings for different cut-off confidence thresholds under model compression (b,c).
For non-split case, all requests are sent to edge/cloud from device/edge and processed using the larger model

it causes the vast majority of the inputs to undergo inference
at both the compressed and the larger model.
Key takeaway: Unlike model splitting which offers bandwidth
savings by trading off higher latency, model compression
can yield both bandwidth and latency reduction, but comes
with an accuracy tradeoff. The smaller the compressed model,
the lower its ability to perform local inference with good
confidence and accuracy and the lower the bandwidth savings
from split processing. Consequently, we find that edge-cloud
split processing yield higher savings than the device-edge
case due to the larger compressed model at the edge. The
latency reductions depend significantly on the nature of the
inputs. When optimized for frequent common case inputs,
model compression can yield very good latency reduction by
handling most of the frequently occurring inputs locally using
the compressed model. The benefits of model compression
also depend on the network latency—the higher the latency to
the cloud, the more valuable is the ability to handle inference
locally and avoid an expensive network hop. Conversely, the
closer the cloud servers, the lower are the benefits of split
processing using model compression.

VI. CONCURRENCY AND MULTI-TENANCY

Unlike clouds that are built using large data centers, edge
clusters are more resource-constrained than traditional clouds.
Thus, the ability to share servers across multiple users and ap-
plications is crucial for edge. Our final experiment focuses on
concurrency and multi-tenancy considerations for specialized
edge nodes. General-purpose nodes are capable of executing
concurrent tenant application due to OS features, such as
CPU time sharing and address space isolation. To understand
such benefits for specialized edge nodes, we conduct an
experiment to quantify the ability of hardware accelerators
to run concurrent models. To do so, we load multiple SSD
MobileNet V2 models, one for each tenant, onto each of
our four edge accelerators. Each tenant application thread
then invokes its loaded model for inference concurrently with
others. We vary the number of concurrent models and measure
the throughput of each device.

Figure 9 shows the inference throughput obtained for each
hardware accelerator for different degrees of concurrency. The

figure shows that all four edge accelerators are capable of
supporting multiple concurrent models and provide inference
throughput that is comparable to that under a single tenant
scenario. However, the maximum degree of concurrency varies
by device. Typically, the maximum concurrency will depend
at least on the device memory size and the model size. For
the SSD MobileNet V2 model used in this experiment, the
Nvidia Nano and TX2 can support a a maximum of 2 and 4
concurrent tenants, respectively. Surprisingly, the Intel NCS2
VPU can support 8 concurrent models despite being more
memory constrained than the GPUs. The Edge TPU has the
best concurrency features—it can arbitrarily scale the number
of concurrent models due to its ability to use the host RAM
to store models that do not fit on the device memory and its
use of context switches to swap models to and from RAM.
When used in conjunction with a Raspberry Pi3 device, we
are able to scale the number of concurrent models to 79
before exhausting memory. The figure shows a slow drop in
throughput as we increase the degree of concurrency due to
the increasing context switch overhead.

Further analysis revealed that the lower concurrency of the
edge GPUs is due to software overheads. We find that each
model, despite being 66MB in size, consumes 1244MB in
memory when loaded. This is because GPUs are designed to
be more general accelerators than the VPU and TPU, and its
TensorRT software framework is designed for more general
use and therefore more heavyweight (TensorRT libraries alone
consume 600MB). In contrast, the VPU and TPU are specifi-
cally designed for deep learning inference and the software
framework is heavily optimized for this use case, thereby
imposing low overheads.

In addition to exploiting host RAM for model swapping,
the edge TPU also employs model quantization to further
reduce memory overheads. Post-training model quantization
[25] is a technique to reduce the memory footprint of the
trained model—for example, by quantizing 32bit floating point
weights of the model to 8bit precision values. The edgetpu
runtime framework has quantization turned on by default,
enabling it to shrink the size of each model prior to loading.
The tradeoff though is a possible drop in accuracy of the

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

10

20

30

40

50

60

70
La

te
nc

y
(m

s)
split-device-edge
split-edge-cloud
non-split-device-edge
non-split-edge-cloud

Fig. 7. Latency savings when compressed
model produces high confidence results for
common case inputs.

