Beyond Energy-Efficiency: Evaluating Green Datacenter
Applications for Energy-Agility

Supreeth Subramanya, Zain Mustafa, David Irwin, and Prashant Shenoy
University of Massachusetts Amherst

ABSTRACT

Computing researchers have long focused on improving
energy-efficiency under the implicit assumption that all en-
ergy is created equal. Yet, this assumption is actually incor-
rect: energy’s cost and carbon footprint vary substantially
over time. As a result, consuming energy inefficiently when
it is cheap and clean may sometimes be preferable to con-
suming it efficiently when it is expensive and dirty. Green
datacenters adapt their energy usage to optimize for such
variations, as reflected in changing electricity prices or re-
newable energy output. Thus, we introduce energy-agility
as a new metric to evaluate green datacenter applications.
To illustrate fundamental tradeoffs in energy-agile design,
we develop GreenSort, a distributed sorting system opti-
mized for energy-agility. GreenSort is representative of the
long-running, massively-parallel, data-intensive tasks that
are common in datacenters and amenable to delays from
power variations. Our results demonstrate the importance
of energy-agile design when considering the benefits of using
variable power. For example, we show that GreenSort re-
quires 31% more time and energy to complete when power
varies based on real-time electricity prices versus when it is
constant. Thus, in this case, real-time prices should be at
least 31% lower than fixed prices to warrant using them.

1. INTRODUCTION

Energy-efficiency, which is defined as the amount of work,
i.e., computation and I/O, done per joule of energy, has long
been considered a “first class” metric for evaluating computer
system performance. Energy-efficiency has become partic-
ularly important for warehouse-scale datacenter facilities,
since a greater energy-efficiency reduces these facilities’ large
electric bills (assuming that utilities charge a constant price
for energy over time) and their carbon emissions (assum-
ing all their energy is created from carbon-based sources).
Energy-efficiency for warehouse-scale datacenter facilities re-
mains a highly active research area, as their size and num-
ber continues to grow to satisfy the demand for cloud-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICPE’16, March 12 - 18, 2016, Delft, Netherlands

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4080-9/16/03. .. $15.00

DOIL: http://dx.doi.org/10.1145,/2851553.2851556

services. The power requirements of the largest datacenters
now exceed 100 megawatts (MW) [12], and, collectively, they
are estimated to consume 1.7-2.2% of U.S. electricity [20].

To reduce energy’s carbon footprint and cost, green data-
centers are experimenting with generating clean power lo-
cally from renewables [5, 13] and participating in utility
demand response (DR) programs [24, 40], which offer re-
duced rates if consumers respond to signals (often in the
form of higher electricity prices) to curtail their energy us-
age. Both renewable energy and DR introduce the potential
for variations in available power. As others have noted [19,
40], data centers are well-equipped to respond to such varia-
tions, since they i) already include sophisticated power man-
agement functions, which are remotely programmable and
capable of varying power usage over a wide dynamic range,
and ii) often execute non-interactive batch applications that
are tolerant to some delays due to power shortages.

Unfortunately, as a metric, energy-efficiency does not ac-
count for variations in energy’s cost and carbon footprint,
but rather implicitly assumes i) that all energy is created
equal and ii) that it is available in unlimited quantities at
any time. These assumptions are not correct: in reality, all
energy is not created equal—its cost and carbon footprint
vary over time depending on the mix of generators used to
to create it—and, as the reliance on intermittent renewable
energy increases, it may not be available in unlimited quan-
tities. Thus, just because a system is highly energy-efficient
does not necessarily mean that its cost and carbon footprint
is lower than a highly inefficient one. That is, an ineffi-
cient system that consumes energy at the “right” times, e.g.,
when renewable energy is plentiful or electricity prices are
low, could be cleaner and cheaper than an energy-efficient
system that uses energy at the “wrong” times, e.g., when
renewable energy is scarce or electricity prices are high.

Thus, energy-efficiency is not the right metric to quantify
the performance of green datacenter applications that adapt
to a variable supply of power. To properly evaluate these
applications, we propose a new metric, which we call energy-
agility. While energy-efficiency is a measure of work done
per joule of energy consumed by a platform, energy-agility
is a measure of work done per joule of energy available to a
platform, which may vary dynamically over time.

Thus, as a metric, energy-agility captures the salient char-
acteristics above that i) energy is not always available in
unlimited quantities at any time, and ii) the availability of
energy may vary over time. Note that the energy available
to a platform is independent of how much energy it actu-
ally consumes. Whereas energy-efficiency only depends on

how much energy a platform consumes to perform a given
amount of work, energy-agility applies a “use it or lose it”
property to energy that incentivizes platforms to use as
much energy as possible, as efficiently as possible, when it
is available, or else waste it. Thus, energy-agility depends
on how much energy is available to a platform to perform
a given amount of work, regardless of the amount of energy
that it is able to productively consume. Energy-agility cap-
tures the basic characteristic that electricity’s supply and
demand must be balanced at all times, and the only way to
not waste unused energy is to explicitly store it for later use.
To illustrate fundamental tradeoffs in energy-agile design,
we develop GreenSort, a distributed sorting system opti-
mized for energy-agility. GreenSort is representative of the
long-running, massively-parallel, data-intensive tasks that
are common in datacenters and amenable to delays from
power variations. Unlike short batch jobs, which a scheduler
may simply defer until power is plentiful or cheap enough to
complete them [16, 17], such “big data” applications must
adapt their execution in real time by continuously modify-
ing their energy usage to not exceed the available supply. In
developing GreenSort, we make the following contributions.
Energy-Agility Metric. We introduce energy-agility as
a new performance metric that is distinct from energy-
efficiency, and motivate its importance in evaluating emerg-
ing green datacenter applications that use variable power.
GreenSort Design. We design multiple GreenSort vari-
ants to illustrate fundamental tradeoffs in energy-agile de-
sign of a prototypical datacenter application. Each variant
is defined by a power management policy that performs well
for a particular area of the design space, which is defined
by the power signal characteristics, power state transition
latencies, energy storage capacities, input data size, etc.
Implementation and Evaluation. We implement and
evaluate GreenSort to quantify its performance. We demon-
strate the extent to which power variations increase the time
and energy to complete a task, which highlights the impor-
tance of energy-agile design when considering the benefits
of using local renewables or participating in DR programs.
For example, we show that GreenSort requires 31% more
time and energy to complete when power varies based on
real-time electricity prices versus when it is constant. Thus,
in this case, real-time prices should be at least 31% lower on
average than fixed prices to warrant opting into using them.

