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Abstract—

While there has been significant prior research on optimizing
the energy-efficiency of parallel applications, there has been much
less on optimizing them for green energy sources, which expose
rapid changes in power’s availability (or cost) due to the use of
local renewable energy (or utility demand response programs).
In this paper, we present energy management policies that utilize
active and inactive power capping to maximize the performance
of rigid and elastic parallel tasks when subject to variable
power constraints from green energy sources. We implement our
policies on CloudLab, and evaluate their performance on multiple
applications. Our results demonstrate the importance of designing
for green energy with variable power. For example, we show
that Graph500 requires 17% more time and 9% more energy to
complete when power varies based on real-time electricity prices
versus when power is unlimited at a fixed price. However, since
real-time prices are lower than fixed prices, the total electricity
cost of our best energy management policy when using real-time
prices is 67% less than when using fixed prices.

I. INTRODUCTION

Energy consumption is widely regarded as the primary
design constraint for scaling up the capacity of high per-
formance computing (HPC) platforms, mainly due to the
cost and carbon footprint of powering and cooling these
systems [5]. To illustrate the magnitude of this constraint,
recent estimates project that, if historical trends continue, the
power requirements of an exascale platform in 2020 would
be 200MW [5] with an annual electricity bill greater than
$2.5B [4] primarily composed of “dirty” energy sources. These
costs are unsustainable for even the highest-value applications.
To reduce costs and carbon emissions, researchers continue
to focus heavily on improving the energy-efficiency, i.e.,
the amount of computation done per joule, as evidenced by
the “green” variants of the TOP500 [2] and Graph500 [1]
rankings. Even so, reaching the current exascale design target
of 20-40MW by 2020 will require an order of magnitude
further improvement in energy-efficiency [13]. Achieving such
improvements appears unrealistic in the near-term [23].

Thus, in this paper, we target a promising new direction for
reducing energy costs and carbon emissions that focuses on
optimizing the ability to rapidly and efficiently adapt parallel
applications to dynamic changes in available power or cost.
Our work envisions a tight coupling between the electric grid
and large-scale computing platforms, enabling them to work in
concert to efficiently balance electricity’s supply and demand.
Today’s grid is grossly inefficient, primarily because, in most
cases, utilities still balance supply and demand largely by only
regulating supply, while granting consumers the freedom to use

as much power as they want, whenever they want. This free-
dom imposes a steep price along multiple dimensions, resulting
in wasted capital investments, high operational costs, excessive
transmission losses, and limited renewable penetration.

The grid’s inefficiencies have motivated recent “smart”
grid initiatives to reduce peak demands and better handle in-
termittent renewables using demand-side management, which
balances supply and demand, in part, by regulating electrical
loads’ energy usage, e.g., via real-time pricing or demand
response. These initiatives offer consumers the potential for
significantly lower costs, while also enabling consumers to
use more green energy from renewable sources. As one
example, Figure 1 plots electricity’s real-time price (in New
England’s five-minute spot market) over a recent day to
highlight that it varies dramatically even over short time-
scales. These fluctuations enable consumers to reduce costs
by increasing energy usage when prices drop, and decreasing
it when prices rise. In addition, the ability to adapt to power
fluctuations also enables platforms to reduce their carbon
emissions by increasing their reliance on local renewable
energy sources, which generate energy intermittently based
on changing environmental conditions. As outlined below,
HPC platforms are well-suited to exploit such demand-side
optimizations for four reasons.

• Sophisticated Power Management. HPC platforms al-
ready include advanced power management mechanisms
that are remotely programmable, making them capable of
rapidly and precisely varying their energy usage over a
wide dynamic power range.

• Delay-Tolerant Workloads. Many HPC workloads are
non-interactive batch jobs that are tolerant to delays in
execution, providing them the flexibility to adjust their
energy usage over time. The price elasticity of demand
is higher for these workloads than many household and
industrial loads, which are often interactive and not highly
responsive to price fluctuations.

• Large Energy Consumers. The power requirements of
future exascale-class HPC platforms (>20MW) will posi-
tion them as some of largest industrial energy consumers
with the highest electricity costs. As a result, they will
have the most to gain from adapting their energy usage
in response to changing grid conditions.