25 50 75 100 125 150 175 200
Network Latency (ms)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
lit

 la
te

nc
y

/ N
on

-s
pl

it
la

te
nc

y threshold=0.70
threshold=0.80
threshold=0.99

Fig. 8. Inference latency with varying net-
work latency to cloud servers.

1.0 10.0 100.0
Degree of concurrency (# Models)

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (f

ra
m

es
 /

se
c)

max concurrency = 8

max concurrency = 4

max concurrency = 2

VPU
TPU
TX2
Nano

Fig. 9. Degree of concurrency supported by
various device accelerators.

models due to quantization of the model weights.4

Finally, we note that none of the devices offer any isolation
or security features for concurrent tenants. Currently a tenant
thread can access models belonging to other tenants and
even overwrite other models. The lack of isolation features
implies that despite supporting concurrent model execution,
the devices are not yet suitable for use in multi-tenant edge
clusters or edge clouds.

VII. SUMMARY AND IMPLICATIONS OF OUR RESULTS

In this section, we summarize our results and discuss their
broader implications. Our performance experiments revealed
that edge accelerators provide comparable or better normalized
performance than server CPUs and GPUs, outperform server
CPUs on a raw performance basis, and consume an order of
magnitude lower power for inference workloads. Our results
imply that specialized edge clusters can potentially replace
x86 edge clusters for such workloads. From a cost standpoint,
deploying a large number of edge accelerators is no worse, but
ofter better, than deploying a smaller number of more powerful
GPUs at the edge. Specialized edge nodes are especially well
suited for power and space constrained settings and open up
new possibilities that are infeasible using current architectures.

Our split processing experiments provided several interest-
ing insights. We found that model splitting across tiers can
offer good bandwidth savings (up to 4× in our experiments)
but this comes at the cost of higher overall latency due to
running split inference across a network. Even when there
are no benefits to be had from splitting models across tiers,
split processing within the edge tier is still beneficial for
running large memory footprint models on constrained edge
devices. Since the benefits are highly model dependent, our
results point to the need for run-time methods to dynamically
determine whether to split a model and how to do so optimally.

Unlike model splitting, model compression can offer both
bandwidth savings and lower inference latency, but only when
a majority of the inference requests can be handled by the
compressed model with high confidence and accuracy. Highly
compressed models or higher confidence thresholds diminish

4Frameworks such as Tensorflow provide tools to verify that any such drop
in accuracy is within tolerable limits.

the benefits of model compression, since they cause a higher
fraction of request to incur a network hop and a second
inference. Our results also imply that the latency benefits of
model compression will diminish as the latency to the cloud
reduces gradually over time due to the ever increasing number
of geographic cloud locations.

Finally, our concurrency experiments show that the degree
of concurrency depends on the device memory, model size,
framework software overheads, and system optimizations.
Higher device memory does not always translate to a higher
degree of concurrency, especially if the run-time framework
is not memory-optimized. Conversely, devices with a small
amount of memory can support a high degree of concurrency
by heavily optimizing the run-time framework and employing
optimizations, such as model swapping from the host memory
and quantization of the model parameters. However, we find
that the lack of isolation and security features between the
concurrent models is a barrier for their use in multi-tenant
edge cloud environments.

VIII. RELATED WORK

Recent work on running deep learning applications on the
edge falls into three categories: (i) cloud-only, (ii) edge-only,
and (iii) collaborative edge-cloud. Cloud-only approaches [1]–
[3] allow devices or the edge to offload compute-intensive
inference to the cloud but at the expense of higher latency. In
the context of edge-only approaches, pCAMP has compared
various ML frameworks (TensorFlow, Caffe2, MxNet etc)
on various edge devices (and found that not all frameworks
support all devices) [44]. The efficacy of a 2-layer keyword
spotting model and various CNNs on edge accelerators have
also been studied [7], [30], [41]. None of these above efforts
have considered split processing across tiers

Recent efforts have investigated collaborative edge-cloud
split processing. Shadow Puppet [39] implements edge caching
of results to reduce cloud processing. Several techniques to
split DNN-based model and partition them between edge
and cloud have also been studied [22], [23], [36], [45],
[46]. However, edge-edge or device-edge splitting as well as
accelerators-based splitting were not a focus of these efforts.

