
1

Here Today, Gone Tomorrow: Exploiting
Transient Servers in Data Centers

Rahul Singh†, Prateek Sharma, David Irwin, Prashant Shenoy, and K.K. Ramakrishnan‡

University of Massachusetts Amherst †Nutanix ‡Rutgers University

Abstract—Distributed applications implicitly assume that data center servers are available unless they fail. However, many emerging
scenarios are altering this assumption by exposing transient availability, such that servers are available temporarily for an uncertain
amount of time. Transient servers are cheaper and more energy-efficient than stable servers with continuous availability. In this paper,
we highlight the characteristics of transient servers and then show how to exploit one particular characteristic: an advance warning
of unavailability. Our system, called Yank, defines a bounded-time VM migration mechanism that leverages an advance warning
of a few seconds to provide high availability cheaply and efficiently at large scales by enabling a backup server to maintain “live”
snapshots for many transient VMs. Our experiments show that one backup server can concurrently support up to 15 transient VMs with
minimal performance degradation with advance warnings as small as five seconds, even when VMs run memory-intensive interactive
applications.

Index Terms—Transience, Virtualization, Migration, High Availability

F

1 INTRODUCTION

Due to the rising popularity of cloud computing, the
number of data centers, and their size, continues to grow
at a rapid pace.1 Importantly, the distributed applica-
tions that run in data centers are generally built with
the implicit assumption that the common case is for
data center servers to be available—they may fail, but
failures are uncommon, and when they happen, well-
known techniques for replicating data and failing over
to backup systems mitigate their performance impact [2].
However, many emerging scenarios are now altering this
long-standing basic assumption. Rather than attempt to
ensure continuous server availability and then design
systems to mask rare failures, these scenarios instead
offer transient availability, such that servers are available
only temporarily for an uncertain amount of time. Tran-
sient servers are often cheaper and more energy-efficient
than stable servers, which provide continuous availability.
We briefly describe a few emerging scenarios that exhibit
transient server availability.
Renewable Energy. Data centers are beginning to inte-
grate local renewable energy sources into their power
infrastructure. For instance, Apple’s new iCloud data
center in North Carolina uses power from a co-located
40MW solar farm, while Facebook is building a data
center in Iowa that will run entirely on wind power
from a nearby wind farm. Since the sun and wind
generate power intermittently, data centers that rely on
these energy sources may experience power fluctuations
(shortages and surpluses) that require them to deacti-
vate and re-activate servers as available power varies,
resulting in transient server availability.

1. Portions of this paper appeared in a previous paper published at
the USENIX NSDI conference in 2013 [1].

Smart Grids. Data centers may also interact with a
“smart” electric grid to reduce their electricity bill. For
example, in exchange for lower rates, demand-response
programs enable utilities to signal data centers to curtail
their power usage during periods of “peak” power
demand in the grid, e.g., on hot summer days. As above,
periodically curtailing power usage requires data centers
to deactivate servers, and then reactivate them once
the “peak” period ends, resulting in transient server
availability.
Cloud Markets. Finally, data centers drive down the
cost of computing by leveraging statistical multiplexing
and massive economies of scale. To maintain near 100%
utilization, cloud markets often sell any excess capacity
to the highest bidder. Cloud markets are attractive to
users due to their low prices, which are often 2x-10x less
than the price to reserve a server and ensure it cannot be
taken away. As an example, Amazon’s Elastic Compute
Cloud (EC2) operates a “spot” market for servers, where
a server’s hourly price fluctuates continuously based
on market demand. Thus, if a spot server’s market-
determined price ever rises above the price a customer
is willing to pay, then Amazon immediately takes it
away. Such price fluctuations result in transient server
availability due to unpredictable server allocations and
revocations based on the spot price.