2. BACKGROUND

There has been a variety of recent research on designing
green datacenter applications that adapt to power variations
due to changing electricity prices or renewable energy out-
put. For example, prior research has focused on optimiz-
ing a variety of system components for variable power, in-
cluding distributed caches [32], file systems [33], virtual ma-
chines [23, 34], and batch schedulers [3, 15, 16, 17, 21]. Prior
research has also investigated the use of energy storage to
dampen or eliminate the effect of power variations [18, 39].

Since energy-efficiency alone does not capture the benefits
of using variable power, the metric these systems measure
themselves against is generally the cost of energy, as vari-
able electricity prices are typically lower, on average, than
flat prices. Thus, the “performance” benefit of prior systems
is largely dependent on the absolute price of electricity: the
more variable the prices, or the wider their range, the more
cost savings are possible. However, energy’s cost is not a

sound basis for evaluation, since energy prices vary signif-
icantly by region, by time, and based on external factors.
Rather, cost is only useful for assessing the monetary bene-
fits of employing a particular system or approach at a specific
point in time. Energy-agility provides a metric independent
of cost to evaluate and compare the performance of such
systems, similar to how the absolute cost of energy has (and
should have) no bearing on a system’s energy-efficiency.

2.1 Energy-agility Definition

Formally, energy-agility is a measure of the amount of
work W, e.g., computation and I/0O, done by a system given
a power signal P(t) that dictates an energy cap the system
must adhere to over each interval (¢ — 7, ¢] for some interval
length 7. Energy-agility does not dictate the underlying rea-
son for the power variations, e.g., due to DR signals, fluctu-
ations in renewable generation, changes in electricity prices,
etc., or the characteristics of P(t), which may differ widely
depending on the scenario. We discuss different types of
emerging scenarios and power signals in §2.2. As we show,
P(t)’s characteristics—its average magnitude, variance, and
range—have a significant influence on energy-agility design.
Also, note that energy-agility incorporates energy-efficiency,
and is not entirely orthogonal to it: to maximize energy-
agility, at any given time ¢, an application is always incen-
tivized to use the available energy as efficiently as possible.

For sorting, energy-agility translates to the number of
records sorted per joule of energy made available to a plat-
form over its running time, whereas energy-efficiency is the
number of records sorted per joule of energy consumed by a
platform over its running time. Thus, to complete a given
amount of work, a greater energy-agility translates into a
shorter running time and the need for less aggregate energy
to be made available. The value 7 derives from the minimum
energy storage capacity necessary to enforce a platform’s
maximum energy cap over each 7. We assume 7 > 0, since
platforms require some minimal energy storage capacity, as
they cannot respond instantaneously to changes in power
due to inherent latencies in transitioning power states. Due
to energy’s “use it or lose it” property, our definition dictates
that application’s waste any energy they cannot immediately
use or store. Since storing energy incurs inverter and con-
version losses, we assume an application loses a fraction L
of any energy stored beyond the next interval 7. A typical
value of L for lithium-ion or lead-acid batteries is 0.2.

The primary intent of energy-agility as a metric is to en-
able systems designers to reason about the effect of power
variations on application performance. Intuitively, a more
stochastic P(t) increases an application’s running time and,
thus, the aggregate energy it requires to perform a given
amount of work. As a result, even if variable energy is
cheaper per kilowatt-hour (kWh), an application may not
be cheaper overall to execute with variable power if it must
run longer and consume more energy to complete.

Of course, the more energy storage capacity available, the
more an application can dampen any power variations. Un-
fortunately, energy storage is highly expensive. Thus, an
application that achieves the same performance using little
or no energy storage, e.g., by adapting its power usage in
real time, is preferable to one that uses significant energy
storage. Ideally, systems would perform the same regardless
of the characteristics of P(t); that is, they would perform
the same amount of work for a given amount of available

=
<= 140 \

3 100 Natural Gas

Power (kW)

0 10 20 30 40 50 60 70 7am Tam
Generation Capacity (Gigawatts)

(a) Generator Operating Costs

Time (minutes)

(b) Example Solar Output

Spot Price ($)
g

5pm 8pm 0 4 8 12 16 20 24
Time (hours)

(c) Electricity Prices

Figure 1: The use of heterogeneous generators with different marginal costs (a) and the rising penetration
of intermittent renewable energy sources (b) cause fluctuations in electricity’s price every few minutes (c).

energy over time, regardless of how it varies. In practice,
however, systems are not ideal: they require non-trivial la-
tencies to toggle between numerous power states to cap their
energy usage, which incurs overhead and affects application
performance. Thus, quantifying the performance overhead
caused by adapting to variable power is important in assess-
ing the benefits of both energy storage and using variable
power relative to its cost.

2.2 Emerging Scenarios

The motivation for energy-agility ultimately derives from
the fact that all energy is not created equal [36]: instead, it
derives from a heterogeneous mix of generators with different
fuel costs, carbon emissions, and operational characteristics.
For example, while solar and wind farms have variable en-
ergy output over time, they have no associated fuel costs
or carbon emissions. Thus, consuming energy when renew-
ables are generating it results in less carbon emissions than
consuming it when they are not generating it. As another
example, the “peaking” generators that utilities dispatch to
satisfy transient demand peaks have much higher emissions
and fuel costs (>10x [11]) than the baseload generators they
continuously operate. Figure 1 illustrates the point by show-
ing the disparity in marginal cost of operating various types
of generators and the rapid fluctuations possible with re-
newable energy, which both contribute to large energy price
fluctuations over time.! Such fluctuations are expected to
intensify as renewable penetration increases in the grid.

Prior work on energy-efficient computing largely ignores
how energy is actually generated in the electric grid. This is
due, in part, because i) renewable energy is only now becom-
ing a viable alternative to carbon-based energy sources and
ii) utilities have historically masked variations in energy’s
cost and carbon footprint from consumers by charging them
a fixed price for energy over time. However, there are now
numerous examples of data centers using energy from local
or nearby large-scale solar and wind farms [5, 13] with the
most prominent example being Apple’s new iCloud data cen-
ter, which includes a 20MW co-located solar farm [5]. These
facilities may need to vary their power usage based on re-
newable generation if they cannot make up the difference
from other sources, e.g., energy storage or the grid.