IX. CONCLUSIONS

In this paper, we conducted an experimental study to
evaluate the benefits and tradeoffs of using specialized edge ar-
chitectures when compared to traditional edge architectures for
running edge-based AI applications. Our experimental study
showed that today’s edge accelerators can provide comparable,
and in many cases better, performance, when normalized
for power or cost, than edge servers. We found that split
processing workloads can yield good bandwidth or latency
benefits, but these benefits were highly dependent on how the
splitting was done from a model and tier perspective. We found
that edge accelerators could support varying degrees of con-
currency for deep learning inference, depending on hardware
and software constraints, but lacked isolation mechanisms
necessary for cloud-like multi-tenant hosting. Overall, our
study found that many open issues still need to be addressed
to fully realize the benefits of edge accelerators.
Acknowledgements: We thank the anonymous reviewers for
their comments. This research was supported in part by Army
Research Labs Contract W911NF-17-2-0196 and NSF grants
1763834, 1836752, and 1908536.

REFERENCES

[1] Machine learning on aws. https://aws.amazon.com/machine-learning/.
[2] Machine learning service: Microsoft azure. https://azure.microsoft.com/

en-us/services/machine-learning-service/.
[3] Ml engine : Cloud machine learning engine (cloud ml engine). https:

//cloud.google.com/ml-engine/.
[4] Ganesh Ananthanarayanan, Victor Bahl, Peter Bodk, Krishna Chintala-

pudi, Matthai Philipose, Lenin Ravindranath Sivalingam, and Sudipta
Sinha. Real-time video analytics the killer app for edge computing.
IEEE Computer, October 2017.

[5] Ganesh Ananthanarayanan, Victor Bahl, Landon Cox, Alex Crown,
Shadi Noghabi, and Yuanchao Shu. Demo: Video analytics - killer app
for edge computing. In ACM MobiSys, June 2019. ACM MobiSys Best
Demo Runner-up Award, 2019.

[6] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa. To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing. In
2013 Proceedings IEEE INFOCOM, pages 1285–1293, April 2013.

[7] Peter Blouw, Xuan Choo, Eric Hunsberger, and Chris Eliasmith. Bench-
marking keyword spotting efficiency on neuromorphic hardware. CoRR,
abs/1812.01739, 2018.

[8] Len Brown. turbostat - Report processor frequency and idle statistics.
https://manpages.debian.org/testing/linux-cpupower/turbostat.8.en.html.

[9] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos,
Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai,
Roberta Klatzky, Daniel Siewiorek, and Mahadev Satyanarayanan. An
empirical study of latency in an emerging class of edge computing
applications for wearable cognitive assistance. In Proceedings of the
Second ACM/IEEE Symposium on Edge Computing, SEC ’17, pages
14:1–14:14, New York, NY, USA, 2017. ACM.

[10] Intel Corporation. Intel Distribution of OpenVINO Toolkit. https://
software.intel.com/en-us/openvino-toolkit.

[11] Nvidia Corporation. Nvidia tensorrt - programmable inference acceler-
ator. https://developer.nvidia.com/tensorrt.

[12] Nvidia Corporation. NVIDIA System Management Interface. https://
developer.nvidia.com/nvidia-system-management-interface.

[13] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: Making
smartphones last longer with code offload. In Proceedings of the 8th
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’10, pages 49–62, New York, NY, USA, 2010. ACM.

[14] Zheng Dong, Yuchuan Liu, Husheng Zhou, Xusheng Xiao, Yu Gu, Ling-
ming Zhang, and Cong Liu. An energy-efficient offloading framework
with predictable temporal correctness. In Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, SEC ’17, pages 19:1–19:12,
New York, NY, USA, 2017. ACM.

[15] SparkFun Electronics. Sparkfun electronics. https://www.sparkfun.com/.
[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

MIT Press, 2016. http://www.deeplearningbook.org.
[17] Google. Edge tpu - run inference at edge. https://cloud.google.com/

edge-tpu/.
[18] Giulio Grassi, Victor Bahl, Giovanni Pau, and Kyle Jamieson. Parkmas-

ter: An invehicle, edgebased video analytics service for detecting open
parking spaces in urban environments. In SEC ’17, August 2017.

[19] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodk, Leana Gol-
ubchik, Minlan Yu, Victor Bahl, and Matthai Philipose. Videoedge:
Processing camera streams using hierarchical clusters. In ACM/IEEE
Symposium on Edge Computing (SEC), October 2018.

[20] SmartThings Inc. Smartthings - smartthings hub. https://www.
smartthings.com/products/smartthings-hub.