1.1 New Challenges

Handling transient server availability raises new chal-
lenges in systems design. While systems could sim-
ply mask transience by treating a newly unavailable
server as a failure, and then employing traditional fault-
tolerance techniques, we argue that these techniques are
too costly for transient servers. Since transience arises

2

from a desire to cut costs by relaxing the requirement for
near-continuous server availability, employing expensive
fault-tolerance techniques would eliminate transience’s
benefits. For example, a simple way to mask a server
fault is to failover to a dedicated backup server that
replicates the primary server’s state [2]. However, main-
taing a dedicated backup server for each transient server
would increase power usage (in the first two scenarios)
and rental costs (in the last scenario), or exactly the
metrics each scenario was attempting to reduce. Thus,
optimization techniques for transient servers must be
lightweight to preserve transient servers’ low cost.

Ultimately, handling transient server availability dif-
fers from handling failures in at least three ways, which
leads to different systems design decisions.
High Churn Rate. Transient servers may “fail,” i.e.,
become unavailable, at a much higher rate than conven-
tional servers fail. In addition, unlike an actual failure, a
transient server “failure” is often temporary: the server
may automatically become available again at some point
in the future, e.g., if available power or the spot price
changes. Thus, transient-aware systems should grace-
fully handle high churn rates, with transient servers
continuously leaving and joining the active set of servers.
Server Selection. While uncontrollable external condi-
tions dictate when and how many transient servers are
active at any time, transient-aware systems are often
able to select which servers are active over time. For
example, assuming there is enough available power to
activate 25% out of a total of N servers, a system may
choose to select N/4 servers and keep them continuously
active, or, alternatively, activate a new set of N/4 servers
(and deactivate the previous set) every T minutes. Cloud
markets enable similar functionality by bidding differ-
ent prices for different servers. Such freedom—to select
which servers are available and unavailable over time—
does not exist in conventional failure scenarios.
Advance Warning. Finally, techniques often exist to
enable an advance warning before a transient server
“fails” and becomes unavailable. For example, in EC2,
whenever a server’s spot price exceeds a consumer’s
bid price, the consumer has two minutes before the
server terminates. As another example, Universal Power
Supplies (UPSs) for racks provide some time after a
power shortage before servers completely lose power.
Thus, while conventional server failures occur without
warning, transient servers may employ optimizations to
exploit a brief advance warning.

We believe there is an opportunity to leverage tran-
sient servers’ unique mix of characteristics—high churn
rate, server selection, and an advance warning—to de-
sign low-cost techniques that mitigate transience’s im-
pact on performance. For instance, in prior work, we
propose a blinking abstraction to handle high churn rates
by rapidly selecting, i.e., activating and deactivating,
new servers over time [3]. In this paper, we introduce
a new technique—bounded-time virtual machine (VM) mi-
gration—to exploit an advance warning period.

2 DESIGN SPACE

We assume a virtualized data center where applications
run inside VMs on one of two types of physical servers:
(i) always-on stable servers with a highly reliable power
source and (ii) transient servers that may terminate any-
time after an advance warning of size Twarn.

Once a transient server receives an advance warning,
a data center must move any VMs (and their associated
state) hosted on the transient server to a stable server to
maintain their availability. Depending on Twarn’s dura-
tion, two possible solutions already exist to transition a
VM to a stable server. If Twarn is large, it may be possible
to live migrate a VM from a transient to a stable server.
VM migration requires copying the memory and disk
(if necessary) state [4], so the approach is only feasible
if Twarn is long enough to accommodate the transfer.
Completion times for migration are dependent on a
VM’s memory and disk size, with prior work reporting
times up to one minute for VMs with only 1GB memory
and no disk state [5].