• Rapid Growth Sector. Despite energy-efficiency im-
provements, the power demands of HPC and data centers
continue to rise, increasing by an estimated 56% from
2005-2010 and accounting for 1.7-2.2% of U.S. electricity
usage [14], with usage expected to double every five
years [25]. If current trends continue, these platforms
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Fig. 1. Electricity’s real-time price fluctuates significantly every few minutes.

will comprise 20% of U.S. electricity by 2030 [17].
Thus, regulating their demand holds significant potential
to improve grid efficiency and stability, and reduce costs.

As we outline in Section VI, while researchers have recog-
nized that, based on the properties above, HPC and data centers
are ideal candidates for demand-side management, there has
been little prior research on designing long-running, massively-
parallel, and computationally-intensive HPC workloads for
power variations. Thus, our goal is to provide insights into
designing energy management policies that efficiently execute
parallel tasks in the presence of time-varying, dynamic power
constraints, which may derive from either the use of local
renewable energy sources or participation in a utility demand
response program. Our policies dynamically shift available
power among a set of nodes executing a parallel application
using active and inactive power capping techniques. Our hy-
pothesis is that a policy that combines active power capping—
to continuously reallocate available power among nodes based
on their real-time utilization—with inactive power capping—
to minimize the aggregate power consumption overhead—
outperforms other policies in the design space. In evaluating
our hypothesis, we make the following contributions.

• Green Energy Challenges. We outline the challenges
associated with optimizing parallel applications for green
energy sources with variable power. In particular, we focus
on parallel applications that exhibit cross-node dependen-
cies during execution, since these applications complicate
both active and inactive power capping. We then present a
model for a representative parallel application—based on a
parallel breadth first search (P-BFS)—as a reference point
for presenting our energy management policies.
• Dynamic Energy Management Policies. We propose

dynamic energy management policies that utilize both
active and inactive power capping to maximize parallel ap-
plication performance subject to variable power constraints.
We define dynamic and static policies that apply to both
rigid parallel jobs, which can only utilize active power
capping, and elastic parallel jobs, which can utilize both
active and inactive power capping.
• Implementation and Evaluation. We implement our poli-

cies on a prototype cluster, and evaluate their performance
using multiple applications. Our results demonstrate the
importance of designing for variable power. For example,
we show that the Graph500 benchmark requires 17% more
time and 9% more energy to complete when power varies
based on real-time electricity prices versus when unlimited
power is available at a fixed price. However, since real-time

prices are lower than fixed prices, the total cost of our best
energy management policy when using real-time prices is
67% less than when using fixed prices.

II. BACKGROUND

Our work assumes a parallel application that is subject
to dynamic power constraints, which may arise from either
the use of local renewable energy sources or participation
in a utility demand response program. Our goal is to finish
executing a parallel application as fast as possible given these
dynamic constraints. More formally, we aim to minimize a
parallel task’s running time given a power signal P (t), which
dictates an average power cap over each interval (t−τ, t]. Here,
τ is the length of each interval, which we assume is dictated by
the amount of energy storage capacity available. Since energy
storage is expensive to install and maintain, smaller values of
τ are better. The application defines its power constraint for
each interval (t, t+τ ] based on the energy it stored during the
previous interval (t− τ, t]. Thus, the power constraint at each
interval is known at the beginning of the interval.

A. Power Capping Mechanisms

Given an average power budget each interval τ , we must
distribute the available power among N nodes executing a
parallel application. We leverage existing node power capping
mechanisms, which ensure a node’s power usage does not
exceed a set threshold, to enforce a given distribution of power.
Power capping may be either active or inactive. Active power
capping uses Dynamic Voltage and Frequency Scaling (DVFS)
or C-state throttling, which rapidly toggles processors between
low-power idle C-states, to cap power without deactivating
a node. The advantage of active power capping is that it
keeps nodes active (albeit at a degraded performance level),
is transparent to application software, is highly responsive
(as power cap changes occur near instantly), and imposes a
low overhead to transition power states. However, the primary
disadvantage of active power capping is that it typically only
targets CPU power, which accounts for only a fraction of node
power usage, and thus its dynamic power range is limited. In
practice, active power capping is typically only able to lower
a node’s power usage to at most 50% of its peak power [6].