In addition, with the mass deployment of smart electric
meters, which record and transmit electricity usage in real-
time at fine-granularities, e.g., every 15 minutes or less, util-
ities are beginning to implement more sophisticated pric-
ing and DR mechanisms. For example, many consumers

'Data for Figure 1(a) is from [11]; (b) is from a 10kW home
solar installation; and (c) is from a representative week in
the New England five-minute spot market.

may now opt into real-time pricing, where electricity prices
change every few minutes based on supply and demand.
For large industrial energy consumers like datacenters, there
are other DR programs available. For example, datacenters
might act as load resources (LRs) in the grid’s ancillary ser-
vice markets [40]. Somewhat like a “reverse generator,” the
grid controls LRs to modulate their energy “generation” by
signaling them to increase and decrease power usage over
time. LRs receive compensation based on their ramp time
(the time required to effect a change in power) and capacity
(the range of power over which they have control). Data-
centers are well-suited to act as LRs, since they have short
ramp times and high capacities. The grid will require more
LR capacity, as renewable penetration rises, to balance an,
increasingly stochastic, supply with demand.

Each of the scenarios above introduce hard power caps dic-
tated by P(t) with potentially different characteristics, e.g.,
solar power is likely more periodic and less stochastic than
wind power. In contrast, prior work that is cost-oriented
often assumes only soft power caps, such that, while using
power may be undesirable because it is expensive or “dirty,”
it is always available if necessary at some price [16, 17, 24].

2.3 Power Capping Mechanisms

A prerequisite for capping energy over each 7 is a mech-
anism to cap server power. A variety of active [7, 14] and
inactive [32, 37] power capping mechanisms exist, although
the specific mechanisms available are platform-dependent.

Active power capping bounds power usage by reducing
servers’ performance without deactivating them; it primarily
focuses on reducing CPU power usage using a combination
of dynamic voltage and frequency scaling (DVFS) and tran-
sitioning CPUs into low-power idle modes, e.g., ACPI’s C-
states. Recent research applies similar concepts to actively
cap memory power [9]. While active power capping incurs
low overhead, since transitions between active power states
are rapid, e.g., milliseconds or less, it generally is able to
lower server power usage to at most 50% of peak power [4,
37]. Unfortunately, active power capping does not reduce
the power usage of other power-hungry components, such
as the motherboard, disk, network card, etc. The narrow
power range offered by active power capping is one reason
reducing the power usage of interactive applications with
low latency requirements has proven challenging [25, 27].

Inactive power capping bounds power usage by transition-
ing servers to an inactive power state, which deactivates
a server by cutting power to nearly every component and
reducing server power to near zero. For example, ACPI’s
Suspend-to-RAM (S3) state preserves DRAM memory state,
but turns off all other components, while its Suspend-to-

Disk (S4) state writes memory state to disk before turning
off the server. Prior work argues that inactive power capping
is more efficient than using active power capping, assuming
low (<100ms) transition latencies [26]. Unfortunately, while
the precise time to transition to and from an inactive power
state is platform- and OS-dependent, it typically takes be-
tween tens of seconds (for S3) to a few minutes (for S4) [1,
32]. A server cluster may implement inactive power capping
by either transitioning some subset of servers to the inac-
tive state based on the available power [37], or by “blinking”
servers between active and inactive states in tandem to cap
power over short intervals [32]. With the latter approach,
servers are inactive for some fraction of each interval based
on the average power available over the interval.

In this paper, we assume that both active power capping
and inactive power capping, either via deactivating or blink-
ing servers, are available, although the precise power range
and overhead of each mechanism varies widely by platform.

3. GREENSORT DESIGN

To illustrate tradeoffs in designing energy-agile applica-
tions, we develop GreenSort, a distributed sorting system
optimized for energy-agility. The primary constraint Green-
Sort adds to prior sorting applications is the power signal
P(t) that dictates an energy cap the sorting platform must
adhere to over each interval (¢t — 7, ¢]. We choose distributed
sorting to illustrate energy-agile design for a variety of rea-
sons. Most importantly, sorting lies at the core of many “big
data” frameworks, including MapReduce [8]. Sorting is also
a particularly demanding workload, as it requires shuffling
its entire input dataset across all servers. A similar all-to-
all shuffling phase is the bottleneck for many data-intensive
applications. Finally, sorting stresses a mix of system re-
sources: it is largely I/O-bound, but also requires non-trivial
CPU time and, if distributed, network bandwidth.

GreenSort follows in a long line of sorting systems that
highlight various aspects of systems design, such as I/O
performance, energy-efficiency, and cost, to motivate re-
searchers to improve upon them [35]. Insights from these
prior sorting systems have influenced a broad range of sys-
tems. For instance, the notion of balance in JouleSort [31]
influenced the design of energy-efficient key-value stores [4],
MapReduce platforms [29], and databases [38].

Since, from an algorithmic standpoint, sorting is a solved
problem with well-established tight performance bounds [2],
results from prior sorting systems [31, 30, 35] primarily rep-
resent a measure of a hardware platform’s capabilities com-
bined with various software optimizations that best exploit
those capabilities. GreenSort differs from prior systems in
this respect: while it also represents a measure of hardware
capabilities, particularly the set of available platform power
states and the time to transition between them, it alters
the sorting problem due to the use of inactive power states.
Thus, in addition to minimizing I/O, as in conventional ex-
ternal sorting, GreenSort must also consider the effect of
transitioning power states, which are time-consuming and
may periodically render some data unavailable.

To understand how designing for energy-agility affects dis-
tributed sorting, we first summarize the design of conven-
tional distributed sorting on an always-on cluster with no
power constraints (§3.1). We then present multiple Green-
Sort design variants that optimize the conventional design
for energy-agility under different conditions, as defined by

Phase 1: {\{\

Key
Distribution —

Local
Sorting

Phase 2: ﬂ ﬂ Q ﬂ

Figure 2: A conventional distributed sort has a key
distribution phase followed by a local sorting phase.

the power signal, power state transition latencies, energy
storage capacities, input data size, etc (§3.2).

3.1 Conventional Distributed Sorting

We assume a cluster with N homogeneous servers, each
with some local storage to hold the unsorted input and the
sorted output. We also assume the input data is significantly
larger than the collective memory of the N servers, requiring
the servers to store the input and output on disk. Thus, sort
performance is largely dictated by storage 1/O bandwidth,
where an efficient distributed sorting implementation gener-
ally uses a large number of local disks in parallel, typically
more than one per server. Initially, each server stores a ran-
dom set of 1/Nth of the input records to be sorted.