The second approach is to employ a high availabil-
ity mechanism, such as Remus [6], [7], which requires
maintaining a live backup copy of each transient VM
on a stable server. In this case, a VM transparently fails
over to the stable server whenever its transient server
terminates. While the approach supports warning times
of zero (Twarn = 0), it requires the high runtime over-
head of continuously propagating state changes from
the VM to its backup. In some cases, memory-intensive,
interactive workloads may experience 5X degradation
in latency [6]. Supporting an advance warning of zero
also imposes a high cost, requiring a backup server to
keep VM memory snapshots resident in its own memory.
In essence, supporting a warning time of zero requires
a 1:1 ratio between transient and backup servers. Un-
fortunately, storing memory snapshots on disk is not
an option, since it would further degrade performance
by reducing the memory bandwidth (⇠3000MB/s) of
primary VMs to the disk bandwidth (<100MB/s) of the
backup server.

VM migration and high availability represent two ex-
treme points in the design space for migrating transient
servers. The former has low overhead but requires long
warning times, while the latter has high overhead but
handles warning times of zero. To exploit the middle
ground between these two extremes, we propose a
new mechanism for bounded-time VM migration, called
Yank. Yank optimizes for modest advance warnings by
maintaining a backup copy, similar to Remus, of each
transient VM’s memory and disk state on a stable backup
server. However, Yank focuses on keeping costs low,
by highly multiplexing each backup server across many
transient VMs. As we discuss, our approach requires
storing portions of each VM’s memory backup on stable
storage. We show that for advance warnings of a few
seconds, Yank provides similar failover properties as
high availability, but with an overhead and cost closer to

3

T1 T2
T1

Transient Server

Transient VMs

T3 T4

Transient Server

Transient VMs

T5

Tn-1 Tn

Transient Server

Transient VMs

T1 T2

Stable Server

Tn-1 Tn

Stable Server

1

1

1

3

3

3

4

4

5

5

In-Memory Queues

Memory
Snapshots

Tn

Backup Server (Memory)

Backup

Engine

T
1

T
n

In-Memory Queues

Disk
Snapshots

Tn

Backup Server (Disk)

Backup

Engine

1

T
1

T
n

T1

T11

2

2

Snapshot Manager

Snapshot Manager

Snapshot Manager

Restoration

Service

Restoration

Service

Fig. 1. Yank’s Design and Basic Operation

VM migration. In fact, Yank devolves to high availability
for a warning time of zero, and reduces to a simple VM
migration as the warning time becomes larger.

3 YANK DESIGN

Yank leverages the advance warning time to scale the
number of transient servers independently of the num-
ber of backup servers by controlling when and how
frequently transient VMs commit state updates to the
backup server. In essence, the warning time Twarn limits
the amount of data a VM can commit to its backup
server after receiving a warning. Thus, during normal
operation, a transient VM need only ensure the size
of dirty memory pages and disk blocks remains below
this limit. Maintaining this invariant guarantees that no
update will be lost if a VM terminates after a warning,
while providing additional flexibility over when to com-
mit state. To keep its overhead and cost low, Yank highly
multiplexes backup servers, allowing each to support
many (>10) transient VMs by i) storing VM memory and
disk snapshots, in part, on stable storage and ii) using
multiple optimizations to prevent saturating disk band-
width. Thus, given an advance warning, Yank supports
the same failure properties as high availability, but uses
fewer resources, e.g., hardware or power, for backup
servers.

3.1 Yank Architecture
Figure 1 depicts Yank’s architecture, which includes a
snapshot manager on each transient server, a backup engine
on each stable backup server, and a restoration service on
each stable (non-backup) server. We focus primarily on
how Yank maintains memory snapshots at the backup
server, since we assume each backup server cannot keep
memory snapshots for all transient VMs resident in
its own memory. Thus, Yank must mask the order-of-
magnitude difference between a transient VM’s memory
bandwidth (⇠3000MB/s) and the backup server’s disk
bandwidth (< 100MB/s). By contrast, maintaining disk
snapshots poses less of a performance concern, since
the speed of a transient VM’s disk and its backup

server’s disk are similar in magnitude. This characteristic
combined with a multi-second warning time permits
asynchronous disk mirroring to a backup server without
significant performance degradation.