In contrast, inactive power capping transitions nodes to
an inactive state using either ACPI’s Suspend-to-RAM (S3)
or Suspend-to-Disk (S4) state. While inactive power capping
is able to reduce a node’s power usage to near zero, it
incurs a high temporal overhead to transition states, e.g.,
tens of seconds for S3 and minutes for S4, and prevents
any work allocated to an inactive node from making forward
progress. The temporal overhead also wastes energy, since the
node consumes energy while transitioning, but performs no
computation. Importantly, inactive power capping is visible to
applications, which must gracefully handle the dynamic loss
and addition of nodes. Due to its high overhead, inactive power
capping is only used when capping the power of clusters, since
it enables a wider dynamic power range than when only using
active power capping [24]. While inactive power capping is
not as widely used as active power capping, we show that
it improves performance under variable power relative to an
approach that only uses active power capping.



B. Parallel Task Model

Our energy management policies described in Section III
determine how to distribute the available power for each inter-
val [t − τ, t) given the two power capping techniques above:
active power capping, which may instantaneously adjust power
consumption between some Pmax and Pmin ≥∼ 0.50Pmax

while keeping a node active, and inactive power capping,
which incurs some overhead T on the order of seconds to
reduce power consumption to zero, but completely deactivates
the node. The goal of our policies is to minimize the running
time of a parallel task. Of course, parallel tasks may exhibit
a wide variety of communication patterns and inter-node
dependencies during their execution. Below, we illustrate key
elements of our energy management policies using a simple
representative example—a parallel breadth first search (P-BFS)
algorithm—which serves as a building block for designing
policies for tasks with more complex communication patterns.

P-BFS and other graph algorithms are a frequent subprob-
lem in a variety of data-intensive HPC analytics applications,
which is the primary reason it was chosen as the foundation of
the recently introduced Graph500 benchmark [1]. In practice,
P-BFSs are often massive in scope, searching graphs with tens
of billions of edges and vertices on platforms with tens of thou-
sands of cores [8]. Importantly, since the classic P-BFS [18]
is “level-synchronous,” it requires all-to-all communication
among nodes at each level of the graph to determine whether
a remote vertex has already been visited, i.e., by transmitting
all remote edges on each node to the node that owns them, or
transmitting all remote edges to a master node. Most non-
embarrassingly parallel tasks will include similar types of
barriers to synchronize their operation between phases.

While all-to-all synchronization barriers, which represent
a dependency between each pair of nodes, are already the
primary bottleneck for a P-BFS, consider the implications
when using variable power. When using active power capping,
reducing the power cap and performance level of one node will
affect the performance of all other nodes, since to complete
each level-synchronous step at each level of the graph, each
node must communicate with all other nodes. However, setting
all active power caps to the same value for each node may
not guarantee the same per-node progress, since each nodes’
progress depends on the portion of the input graph it is given
at each level. As a result, each node’s utilization and power
will vary within each phase. Inactive power capping imposes
a similar constraint, since a parallel task cannot continue
until every node completes its work. Thus, overall progress
is dictated by the slowest node to complete any phase.

Thus, the presence of both inter-node dependencies and
unpredictable performance across nodes (due to differences
in the partition of input data they receive) poses challenges
when power varies. Any data-intensive application, such as P-
BFS, which consists of a series of synchronization barriers will
exhibit such inter-node dependencies.

III. DYNAMIC ENERGY MANAGEMENT POLICIES

In this section, we outline the design space for our energy
management policies. We first propose policies that focus on
rigid parallel applications, which only rely on active power
capping. This is because rigid applications cannot adjust

the number of nodes being used while the application is
running. While active power capping affects performance, it is
transparent to the application, which enables rigid applications
to make use of it. Since inactive power capping deactivates
nodes, it has the effect of periodically reducing the number
of nodes an application is using; rigid applications cannot
handle such reductions, as they will be perceived as failures.
We then propose policies that leverage inactive power capping
for elastic parallel applications. In addition to actively capping
server power, these policies stretch and contract an elastic
application while it is running by activating and deactivating
nodes to maintain a platform-wide power cap.