Without loss of generality, we assume Indy sorting, where
i) each record is 100 bytes where the first ten bytes serve
as a random key and ii) keys are initially distributed uni-
formly across servers, mitigating the need for a separate key
sampling phase to determine the distribution. The sort ap-
plication divides the key space across the N servers, such
that, when sorted, keys in the range [(¢ — 1)/N,i/N) are
in sorted order on the ith node. The input and output are
stored as files on the N servers, with the concatenation of
the output files representing the sorted input.

We use the term worker to refer to the sorting application
process on each server. Given the setup above, a conven-
tional distributed sort may proceed in two phases [30], as
depicted in Figure 2: a key distribution phase followed by a
local sorting phase. During key distribution, each worker i)
sequentially reads the list of keys from disk and sends them
to their destination server and ii) receives keys destined for
it from other workers and writes them to disk. Workers di-
vide their key space across multiple separate files, such that
each file stores a separate sub-range of the keys and fits into
the workers” memory. Once each worker finishes key distri-
bution, it locally sorts keys by reading each file into memory,
sorting it with a textbook in-memory sorting algorithm, and
writing it back to disk. Since our input is much larger than
the servers’ memory, the amount of disk I/O dictates sorting
performance. This conventional design uses the theoretical
minimum number of I/Os with two reads and two writes
per record [2]: each record is read once at its origin server,
written to a file at its destination, read again for in-memory
sorting, and finally written again to the final sorted output.

3.2 [Energy-Agile Distributed Sorting

As power rises and falls, an energy-agile sort must de-
termine how to best divide the available power among the

servers to finish the sort as fast as possible. Thus, in addi-
tion to workers, GreenSort also employs a power manager
that partitions available power every 7 across servers using
the mechanisms from §2.3. For GreenSort’s design, we focus
on the key distribution phase, since workers must coordinate
with each other to exchange keys during this phase. Thus,
degrading the performance of one worker, e.g, via power cap-
ping, during key distribution affects the performance of the
other workers. In contrast, since the local sorting phase is
embarrassingly parallel, the power manager need only ensure
that it allocates power to workers with work remaining.

The power manager may be able to satisfy small drops in
power using active power capping without affecting the sort-
ing application’s operation. When using active power cap-
ping, the optimal strategy is to maintain balanced progress
across all (];,) pairs of workers exchanging keys by dividing
the available power equally across servers, such that each
server has the same power cap. Since all workers must ex-
change keys with all other workers, if any worker is slower
than the others, due to being in a lower power state, it will
create a bottleneck by slowing the progress of all workers
in distributing keys. However, significant drops in power
require the sorting application to use inactive power cap-
ping, which renders some servers unavailable. Deactivating
servers complicates the key distribution phase, since it dis-
rupts the all-to-all data shuffle among servers. Below, we
describe policies for capping power by deactivating servers
in priority order and by blinking, as well as their advantages
and disadvantages when shuffling keys across servers.

3.2.1 Priority Policy

A straightforward approach to inactive power capping is
to activate and deactivate a subset of servers in priority order
based on the available power. This policy uses the available
power P(t) each interval T to activate servers such that it
minimizes “wasted” power, while enforcing an equal alloca-
tion of power across servers to maintain balance.

We consider power as wasted if it is either below a server’s
minimum active power or above its maximum power neces-
sary to run an uncapped worker. In the former case, the
server has only enough power to turn on and can do no use-
ful work, while, in the latter case, the server cannot make
use of any power above some maximum value. For example,
assume a power cap of 400W for a cluster of five servers,
which have a minimum idle power of 50W and a maximum
power of 150W when executing an uncapped worker. In this
case, activating five servers at 80W wastes the most power
(250W), leaving the least for useful work (150W), while acti-
vating three servers at 133W wastes the least power (150W),
leaving the most for useful work (250W).

After determining how many to activate, the policy must
then determine which servers to activate. To do this, the
policy prioritizes servers (arbitrarily) from 1... N, such that
the highest priority server not yet completed with the key
distribution phase always remains active, assuming enough
power to activate one server. As power increases, the policy
activates the next highest priority server(s) not yet finished
exchanging keys with the current highest priority server.
Likewise, as power decreases, the policy deactivates the low-
est priority active servers. Once the highest priority server
finishes its key distribution phase by exchanging keys with
all other servers, the policy deactivates it and places it at
the lowest priority, resulting in a new highest priority server.

Note that the priority policy incurs minimal overhead to
transition servers to the inactive power state, since it only
transitions a server to an inactive power state if i) power
increases or decreases or ii) a server finishes the first phase
and has no more work to do. In fact, assuming only constant
power to activate Iz of n servers, the minimum number of
transitions is Zi(:’cojiﬂ (n —i(k — 1)) = O(n*/k). This
amount represents a lower bound on the minimum number
of transitions if power varies, since increases and decreases
in power may force additional transitions. Thus, for variable
power, the minimum number of transitions is a function of
the power signal’s variability. However, as we discuss below,
minimizing the transitions comes at a cost: it results in
imbalanced progress and requires significant modifications
to the conventional distributed sorting implementation.
Imbalanced Progress. Unlike with active power capping,
the priority policy results in maximum imbalance in the
progress of exchanging keys, since high priority servers finish
before low priority servers have begun. While such imbal-
ance is not an issue for constant power, since any work done
is useful, it results in wasted work if power is highly variable.

To understand why, consider a simple scenario where there
is enough constant power to activate two servers at all times.
In this case, the priority policy cycles through each distinct
combination of servers, while, each time, fully completing
each pairs’ key exchange. As a result, at any given time,
some set of two-server combinations has completely finished
exchanging keys, while the remaining two-server combina-
tions have not yet started. Thus, if it takes Tezchange time
for two servers to finish exchanging keys and if power ever
increases to full power (sufficient to power all N servers),
then it will still take Tezchange time to complete the key ex-
change for the remaining two-server combinations not yet
started. Thus, any work completed at low power levels is
effectively wasted: had no servers exchanged keys until the
time of the power increase, the total running time of the
key distribution phase (Tezchange) would be the same. Since
the priority policy is not balanced, the remaining running
time of the key distribution phase is always based on the
lowest-priority pair of servers with the least progress.
Sorting Modifications. The priority policy also requires
modifications to the sorting application, since servers are no
longer always concurrently active. As a result, each worker
running on an active server must maintain an up-to-date list
of the other active workers to ensure that it only attempts
to exchange keys with those workers. Of course, since in-
put records are stored in random order on disk, an active
worker that is sequentially reading records to distribute to
other active workers will invariably read records destined
for currently inactive servers. While a worker may be able
to briefly cache these records in memory, it will ultimately
have to write them to disk if the destination server does not
become active in the near future.