Figure 1 also details Yank’s functions. The snapshot
manager executes within the hypervisor of each tran-
sient server and tracks the dirty memory pages of its
resident VMs, periodically transmitting these pages to
the backup engine, running at the backup server (1). The
backup engine then queues each VM’s dirty memory
pages in its own memory before writing them to disk
(2). Yank assumes an external service, e.g., a power
manager or cloud platform, provides advance warning
notifications for transient servers (3). The service both i)
informs backup and transient servers when the warning
time changes and ii) issues warnings to transient and
backup servers of an impending termination. Since Yank
depends on warning time estimates, the service above
must run on a stable server.

Upon receiving a warning (3), the snapshot manager
pauses its VMs and commits any dirty pages to the
backup engine before the transient server terminates.
The backup engine then has two options, assuming it is
too resource-constrained to run VMs itself: either store
the VMs’ memory images on disk for later use (for batch
applications), or migrate the VMs to another stable (non-
backup) server (for interactive applications) (4). In the
latter case, we assume an exogenous placement policy
exists to select a destination stable server in advance to
run a transient VM if its server terminates. One example
placement policy for a data center subject to variations
in available power might be to spread transient VMs
across as many physical servers as possible when power
is plentiful or cheap to maintain reserve capacity to
instantaneously handle unexpected flash crowds. How-
ever, whenever power becomes scarce or expensive, the
data center does not have the luxury of such reserve
capacity and must quickly (within the warning time)
consolidate transient VMs onto a smaller set of stable
servers. Note that in some cases, e.g., as with severe
power shortages, there may not be enough stable servers
to adequately satisfy an application’s workload. Defining
and experimenting with specific placement policies for
the scenarios in Section 1 is outside the scope of this
paper.

Finally, Yank executes a simple restoration service on
each stable (non-backup) server to facilitate VM migra-
tion and restoration after a transient server terminates.
Yank currently copies a VM’s entire memory image from
the backup server to the destination server before restor-
ing it. The restoration time is a function of the network
bandwidth and the size of the memory image, and is
equivalent to a typical stop-and-copy VM migration.
Supporting live restoration using either a pre-copy [4]
or post-copy [8] migration is the subject of future work.

4

3.2 Just-in-Time Synchrony

Since Yank receives an advance warning of time Twarn

before a transient server terminates, its VM memory
snapshots stored on the backup server need not maintain
strict external synchrony [9]. Instead, upon receiving a
warning of impending termination, Yank only has to
ensure what we call just-in-time synchrony: a transient
VM and its memory snapshot on the backup server are
always capable of being brought to a consistent state
before termination. To guarantee just-in-time synchrony,
as with external synchrony, the snapshot manager tracks
dirty memory pages and transmits them to the backup
engine, which then acknowledges their receipt. How-
ever, unlike external synchrony, just-in-time synchrony
only requires the snapshot manager to buffer a VM’s
externally visible, e.g., network or disk, output when
the size of the dirty memory pages exceed an upper
threshold Ut, such that it is impossible to commit any
more dirty pages to the backup engine within time
Twarn.

In the worst case, with a VM that dirties pages faster
than the backup engine is able to commit them, the
snapshot manager is continually at the threshold, and
Yank reverts to high availability-like behavior by always
delaying the VM’s externally visible output until its
memory snapshot is consistent. Since we assume the
backup server is not able to keep every transient VM
memory snapshot resident in its own memory, the speed
of the backup engine’s disk limits the rate it is able
to commit page changes. While memory bandwidth is
an order of magnitude (or more) greater than disk (or
network) bandwidth, Yank benefits from well-known
characteristics of typical in-memory application working
sets to prevent saturating disk (or network) bandwidth.
Specifically, the size of in-memory working sets tend to
i) grow slowly over time and ii) be smaller than the total
memory [10].