A. Rigid Parallel Applications

Many parallel applications are rigid, including most MPI
applications. While MPI 2.0 defines a dynamic process man-
agement scheme for elasticity, it is not commonly used.
Assuming a parallel application, such as the P-BFS from the
previous section, distributes the same amount of work to each
node during each phase, and assuming each node is equivalent,
the optimal policy to minimize running time is to equally
distribute power among the nodes, such that each of the N
nodes’ active power cap is set to Pcap = Pavailable(t)/N
at each time t. We call this a balanced energy management
policy. Since the completion time of each phase depends on all
nodes in each phase completing, equally dividing the power
among nodes, akin to load balancing, is the optimal policy. If
any node were to receive less than this allocation, that node
would serve as the bottleneck for completing each phase.

Unfortunately, in practice, nodes do not complete work at
the same rate, largely due to differences in the partition of the
input assigned to each node for each phase. For example, with
a P-BFS, each node receives some partition of the graph, which
it traverses. Since partitioning the work a priori into exactly
equal partitions is not possible, node utilizations may fluctuate
within a phase of execution based on the characteristics of
their input data. For instance, one node may receive a dense
subset of the graph, while another may receive a sparse
subset. Other differences between nodes may also contribute
to differences in per-node utilization, such as differences in
computing capacity, e.g., 1.5Ghz versus 2.0Ghz, or in the set of
background systems-level processes executing at any time. To
illustrate, Figure 2 demonstrates the variance in power usage
(due to differing node utilizations) for two equivalent nodes
during the same execution of a large P-BFS using the reference
MPI implementation of the Graph500 benchmark. Figure 2
demonstrates that node power usage, and thus node utilization,
varies significantly between the nodes during execution, and
does not proceed in lock-step.

As a result of this variance, we can improve upon the pure
balanced policy above by employing a dynamic policy that
continuously reallocates power within each phase based on
node utilization. In contrast, the ideal balanced policy above
is a static policy, since it adjusts node power caps based only
on the available power and not node power usage. Our dynamic
policy begins each interval by setting the power cap such
that it equally divides power among nodes initially, but then
measures node utilization and power at short intervals, e.g.,
every second, and adjusts active power caps based on node
utilization levels. In particular, if any node is operating at less
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Fig. 2. Power fluctuations every 10 seconds for two worker nodes executing
the reference MPI implementation of the Graph500 benchmark.

than K% CPU utilization, the policy reduces its active power
cap such that it is above K% utilization, while progressively
increasing the active power cap of nodes operating above K%
utilization until they are below K% utilization. We set K near,
but less than, 100% to account for our relatively coarse per-
second measurement intervals; our prototype sets K = 95%.

While our dynamic policy is aware of how CPU utilization
changes with different active power caps based on profiling
information known a priori, at high utilizations, it does not
know how much more power a node near 100% utilization
can effectively use. Thus, the policy progressively increases
a node’s power cap every few seconds by a configurable
threshold, e.g., 10 watts (W). In addition, the policy equally
distributes the power taken from nodes (and available for
reallocation) among all nodes that are operating above 95%
utilization. In essence, our dynamic variant of the balanced
policy reduces wasted power by continuously (every second)
taking power away from nodes that are not using it, and
reallocating it to nodes that are using it.

B. Elastic Parallel Applications

As discussed above, elastic parallel applications can use
inactive power capping, in addition to active power capping,
to match available power. For example, if the available power
is 50% of a platform’s maximum power, then an elastic
application may meet the power cap by deactivating 50%
of the nodes, by setting the active power cap of each node
to Pcap = Pmax/2, or by some combination of the two
techniques. Of course, inactive power capping incurs a high
transition overhead—order of seconds-to-minutes depending
on the platform—relative to active power capping, which is
effectively instantaneous. Since the transition time represents
overhead where a node consumes energy, but does no useful
work, any use of inactive power capping must provide a benefit
that exceeds the cost of the overhead.