Thus, rather than completing the key distribution phase
using a single sequential scan of keys per server (with one
read per key), the priority policy requires multiple passes
over the keys. Even if, on the first scan, the worker stores a
pointer to the location of an inactive servers’ discarded keys
on disk, such that only one additional read per key is re-
quired once a server becomes active, these subsequent reads
will result in random, rather than sequential, I/O. Since ran-
dom I/O bandwidth is generally two orders of magnitude
slower than sequential I/O bandwidth, this significantly de-

Priority Policy
Progress

Blinking Policy
Progress

NNy
N{Ng
Ny,
N4.Ng
No.N3
No.N,,
No.Ng
Na.N,
N3.Ng
NyNg

aYaYaYaYayau

1
D
D
D
D
D
D

N [N N N N A N N N

1
D
D
D
D
D
D
D
D

[
C
C
C
C
C
C
C
C
C

D
D
|

AYA

D
|

Running Time

Running Time

Figure 3: The priority policy causes imbalance dur-
ing key distribution, while blinking does not.

grades performance of an I/O-bound distributed sort.

We address this problem in the priority policy by pre-
partitioning the keys on each server before distributing
them, such that the keys for a particular destination server
are stored sequentially on disk. This pre-partitioning step
incurs more I/O (one additional read and write) to im-
prove performance by eliminating the need to waste I/Os by
reading and discarding records destined to inactive servers.
However, by sequentially storing keys destined for the same
server, it increases the amount of sequential 1/O during the
key distribution phase.

3.2.2 Blinking Policy

The blinking policy differs from the priority policy by di-
viding each interval 7 into an active and inactive period
based on the energy available over 7 [32]. For example, if 7
is two minutes, the average power available over 7 is 100W,
and each server’s active power cap is 200W, then the active
and inactive periods would each be one minute. In addition,
since blinking concurrently activates all servers each interval
T, it introduces a choice in setting a server’s active power
cap and the length of the active period each 7. To reduce
wasted power, we set the active power cap to the minimum
cap possible that maximizes utilization of the CPU (its most
energy-efficient setting). Thus, blinking makes minimal use
of active power capping, especially on balanced platforms
that fully utilize the CPU. Relative to the priority policy,
blinking has three main benefits.

Few Application Modifications. Unlike with the priority
policy above, blinking requires few changes to the sorting ap-
plication, itself, although the power manager must compute
the active and inactive periods every 7 and synchronously
toggle servers to and from the inactive power state in tan-
dem. The conventional distributed sort requires no changes,
since inactive state transitions preserve memory state and,
as before, all servers are always concurrently active
Maintains Balanced Progress. As when using active
power capping, blinking servers maintains balanced progress
across all workers, such that all workers distribute keys to
other workers at the same rate. Since no single worker is ever
a bottleneck to finishing the key distribution phase, unlike
the priority policy, blinking behaves similarly regardless of
the variability of the power signal. Figure 3 depicts this ad-
vantage of the blinking policy over the priority policy, where
N =5 and power increases to full power at the mid-point of
execution. Each bar represents the progress in exchanging
keys between each of the (g):lo distinct pairs of servers.

In this case, the figure shows that, on reaching full power,
the balanced blinking policy will finish in half the time of
the priority policy modulo transition overheads. Notice that
imbalanced progress is only an issue if power changes, i.e.,
drops and then rises again, since the bottleneck only presents
itself when power increases. Thus, the priority policy be-
comes progressively worse as power becomes more variable.
Capable of Low Power Caps. While the priority policy
needs at least enough power to activate two servers during
key distribution to perform useful work, the blinking policy
is able to perform useful work with much less power simply
by reducing the length of its active interval.

Unfortunately, blinking also has drawbacks. Most impor-
tantly, some non-trivial portion of the active time each in-
terval 7 is wasted due to transitioning power states, which
may take anywhere between a few seconds to multiple min-
utes depending on the platform. In addition, since transi-
tions occur at a fixed interval, the number of transitions is
based on an application’s running time, rather the variabil-
ity in the power signal. Finally, such frequent transitions
may also degrade the reliability of mechanical disks.

3.2.3 Round-robin Policy

The blinking and priority policy, represent two extremes
in the energy-agility design space captured by Table 1. The
blinking policy works well with small input data (resulting a
short running time), short transition latencies, highly vari-
able power, and low average power, since it incurs frequent
and costly inactive power state transitions but maintains
balanced progress between each pair of servers. In contrast,
the priority policy works well with larger input data (result-
ing in longer running times), long transition latencies, less
variable power, and a higher average power, since it transi-
tions to inactive power states less but results in imbalanced
progress for variable power signals.

We introduce a round-robin priority policy to mind the
gap between these two extremes. This policy behaves like
the priority policy, in that it assigns priorities to servers
1...N and activates them in order. The primary differ-
ence is the round-robin policy defines a scheduling time slice
tsched, Which sets the maximum time any server may be ac-
tive. Once a server exhausts its time, the policy deactivates
the server, sets it to the lowest priority, and then activates
the next highest priority inactive server. With a long time
slice, the round-robin policy behaves similarly to the priority
policy (with few transitions but imbalanced progress), while
with a short time slice, it approximates the blinking policy
(with many transitions but balanced progress).

3.2.4 Performance Modeling

We model GreenSort’s performance based on its salient
characteristics: the running time 7" when using full power
with all N available nodes active, the inactive power state
transition latency d, the average number of active nodes k
based on the power signal P(t), the time for preprocessing
data on a given node T)¢, and the blink interval 7. M then
represents the number of power state transitions required
by each policy. Based on these variables, we can define the
running time of Greensort under each policy as follows.