Slow growth stems from applications frequently re-
writing the same memory pages, rather than always
writing new ones. Yank only has to commit the last re-
write of a dirty page (and not the intervening writes) to
the backup server after reaching its upper threshold of
dirty pages Ut. In contrast, to support termination with
no advance warning, a VM must commit nearly every
memory write to the backup server. In addition, small
working sets enable the backup engine to keep most
VMs’ working sets in memory, reducing the likelihood
of saturating disk bandwidth from writing dirty memory
pages to disk. Recent work extends this insight to collec-
tions of VMs in data centers, showing that while the size
of a single VM’s working set may experience temporary
bursts in memory usage, the bursts are often brief and
not synchronized across VMs [11]. Yank relies on these
observations in practice to highly multiplex each backup
server’s memory without saturating disk bandwidth
or degrading transient VM performance during normal
operation.

4 YANK IMPLEMENTATION

We implement Yank’s snapshot manager by extending
Remus inside the Xen hypervisor (v4.2). By default,
Remus tracks dirty pages over short epochs (⇠100ms)
using shadow page tables and pausing VMs each epoch
to copy dirty memory pages to a separate buffer for
transmission to the backup server. While VMs may
speculatively execute after copying dirty pages to the
buffer, but before receiving an acknowledgement from
the backup server, they must buffer external network or
disk output to preserve external synchrony. Remus only
releases externally-visible output from these buffers after
the backup server has acknowledged receiving dirty
pages from the last epoch. Rather than commit dirty
pages to the backup server every epoch, our snapshot
manager uses a simple bitmap to track dirty pages and
determine whether to commit these pages to backup
engine based on the upper and lower threshold, Ut

and Lt. In addition, rather than commit CPU state each
epoch, the snapshot manager only commits CPU state
when it receives a warning that a transient server will
terminate.

We implement Yank’s backup engine using a combi-
nation of Python and C, with a Python front-end that
accepts network connections and forks a backend C
process for each transient VM. For each transient VM, the
backend C process accepts dirty page updates from the
snapshot manager and sends acknowledgements. Each
update includes the number of pages in the update,
as well as each pages’ page number and contents (or
a delta from the previous page sent). The process then
places each update in an in-memory producer/consumer
queue that removes pages in-turn—in Least Recently
Used (LRU) order based on a timestamp—and writes
them to disk. In the current implementation, the backend
process stores VM memory pages sequentially in a file
on disk. For simplicity, the file’s format is the same as
Xen’s format for storing saved VM memory images, e.g.,
via xm save.

Finally, we implement Yank’s restoration service at
user-level in C. The daemon accepts a VM memory
snapshot and an in-memory queue of pending updates,
and then applies the updates to the snapshot without
writing to disk. Since our implementation uses Xen’s
image format, the service uses xm restore from the
resulting in-memory file to re-start the VM.

5 EXPERIMENTAL EVALUATION

We evaluate Yank’s VM performance, downtime after a
warning, and scalability. While our evaluation does not
capture the full range of dynamics present in a produc-
tion data center, it does demonstrate Yank’s flexibility to
handle a variety of dynamic operating conditions.

5.1 Experimental Setup
We run our experiments on 20 blade servers with 2.13
GHz Xeon processors with 4GB of RAM connected to

5

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

0 5 10 20A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
se

cs
)

Warning Time (secs)

Sync
Async

Sync+LRU
Async+LRU

Fig. 2. TPC-W response time as warning time varies.

the same 1Gbps Ethernet switch. Each server running
the snapshot manager uses our modified Xen (v4.2)
hypervisor, while those running the backup engine and
the restoration service use unmodified Xen (v4.2). In
our experiments, each transient VM uses one CPU and
1GB RAM, and runs the same OS and kernel (Ubuntu
12.04, Linux kernel 3.2.0). Here, we focus on the TPC-W
benchmark to stress Yank’s ability to handle an inter-
active application that exhibits rapid writes to memory.
TPC-W emulates an online store akin to Amazon. We
use a Java servlets-based multi-tiered configuration of
TPC-W that uses Apache Tomcat (v7.0.27) as a front
end and MySQL (v5.0.96) as a database backend. TPC-
W allows us to measure the influence of Yank on the
response time perceived by the clients of an interactive
web application.