A straightforward policy that uses inactive power capping
is to greedily allocate available power at the beginning of
each interval such that the number of active nodes Nactive =
dPavailable/Pmaxe, where each node’s active power cap is set
to Pmax. Such a policy could also be used in conjunction
with the dynamic policy above to reallocate power within each
interval by adjusting each node’s active power cap. Relative
to active power capping, deactivating nodes with inactive
power capping is beneficial in reducing the fraction of the
available power that contributes to an active node’s overhead.
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Fig. 3. Our prototype system architecture and power manager.

For example, since each node’s idle power is roughly 50%
peak power, simply activating a node without doing any useful
work consumes a significant amount of power. This idle power
consumption effectively represents wasted energy that is due
to powering non-energy-proportional components, such as the
motherboard, disk, NIC, memory, etc.

Thus, this idle power consumption represents overhead
power for each active node, and the remaining power usage
above idle represents effective power, where only the effective
power contributes to actual program execution. While the
dynamic balanced policy from the previous section works well
if nodes cannot be deactivated, it incurs high overhead power
across all nodes, since all nodes must remain active regardless
of the available power. For example, consider a cluster with
10 nodes, each with an idle power of 100W and a maximum
power of 200W. If available power is 1200W, the available
power is 120W for each node, therefore, the total effective
power for cluster is 200W, i.e., only 17% of the available
power is being used effectively. By contrast, a greedy policy
would only activate six nodes, which increases the fraction
of effective power to 50%, and devotes more power to doing
useful work. In this case, the greedy allocation, which uses
inactive power capping, is significantly more energy-efficient
and will result in higher performance and lower runtime.

In addition to the greedy policy, to further reduce the
overhead power, we define an agile policy that determines the
optimal number of nodes to activate at the start of each interval.
To do this, we compute the overhead power associated with
each possible set of active nodes, from 1 to N , based on the
available power. Here, we assume that each node operates at
near 100% utilization; in this case, the policy activates the
number of nodes that minimize overhead power. Once these
nodes are active, the policy equally distributes the available
power between the active nodes at the start of the interval; the
policy may then employ the dynamic balanced policy among
the active set of nodes within each interval. Of course, the
length of each interval, the time to transition to and from the
inactive state, and the frequency of these transitions dictates the
overall transition overhead of our agile policy. We discuss the
benefit of our agile policy for these parameters in Section V.

IV. IMPLEMENTATION

We develop a prototype power manager to implement the
policies in the previous section. The power manager, depicted
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Fig. 4. The average solar (4(a)) and wind power (4(b)) generated over a day, as well as a power signal based on using a fixed budget to purchase electricity
at real-time prices in the five-minute spot market (4(c)).

in Figure 3, has three functions: monitoring power consump-
tion and available power, executing our energy optimization
policies, and deploying the policies by controlling power. The
prototype monitors nodes using an out-of-band server man-
agement card that supports the IPMI protocol, which supports
monitoring power at a 1Hz resolution at 1W granularity. We
cap active power in our prototype by controlling CPU power
states, e.g., via Dynamic Voltage and Frequency scaling and
changing C-states, and capping utilization. Since the servers
do not support inactive power capping via ACPI’s Suspend-
to-RAM (S3) state, we emulate S3 in our experiments by
disconnecting nodes from the network.

We experiment with the performance of multiple parallel
applications using our prototype and policies. Our primary ap-
plication is the reference MPI implementation of the Graph500
benchmark [1], which implements a P-BFS and forms the
basis for a large set of data-intensive parallel applications.
By default, the MPI implementation of Graph500 is rigid, in
that we cannot adjust the number of nodes it uses during its
execution. However, we also experiment with an elastic variant
of Graph500 by applying a method proposed by Raveendran
et al. [19] to transform a rigid parallel task into an elastic
one. In addition to Graph500, we also experiment with the
Weather Research and Forecasting (WRF) application [3]
and a Jacobi iteration application [11], which also use MPI.
The WRF Model is a novel mesoscale numerical weather
prediction application, while the Jacobi algorithm is a well-
known numerical method for solving linear algebraic systems
of n equations with n unknowns. The WRF power consumption
behavior is relatively stable; while the communication pattern
of Jacobi is similar to Graph500 with synchronization barriers
that make power consumption more variable.