T*(%HTPTE*(%HCI*M (1)

Here, the first term represents the sort’s running time
when only k& of N nodes are active on average, since run-

(Policy | Running Time (T) | Transition Latency (d) | P(t) Variability | P(t) Average ||
Blinking Low Low High Low
Round-Robin))))
Priority High High Low High

Table 1: Qualitative attributes of a distributed sort that are amenable to the blinking and priority policies.
The round-robin policy’s configurable time slice minds the gap between the two policies.

ning time is a linear function of the number of active servers.
The second term is the time spent preprocessing input data
prior to key distribution. The last term is the overhead due
to power state transitions over the running time. For the
blinking policy, since there is no preprocessing and nodes
transition every blink interval 7, Tpre = 0 and M = M

For the priority policy, the preprocessing time is propor-
tional to the size of the input data and the network/disk
1/O throughput, such that Tp.. = g(DataSize,[/O —
throughput). The number of transitions then has two com-
ponents. First, the minimum number of transitions assum-
ing k of N nodes are always active, and second, any addi-
tional transitions that may occur due to variations in the

: M2 11 .
power signal P(t). Thus, M = >, %] (n—i(k—1)) +
f(P(t)), where f(P(t)) represents the number of transitions
due to variations in P(¢).

Given the GreenSort running time above, we can derive
energy-agility (in records per joule) by computing the energy
E available over the running time based on P(t¢) and then
dividing the work done (in terms of the number of sorted
records) by E. Thus, the overhead terms in the equations
above increase the energy E in the denominator, thereby
decreasing the energy-agility. Note that the model above
is general and applies to any task that involves a synchro-
nized all-to-all communication phase across all servers. By
contrast, an embarrassingly-parallel task that requires no
synchronization across servers, where each server must per-
form the same amount of work, would have a running time
of only T * (%) +dx N/k. Here, the first term is the same as
above, while the second term simply represents the transi-
tion latency incurred every time a set of k servers completes
its work and activates another set of k servers.

4. IMPLEMENTATION

Our GreenSort implementation includes one worker pro-
cess per server and a centralized power manager, both writ-
ten in C4++. The workers coordinate to sort the input data,
while the power manager implements the power manage-
ment policies from the previous section. We briefly dis-
cuss the worker and power manager implementations below,
along with a description of our hardware platform.
Workers. We model our worker implementation after Tri-
tonSort [30], which divides the work of each sorting phase
into a series of pipelined multi-threaded stages connected
via producer-consumer buffers. However, since our focus is
on energy-agility and not energy-efficiency, we do not opti-
mize our workers for the highest possible efficiency on our
platform. We also implement the necessary functions for
workers to interact with the power manager to pause and
resume its operation and report its progress with respect to
other workers. Workers also include any functions necessary
to support the various policies, such as pre-partitioning keys
before distributing them with the priority policy.

Power Manager. The power manger monitors both server

power usage and the amount of available power every 7, and
then caps power by either altering servers’ active power caps
or activating/deactivating them. Deactivating one or more
servers is a two-phase process. First, the power manager
informs all workers of the servers that it is planning to de-
activate. The workers on servers remaining active cleanly
finish sending any outstanding buffers to the deactivating
servers, while the workers on soon-to-be inactive servers
cleanly finish sending all outstanding buffers to all other
workers. Once finished, all workers send an acknowledge-
ment to the power manager. The power manager subse-
quently deactivates servers by pausing their activity, and
then remotely transitioning the server to an inactive power
state. A similar two-phase process occurs when activating
one or more servers. To implement our priority-based poli-
cies, the power manager also periodically polls each worker
to track its progress with respect to other workers.
Platform. Our experimental platform is a set of Dell Pow-
erEdge R720 servers, each with 32 2GHz cores, 64GB mem-
ory, and a 4TB disk. Since our platform combines a sin-
gle local disk with 32 cores, it is not particularly energy-
efficient for data-intensive applications, as many of its cores
are largely idle during a sorting run. In particular, due the
presence of only a single local disk, the servers are unable to
maintain pure sequential I/O during key distribution, even
when all servers are active, as the disk must concurrently
read keys it sends and write keys it receives. As a result, we
configure each worker to use a remote disk on a “dummy”
server, as if it were another local disk, to ensure sequential
1/O during key distribution. Of course, this paper’s goal
and the focus of our evaluation is not to construct the most
efficient hardware platform, but to illustrate fundamental
tradeoffs in energy-agile design.

Our servers include an external out-of-band management
card that permits remote i) monitoring of server power us-
age every second, ii) power cycling, and iii) control of active
power capping. The server’s active power capping mecha-
nism enables the power manager to set the cap between 85W
(near the minimum idle power) and 285W (near the peak
power). Unfortunately, the only inactive power state sup-
ported is Suspend-to-Disk (S4). The power manager transi-
tions the server to S4 by executing a command line program,
and transitions it out of S4 by remotely turning it on. The
time to transition into and out of S4 has a lower bound of
~90s due to a required series of pre-boot tests.

Since our servers do not support Suspend-to-RAM (S3),
which combines short power state transitions (on the or-
der of seconds) with low power usage (~5% peak power),
they impose a high overhead. S3 support is uncommon in
servers; in fact, Dell makes no server that supports S3 and
includes support for out-of-band management (a necessity in
a remotely-managed datacenter). Due to these limitations,
our power manager emulates other transition latencies by
sleeping for a pre-determined amount of time when paus-
ing and resuming servers. In addition, while we have access

220 r

2.01 Ghz
200 | 1.9Ghz e
£ 180 | S
2 160 |
o 140 |
g 120}
% 00}

0
0 10 20 30 40 50 60 70 80 90 100
CPU Utilization %

Figure 4: Power usage as a function of CPU utiliza-
tion for each DVFS state on our servers.

to a shared cluster of 200 servers for experiments, we have
only five dedicated servers that permit active power capping.
Thus, in our evaluation, we use the cluster for experiments
that focus on inactive power state transitions, and our ded-
icated servers for those that focus on active power capping.

S. EVALUATION

The goal of our evaluation is to use GreenSort to illustrate
fundamental tradeoffs in the energy-agile design space. The
design space is a function of many parameters, including
the power signal characteristics, energy storage capacity, in-
put data size, transition latency for inactive power states,
etc. We first examine the limitations of using active power
capping to satisfy power constraints to motivate the need
for using inactive power states in our power management
policies (§5.1). We then evaluate the use of inactive power
states in each of our policy variants via microbenchmarks
that alter the design parameters above in a controlled way
to reveal their relative effect on performance (§5.2). Finally,
we quantify the performance of each policy variant for real-
world power traces on our platform (§5.3).