5.2 Benchmarking Yank’s Performance
Transient VM Performance. We first evaluate Yank’s
effect on VM performance during normal operation. In
this experiment, transient VMs have a static warning
time. We also limit the backup engine to using an in-
memory queue of 300MB to store memory updates from
each 1GB transient VM. We run each experiment for 15
minutes before issuing a warning to the transient and
backup server, and evaluate its performance during the
pre-warning period. Here, we focus on TPC-W, since it is
an interactive application that is sensitive to VM pauses
from buffering network or disk output. We measure the
average response time of TPC-W clients, while varying
both the warning time and the snapshot manager’s pol-
icy for committing pages to the backup engine. Figure 2
shows that an asynchronous policy, which also selects
pages to commit using LRU replacement, results in the
lowest average response time. The asynchronous policy
is an optimization that reduces VM pauses, because
the snapshot manager begins committing pages to the
backup as soon as it hits the lower threshold Lt rather
than waiting until reaching Ut (as in a synchronous
policy), and forcing a large commit to the backup server.
The experiment also demonstrates that with even a brief
five second warning, the response time is <500ms using
the asynchronous policy with LRU.

By contrast, with a warning time of zero the average
response time rises to over nine seconds. In addition, the
90th percentile response time was also near 15 seconds,
indicating that the average response is not the result

of a few overly bad response times. With no warning,
the VM must pause and mirror every memory write
to the backup server and receive an acknowledgement
before proceeding. Although Remus [6] does not use
our specific TPC-W benchmark, their results with the
SPECweb benchmark are qualitatively similar, showing
5X worse latency scores. Thus, our results confirm that
even modest advance warning times lead to vast im-
provements in response time for interactive applications.
Result: Yank imposes minimal overhead on TPC-W during
normal operation. With a brief five second warning time, the
average response time of TPC-W is 10x less (<500ms) than
with no warning time (>9s).
Scalability. The experiments above focus on perfor-
mance with a single VM. We also evaluate how many
transient VMs the backup engine is able to support
concurrently, and the resulting impact on transient VM
performance during normal operation. In this case, our
experiments last for 30 minutes using a warning time
of 10 seconds, and scale the number of transient VMs
running TPC-W connected to the same backup server.
We measure CPU and memory usage on the backup
server, as well as the average response time of the
TPC-W clients. Figure 3 shows the results, including
the maximum of the average response time across all
transient VMs observed by the TPC-W clients, the CPU
utilization on the backup server, and the backup en-
gine’s memory usage as a percentage of total memory.
The figure demonstrates that, in this case, the backup
server is capable of supporting as many as 15 transient
VMs without the average client response time exceed-
ing 700ms. Note that without using Yank the average
response time for TPC-W clients running our workload
is 300ms. In addition, even when supporting 15 VMs, the
backup engine does not completely use its entire CPU
or memory.
Result: Yank is able to highly multiplex each backup server.
Our experiments indicate that with a warning time of 10
seconds, a backup server can support at least 15 transient
VMs running TPC-W with little performance degradation for
even a challenging interactive workload.

6 RELATED WORK
Yank’s bounded-time VM migration mechanism is useful
for any scenario that exhibits transient server availability.
Most prior work encounters transient servers in the
context of data center power management. For instance,
supporting renewable energy sources in data centers
often targets simple non-interactive batch jobs, since
these jobs are tolerant to delays when renewable power
is not available. Here, batch job schedulers [12], [13] can
use predictions of future energy harvesting to align job
execution with periods of high renewable generation.
In contrast, since Yank’s snapshots of memory and disk
state are generic, it is capable of transparently supporting
both batch and interactive applications.