Our experiments utilize power signals from real solar and
wind deployments, as well as signals based on real power
prices from the wholesale electricity market. For each power
signal, we select a representative day-long period with average
power readings every minute.1 The power signal for the solar
and wind traces is shown in Figure 4(a) and Figure 4(b).
For the energy price trace, we use the five-minute spot price
from the New England Independent System Operator (ISO)
on October 5, 2013 from 12am to 11:59pm. In this case, we
assume our system has a fixed budget for purchasing energy,
such that during a low price period it may purchase more
power, and during a high price period it must purchase less.

1For solar power, we selected an early Fall day, September 28, 2014 from
12am to 11:59pm. For wind power, we selected a typical spring day, April
26, 2014 from 12am to 11:59pm.
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Fig. 5. Power usage at different CPU load levels in our prototype six node
energy-agile cluster.

The resulting power signal is shown in Figure 4(c). Finally, to
compare results with different power signals, we normalized
all three traces such that they have the same average power.

V. PERFORMANCE EVALUATION

We evaluate our prototype in the CloudLab testbed [20]
using two types of servers: the ARM-based HP Moonshot
servers with 8 cores and 64GB memory, which are low-power
nodes designed for energy-efficiency, and the Intel-based Dell
R720 servers with 32 cores and 64GB memory, which are
high-power nodes designed for maximum performance. The
HP cluster consists of 65 nodes, while the Dell cluster consists
of 6 nodes. Each of the two clusters are equipped with IPMI
management card in order to monitor and control the real time
power consumption of each node. Figure 5 shows the active
power range of the two server types. As the figure shows, high-
power nodes have a significantly larger active power range than
low-power nodes. We evaluate both rigid and elastic scenarios.
Recall that in our rigid scenario, our policies can only use
active power capping, since they assume the application cannot
activate and deactivate nodes, while our elastic policy is also
able to use inactive power capping.

A. Rigid Parallel Applications

Figure 6 shows the runtime of Graph500 with solar, wind,
and price-based power traces in our rigid scenario that only
employs active power capping. The graph compares our static
policy, which sets the power cap at the beginning of each
interval based only on available power, with our dynamic
balanced policy, which continuously shifts power based on
which nodes are most effectively using it. As show in Figure 6,
in our low-power cluster, our dynamic balanced policy reduces
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the runtime of the Graph500 benchmark by 17% for our solar
power trace, 20% for our wind power trace, and 13% for our
price-based power trace, compared to static balanced policy.
Likewise, in our high-power cluster, the dynamic balanced
policy reduces the runtime by 23%, 29% and 21% for solar,
wind and price-based power traces, respectively. Similarly,
Figure 7 shows Graph500 consumes less overall energy when
using a dynamic (as opposed to static) balanced policy.

The experiment demonstrates that adjusting power caps
at fine-grained intervals can effectively increase the power
allocation efficiency. By continuously reallocating power based
on node utilization via adjusting the active power caps the
application is able to make better use of the available power
and improve its performance. The high-power cluster shows
more improvement for two reasons: its servers i) exhibit a
higher power variance between nodes, which provides more
opportunity to adjust power, and ii) have a wider active power
range, enabling them to reallocate more power between nodes.
Results: Our energy management policies decrease the en-
ergy consumption and improve the performance of a rigid
Graph500 (by 13% to 29% for different nodes and power
traces) by continuously directing power (using active power
capping) to the nodes that can use it most effectively.

B. Elastic Parallel Applications

The results above are limited to rigid parallel applica-
tions that cannot handle activating and deactivating nodes
while the application is running. Here, we demonstrate the
performance of our energy management policies that employ
active and inactive power capping. These experiments again
use the solar, wind, and price-based power signals from
Figure 4. However, we run multiple parallel applications,
including Graph500, WRF, and the Jacobi solver. We show
the performance of power policies when running a single
application (Graph500), two applications (Graph500 + WRF),
three applications (Graph500 + WRF + Jacobi), respectively.
In all cases, we monitor the power, and apply the policies on
the nodes regardless of the applications that are running. We
examine the impact of elasticity, power variations, and energy
storage on the performance in each case.