5.1 Limitations of Active Power Capping

Each of our servers permits setting an active power cap
as low as 85W, which they enforce by throttling CPUs. Fig-
ure 4 shows the active power range of the servers’ CPUs
using DVFS, where the z-axis is the average CPU utiliza-
tion across all cores (and where the network card and disk
are idle). The graph shows that at 100% CPU utilization
our servers’ base power usage is 8OW and their power us-
age in the highest DVFS state at 100% CPU utilization is
near 215W, providing a 135W active power range for the
CPU. The network interface card (NIC) and disk consume
an additional 35W apiece when in use (at any utilization),
resulting in an active power range (assuming any network
and disk activity) of 150W to 285W. The server enforces
active power caps below 150W by rapidly toggling CPUs
between idle sleep modes (or C-states), which is similar, in
principle, to blinking, although the C-state transitions are
much faster (order of milliseconds or less).

Since our servers’ CPU capacity is over-provisioned for
data-intensive tasks like sorting, our workers only operate at
20% CPU utilization (averaged over all CPUs) in the lowest
DVFS power state, which results in 95W CPU consumption
and is already within ~15W of the platform’s minimum, idle
power state. Thus, the total server power, when including
the NIC and disk, during key distribution is 1656W. In prac-
tice, our platform has little room to use DVFS to cap power,
and must use C-state throttling. Figure 5 shows the limita-

2 160

£

o 120

E

— 80+

o

= «

g 4l Priority ——
S Active Power Capping

= ‘ __ Blinking e

0 L)
300 400 500 600 700 800 900
Power (watts)

Figure 5: Sort run time for a constant power cap
(on the z-axis) for different energy-agility policies.

tions of active power capping. Here, the z-axis represents a
constant power cap, while the y-axis is the running time to
sort 125GB of data across five servers. In one case, we keep
all servers active and cap power using our server’s built-in
active power capping mechanism by dividing the available
power equally across the five servers, while in the other case,
we satisfy the cap by using either the priority policy or the
blinking policy (assuming a transition latency of 30 seconds).

The figure shows that once the cap drops below 660W (or
165W per server) the performance from only keeping three
servers (or less) concurrently active outperforms keeping all
servers active and actively capping power below 165W. For
example, a 550W cap enables three servers to be concur-
rently active at 183W, or five servers to be concurrently at
110W. The former case completes in 95 minutes, while the
latter takes more than 23 hours. This result highlights the
importance of minimizing wasted power when using active
power capping. Both the priority and blinking policies gen-
erally make better use of the available power. Note that we
plot running time rather than energy-agility here only for
ease of exposition: since average power is the same for each
run, running time is proportional to energy-agility.

By concentrating power on fewer servers, the priority and
blinking policies incur much less overhead than using active
power caps across five servers. The overhead arises for at
least three reasons. First, the more servers that are active,
the more base power is wasted. For example, consider a
scenario where there are three servers active, each with an
active power cap of 130W, with 105W left to distribute.
Activating another server with an active power cap of 105W
is less efficient than increasing the cap of the active servers
by 35W each, since the new active server will only use 256W
for productive work (since 80W is the base power), while the
three active servers will use all 106W for productive work.
Second, the more servers that are active, the more CPU
and power is devoted to additional OS and worker software
overhead. Finally, adhering to low power caps not satisfiable
using DVFS incurs increasing overhead due to frequently
toggling CPUs into and out of idle C-state sleep modes. In
our experiment, with an active power cap of 110W, almost
no power goes to doing productive work.

Other platforms beyond our own are similarly constrained
in using active power capping. If our platform were to have
ten disks, rather than one, the non-energy-proportional disks
would dominate power usage, reducing the effectiveness of
active CPU power states. Similarly, our platform could use
a low-power CPU, such as an Intel Atom, to operate at
a higher utilization when sorting. However, as before, the

2 500 Agility mm |
o Run-time R
5 400 t

9 4
:g 300 1 |
E» 200 ¢ |
S 100 |]
[0]

c

w

Static-pwr Blinking Rnd-robin Priority

Figure 6: Baseline energy-agility (left y-axis) and
running time (right y-axis) for each policy variant.

CPU’s fraction of power would decrease relative to the non-
energy-proportional disk and network card. While replacing
mechanical disks with solid-state drives (SSDs) would lower
the disks’ fraction of power usage, low-power CPUs gener-
ally have many fewer active power states than high-power,
multicore processors. For example, a low-power SuperMi-
cro server in our lab, which has an Intel Atom processor,
has no DVFS states and only a single C-state. Thus, while
low-power servers may be energy-efficient, they often have a
much narrower active power range than high-power servers.
Result: Active power capping has limited benefits for 1/0-
intensive applications that do not fully utilize the CPU.

5.2 Microbenchmarks

Given active power capping’s limitations, we use mi-
crobenchmarks to quantify the design space of GreenSort’s
policies that use inactive power capping. Our baseline mi-
crobenchmark sorts 500GB across 10 servers, assuming a la-
tency of 30 seconds to transition to an inactive power state,
and a minimum energy storage capacity capable of support-
ing 7 = 2min. We use a power signal that oscillates between
25% and 75% peak power every 7, and, for the round-robin
policy, we set the time-slice to 2 minutes. From our base-
line benchmark, we then vary each parameter to quantify its
relative impact on performance among the policies.

To set context, Figure 6 shows the results in our baseline
scenario, where the left y-axis indicates the energy-agility
and the right y-axis indicates the running time of the sort-
ing system. For each policy variant, the energy-agility (in
records sorted per joule of energy available) is indicated by
a bar and the running time by a point. We execute each run
three times and plot the minimum, maximum, and average
energy-agility, which is within 1% or less across each sepa-
rate run. The graph shows that the blinking policy outper-
forms all other policies both in terms of being energy-agile
and overall running time in our baseline case. Also, the
round-robin priority policy performs better than the strict
priority policy. For both the priority and round-robin poli-
cies we use the pre-partitioning optimization. Without it,
the 500GB sort takes more than 20 hours to complete less
than 15% of key distribution, reflecting the two orders of
magnitude performance decrease from using purely random,
rather than sequential, I/O. However, despite the optimiza-
tion, the additional I/O required by the priority and round-
robin policies in this case outweighs any additional transition
overhead from the blinking policy.