Yank is also useful for cheaply scaling high availability
in data centers where the majority of fail-stop failures

6

 0

 200

 400

 600

 800

 1000

5 10 15
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

T
im

e
 (

m
se

cs
)

P
e
rc

e
n
ta

g
e
(%

)

of Transient Instances

 Response Time
CPU%

Memory%

Fig. 3. Yank scalability

are power outages. Prior approaches to decreasing the
cost of a data center’s power delivery infrastructure have
focused on maintaining its reliability, e.g., by using a
mix of energy storage technologies [14]. Yank enables
data centers to instead partially decrease their power
infrastructure’s reliability, e.g., using less UPS capacity,
while still ensuring services remain available during
outages. As a recent study shows, among all techniques
for handling data center power outages, e.g., CPU throt-
tling, sleeping, hibernation, VM migration, etc., Yank’s
approach incurs the lowest cost and has the highest
performance for a representative application [15].

7 CONCLUSION

In this paper, we introduce the abstraction of a transient
server, which may terminate anytime after an advance
warning. We then design Yank with a bounded-time
VM migration mechanism to exploit the advance warn-
ing. Yank fills the void between Remus, which requires
no advance warning, and live VM migration, which
requires a lengthy advance warning, to cheaply and
efficiently support transient servers at large scale. In
particular, our results show that a single backup server
is capable of maintaining memory snapshots for up to
15 transient VMs with little performance degradation,
which dramatically decreases the cost of providing high
availability relative to existing solutions.

REFERENCES

[1] R. Singh, D. Irwin, P. Shenoy, and K.Ramakrishnan, “Yank: En-
abling Green Data Centers to Pull the Plug,” in NSDI, April 2013.

[2] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg, “Dis-
tributed Systems,” ch. The Primary-Backup Approach, pp. 199–
216, ACM Press/Addison-Wesley Publishing Co., 1993.

[3] N. Sharma, S. Barker, D. Irwin, and P. Shenoy, “Blink: Managing
Server Clusters on Intermittent Power,” in ASPLOS, March 2011.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,”
in NSDI, May 2005.

[5] H. Liu, C. Xu, H. Jin, J. Gong, and X. Liao, “Performance and
Energy Modeling for Live Migration of Virtual Machines,” in
HPDC, June 2011.

[6] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High Availability via Asynchronous Virtual
Machine Replication,” in NSDI, April 2008.

[7] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, K. Salem,
and A. Warfield, “RemusDB: Transparent High Availability for
Database Systems,” in VLDB, August 2011.

[8] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy Live Mi-
gration of Virtual Machines,” SIGOPS Operating Systems Review,
vol. 43, July 2009.

[9] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn,
“Rethink the Sync,” in OSDI, November 2006.

[10] P. Denning, “The Working Set Model for Program Behavior,”
CACM, vol. 26, Jan. 1983.

[11] D. Williams, H. Jamjoom, Y. Liu, and H. Weatherspoon, “Over-
driver: Handling Memory Overload in an Oversubscribed
Cloud,” in VEE, 2011.

[12] I. Goiri, K. Le, M. Haque, R. Beauchea, T. Nguyen, J. Guitart,
J. Torres, and R. Bianchini, “GreenSlot: Scheduling Energy Con-
sumption in Green Datacenters,” in SC, April 2011.

[13] I. Goiri, K. Le, T. Nguyen, J. Guitart, J. Torres, and R. Bianchini,
“GreenHadoop: Leveraging Green Energy in Data-Processing
Frameworks,” in EuroSys, April 2012.

[14] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and
H. Fathy, “Energy Storage in Datacenters: What, Where, and How
Much?,” in SIGMETRICS, June 2012.

[15] D. Wang, S. Govindan, A. Sivasubramaniam, A. Kansal, J. Liu, and
B. Khessib, “Underprovisioning Backup Power Infrastructure for
Datacenters,” in ASPLOS, March 2014.