Impact of Elasticity. Figure 8 shows the runtime of three
energy management policies: the dynamic balanced policy
that is not elastic, and both our greedy and agile elastic
policies, as described in Section III. Comparing the elastic
policies in Figure 8 with the rigid (non-elastic) tasks in
Figure 6 quantifies the benefit of elasticity: our elastic energy
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management policies achieve 41% less runtime for solar
power signals, 36% less runtime for wind power signals,
and 33% less runtime for price-based power signals. The
benefit of elasticity derives from reducing the overhead
power by deactivating nodes and concentrating more power
on performing actual computation. While many parallel
applications may not be elastic, our results indicate the
importance of elasticity when designing for variable power.
Result: Energy management policies that are capable of
elasticity, i.e., activating and deactivating entire nodes, further
improve performance over rigid policies that are only capable
of active power capping (by 33%-41% for our power signals).

Impact of Power Variations. We next examine the
impact of power variations on performance by comparing it
in two scenarios: when power is stable and and when it is
unlimited. For the stable power budget, we set a static power
cap equal to the average power of the variable power signal.
For the unlimited power budget, the nodes are free to use
as much power as necessary. Figure 9(a) and Figure 9(b)
show the runtime and energy consumption, respectively, of
Graph500 when running i) with unlimited power and ii) with
a fixed power cap equal to the average power.

As expected, when using variable power, as shown in Fig-
ure 8, the application takes longer to complete and consumes
more energy than with unlimited power or with a stable power
cap. In particular, in comparison to unlimited power, the greedy
elastic policy takes up to 30% longer and uses 21% more
energy, the balanced rigid policy takes up to 77% longer and
uses up to 72% more energy, and the agile elastic policy takes
up to 26% longer and uses up to 17% more energy. Likewise,
comparing to a stable power cap, the greedy elastic policy
takes up to 27% longer and uses up to 25% more energy, the
balanced rigid policy takes up to 74% longer and uses up to
67% more energy, and the agile elastic policy takes up to 13%
longer and uses up to 9% more energy.

The results illustrate the importance of energy agile design
for variable power. Since adapting to variable power introduces
overheads that might cause an application to run longer than
necessary, it typically uses more energy overall than when
using unlimited or stable power. The goal of our policies is to
limit this additional energy; results show that our agile elastic
policy uses only 17% more energy than when using unlimited
power and only 9% more energy than when using stable power.
These comparisons are based on the worst case scenario, i.e.,
we compare the unlimited and stable power policies with the
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Fig. 8. Runtime of elastic variant of Graph500 for the greedy, balanced and agile policies for our solar (8(a)), wind (8(b)), and price-based power signals (8(c)).
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Fig. 9. The runtime (9(a)) and power consumption (9(b)) of elastic Graph500
when operating under full power and fixed power budget.

Power Policy Energy Cost (cents)
Full Power 21.27

Stable Power 27.44
Price Greedy 15.62

Price Balanced 42.07
Price Agile 12.77

TABLE I. COMPARISON OF ENERGY COST FOR NON-RENEWABLE
POWERED CLUSTER.

longest runtime and the highest energy usage among the three
power varying cases.

Based on the energy consumption data and energy prices
in Figure 1, we are able to calculate the overall energy cost
for our policies when using unlimited power and stable power,
as well as using our price-based power signal with the greedy,
balanced, and agile policies. The results in Table I show that
although using unlimited power yields the shortest runtime
and lowest energy consumption, it costs 36% more than using
the greedy policy and 67% more than using the agile policy.
This price advantage occurs because using unlimited power
or stable power does not react to changes in price.
Result: Adapting to a variable power source introduces
overheads that increase application runtime and energy
consumption (by 9%-17% in our experiments). Minimizing
these overheads is important in quantifying the benefits of
using a green energy source.