[21] Intel. Intel movidius myriad x vpu. https://www.movidius.com/myriadx.
[22] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook

Moon. Ionn: Incremental offloading of neural network computations
from mobile devices to edge servers. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’18, pages 401–411, New York,
NY, USA, 2018. ACM.

[23] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge. In Proceedings of
ACM ASPLOS, Xian, China, 2017.

[24] Gorkem Kar, Shubham Jain, Marco Gruteser, Fan Bai, and Ramesh
Govindan. Real-time traffic estimation at vehicular edge nodes. In
Proceedings of the Second ACM/IEEE Symposium on Edge Computing,
SEC ’17, pages 3:1–3:13, New York, NY, USA, 2017. ACM.

[25] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks
for efficient inference: A whitepaper, 2018.

[26] Google LLC. Google nest learning thermostat. https://store.google.com/
us/product/nest learning thermostat 3rd gen.

[27] Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes,
Caleb Phillips, and Eyal de Lara. Cloudpath: A multi-tier cloud com-
puting framework. In Proceedings of the Second ACM/IEEE Symposium
on Edge Computing, SEC ’17, pages 20:1–20:13, New York, NY, USA,
2017. ACM.

[28] NVIDIA. Jetson nano - bringing the power of modern ai to mil-
lions of devices. https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-nano/.

[29] NVIDIA. Jetson tx2 high performance ai at the edge. https://www.
nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/.

[30] Dexmont Peña, Andrew Forembski, Xiaofan Xu, and David Moloney.
Benchmarking of cnns for low-cost , low-power robotics applications.
2010.

[31] CAVIAR project/IST 2001 37540. Caviar test case scenarios.
[32] Tara Sainath and Carolina Parada. Convolutional neural networks for

small-footprint keyword spotting. In Interspeech, 2015.
[33] M. Satyanarayanan. The emergence of edge computing. Computer,

50(1):30–39, Jan 2017.
[34] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for

vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23, Oct 2009.

[35] GreenWaves Technologies. Ultra-low power processor for machine
learning at very edge. https://greenwaves-technologies.com/.

[36] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Distributed
deep neural networks over the cloud, the edge and end devices. 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pages 328–339, 2017.

[37] Jeremy Hsu. How youtube paved the way for google’s stadia cloud
gaming service. https://spectrum.ieee.org/tech-talk/telecom/internet/
how-the-youtube-era-made-cloud-gaming-possible.

[38] Wink, Labs Inc. Wink — Wink Hub. https://www.wink.com/products/
wink-hub/.

[39] Srikumar Venugopal, Michele Gazzetti, Yiannis Gkoufas, and Kostas
Katrinis. Shadow puppets: Cloud-level accurate AI inference at the speed
and economy of edge. In USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 18), Boston, MA, 2018. USENIX Association.

[40] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S. Yang, and
M. Satyanarayanan. Bandwidth-efficient live video analytics for drones
via edge computing. In 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pages 159–173, Oct 2018.

[41] Shuochao Yao, Yiran Zhao, Huajie Shao, Shengzhong Liu, Dongxin
Liu, Lu Su, and Tarek Abdelzaher. Fastdeepiot: Towards understanding
and optimizing neural network execution time on mobile and embedded
devices. In Proc. 16th ACM Conference on Embedded Networked Sensor
Systems (SenSys), Shenzhen, China, November 2018.

[42] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li. Lavea: Latency-
aware video analytics on edge computing platform. In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
pages 2573–2574, June 2017.

[43] Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and Dipankar Ray-
chaudhuri. Towards efficient edge cloud augmentation for virtual reality
mmogs. In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, SEC ’17, pages 8:1–8:14, New York, NY, USA, 2017. ACM.

[44] Xingzhou Zhang, Yifan Wang, and Weisong Shi. pcamp: Performance
comparison of machine learning packages on the edges. In USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 18), Boston,
MA, 2018. USENIX Association.

[45] Z. Zhao, K. M. Barijough, and A. Gerstlauer. Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge clus-
ters. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11):2348–2359, Nov 2018.

[46] Li Zhou, Hao Wen, Radu Teodorescu, and David H.C. Du. Distributing
deep neural networks with containerized partitions at the edge. In 2nd
USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19),
Renton, WA, 2019. USENIX Association.