Energy Storage. Our elastic policies are able to activate and
deactivate subsets of nodes. However, as discussed earlier,
activating and deactivating nodes imposes a long transition
time along with the associated overhead power, which may
impact overall performance. One way to reduce the number
of transitions is to introduce energy storage capacity, which
we capture using the interval τ over which power is known
and stable. In Figure 10, we show how Graph500’s runtime
varies for different values of τ . Here, we assume a transition
time of 10 seconds between active and inactive states, which
is typical for transitions to and from ACPI’s S3 state.
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Fig. 10. Runtime of elastic Graph500 with different storage capacities (τ ).

As shown, when τ increases, the application runtime
decreases, due to fewer numbers of transitions. For example,
in the wind power trace, the runtime decreases by 7× when
τ increases from 5 to 100 seconds. The results show that
the energy storage capacity has a significant affect on perfor-
mance, and that a relatively small amount of energy storage
capacity (<150 seconds) can provide significant performance
improvements. In particular, in this experiment, the runtime
decreases to nearly the minimum for τ = 150 seconds. Since
storage is expensive to install and maintain, quantifying the
effect of energy storage capacity on performance is important
in assessing its costs and benefits. Our results show that a
relatively small amount of energy storage capacity can reap
most of the performance gains when using variable power.
Result: A small amount of energy storage capacity (enough to
support τ = 150 seconds in our experiments) can significantly
improves performance when using variable power sources.

VI. RELATED WORK

Recently, researchers have recognized the importance of
optimizing the usage of variable power. This is due, in part,
to a combination of rising energy prices and falling prices for
solar panels and wind turbines. In particular, data centers are
beginning to make use of substantial renewable deployments,
as evidenced by the 40MW co-located solar farm that powers
Apple’s new iCloud data center in Maiden, North Carolina [7].

Initial research on optimization for power variations has
focused on either using energy storage to offset power
shortages [10], or enabling isolated system components to
adapt their power usage. Research on using energy storage
focuses on the best combination of energy storage devices, e.g.,
batteries, flywheels, etc., to minimize costs, and evaluates the



potential savings based on realistic workloads, power prices,
and battery costs. Our work differs from this work by focusing
on optimizing parallel applications given a variable power
source and a small fixed amount of energy storage capacity.

Another research direction is on adapting different system
components to run on variable power. These system com-
ponents include web servers [15], distributed caches [21],
file systems [22], virtual machine migrations [16], and batch
schedulers [9]. Our work focuses on parallel applications,
rather than individual components. Prior work on batch sched-
ulers is most closely related to our work. However, this work
differs from ours in its focus on short batch tasks, which a
scheduler may simply defer until enough power is available
to run them. Another interesting approach is to run parallel
tasks in virtual machines (VMs) and migrate them before
deactivating nodes to consolidate workload. However, VMs
introduce additional virtualization overheads that degrade per-
formance, and the migration overhead is often large, especially
for HPC applications that have large memory footprints. In
addition, consolidating applications on a small subset of nodes
may overload nodes and degrade performance, i.e., by causing
memory thrashing.

The slack-based energy gear optimization leverages inter-
node bottlenecks in MPI programs to improve energy-
efficiency [12]. Our work differs from this approach by
considering power variations from green energy sources, as
well as both active and inactive power capping techniques.

VII. CONCLUSION

In this paper, we investigate energy management policies
for parallel computing applications that run on green energy
sources. We propose a variety of energy management policies
that make use of both active and inactive power capping to
maximize parallel application performance when running on
power resources with variable constraints. Our policies include
both static and dynamic power allocation variants that can be
applied to both elastic and rigid (non-elastic) parallel jobs.

We implement our energy management policies on a cluster
in the CloudLab testbed which consists of 65 nodes, and then
evaluate their effectiveness using real solar, wind, and price-
based power signals. Our results demonstrate the importance
and effectiveness of designing for variable power. For example,
we show that Graph500 requires 17% more time and 9% more
energy to complete when power varies based on real-time
electricity prices versus when power is unlimited at a fixed
price. However, since real-time prices are lower than fixed
prices, the total electricity cost of our energy-agile policy with
real-time prices is 67% less than when using fixed prices.
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