Transition Latency. Figure 7 shows the performance of
our three policies as the transition latency varies. The graph
illustrates that the blinking policy outperforms the priority-

@ 700 o
=] Blinking ——
O 600 - Roundl;Robin

) jority e
§ 500 riority

. 400t

R

&, 200 ¢ s

o

5 100

C L L J
Nl}

0 ! ! !
10 20 30 40 50 60 70
Transition Latency (secs)

Figure 7: Transition latency’s effect on agility.

800 r L
700 Roung—hlggg]ig B
600 |- Priority e
500
400
300
200
100
0

Energy-agility (rec/joule)

0 3 6 9 12 15
T (mins)

Figure 8: Power signal frequency’s effect on agility
(represented by energy storage capacity 7).

based policies by as much as 2X for short latencies. Even for
long latencies of 45 seconds, blinking’s performance remains
better than priority despite the fact that blinking incurs the
transition latency overhead once every 7 = 2 minutes. For
example, with a latency of 45 seconds, the blinking policy
spends 37.5% of its time simply transitioning power states.
However, once the transition latency exceeds one minute,
the priority policy outperforms blinking, as the overhead
of transitioning begins to outweigh the benefit of blinking’s
fewer number of I/Os. As expected, the performance of the
round-robin priority policy falls between the blinking and
priority policies regardless of the latency.

Power Signal and Energy Storage. The frequency of
variation in the power signal also affects performance. One
way to alter the frequency is by changing the amount of min-
imum energy storage capacity, as represented by the length
of 7. Figure 8 shows that the blinking policy’s performance
improves as energy storage capacity (and 7) increases from
one to 15 minutes, since it reduces the frequency of blink-
ing and its associated overhead. In contrast, energy storage
does not significantly affect the priority or the round-robin
policy, since they do not transition every interval 7.

We also alter the variability of the power signal without
changing 7, as depicted in Figure 9. Here, the z-axis repre-
sents the length of each period of constant power, such that
the power signal changes every & minutes; the higher z, the
less variable the power signal. The graph shows the relative
performance of the priority policy improves as the variability
decreases (and the periods of constant power increase), since
it reduces the impact of its imbalanced progress. In contrast,
the power signal’s variability does not improve the perfor-
mance of blinking, since it maintains balanced progress and
its transition overhead is independent of the variability.
Job Size. The length of a sorting run also affects the rel-
ative performance of the policies. While a longer running

@ 500 [

3

< 400 |

-
R ——

D 200t

@

S I Blinking ——
g o Round-Robin

0 ! L L .) PI’iQrity R ‘
LU

0
1 2 3 4 5 6 7 8 9
Duration of stable power (mins)

Figure 9: Power variability’s effect on agility.

time causes more transition overhead for the blinking pol-
icy, if the increase is due to fewer resources or a larger input
data size, it also causes more additional I/O overhead for the
priority policy. Figure 10 shows the results of increasing the
input data size to sort in our baseline microbenchmark. The
graph demonstrates that the larger the input data size the
worse blinking (and round-robin) performs relative to the
priority policy. For example, when sorting 500GB, blinking
is 58% more agile, when sorting 1TB it is 48% more agile,
and when sorting 2TB it is only 5% more agile. The wors-
ening relative performance reflects the fact that blinking’s
transition overhead is a function of the running time, and
not the variability of the power signal, as with the priority
policy. Thus, as the running time becomes longer the tran-
sition overhead increasingly outweighs the additional I/O
overhead due to the larger input data.

Result: Energy-agile design is influenced by a variety of
parameters, including a platform’s transition latency, power
signal characteristics, energy storage capacity, and job size.

5.3 Real Power Signals

Finally, we evaluate our GreenSort policies on real power
signals on our hardware platform to get a sense of perfor-
mance for each policy in practice. Figure 11 shows the
performance of each policy variant on the solar energy sig-
nal from Figure 1(b) and the electricity price signal from
Figure 1(c). In the latter case, we set a fixed budget of
0.94¢ every five minutes for electricity (determined by the
energy needed to power on five nodes at an average price of
3.27¢/kWh from our sample), which transforms the electric-
ity price signal into a hard power cap. For comparison, we
scale the solar and price traces such that they yield the same
average power. In addition, we also compare our results with
a uniformly random power signal and a static power signal
equal to the average power of the solar and price signals.
These experiments sort 1TB of data across 10 nodes.

In contrast to our microbenchmarks, the priority policy
significantly outperforms the blinking policy (by more than
40% in each case). Since our actual platform has a transition
latency of 90s, it restricts the blinking policy to utilizing the
server for a maximum of 30s for each 7=120s cycle. As ex-
pected, the static power signal performs best since it makes
maximum use of the priority policy to minimize transitions.
We can compare each variable signal with this static sig-
nal to get a sense of how variations ultimately impact the
running time and the energy-agility of the sorting system.

We define the energy-agility factor as the ratio of energy
required to finish a sort under static power to the energy re-
quired to finish the same sort under a variable power, whose

@ 500 ¢

3

S 400 F —

o

; 800 [y '
DS 200 |

©

> | Blinking ——
g 100 Round-Robin

c ‘ ‘ Priority -omee
- 500 1000 2000

Input data size (in GB)

Figure 10: Input datasize’s effect on agility.

average is same as that of the static power. For example,
the uniformly random signal yields an energy-agility factor
of 0.37 for the blinking policy, 0.53 for the round-robin pol-
icy, and 0.65 for the priority policy. That is, sorting under a
constant power consumes only 37% of the energy provided
to the blinking policy under a varying power, or 65% of the
energy provided to the priority policy. The trend is slightly
worse for the blinking policy under the solar and spot price
signals, since these signals are not uniformly random but
have correlated periods of extended inactivity. The priority
policy is 2X more agile than the blinking policy both under
solar and spot price signals. We see that despite exceeding
the two-read-two-write limit of distributed sorting, the pri-
ority and round-robin policies fare better than the blinking
policy owing to the high transition overhead of our platform.
In terms of energy agility factor, for the solar and price sig-
nals, respectively, the blinking policy yields 0.35 and 0.32,
the priority policy yields 0.78 and 0.69, and the round-robin
policy yields 0.71 and 0.67.

Result: Since variations in power increase the time and
energy to complete a task, energy-agile design is impor-
tant when considering the benefits of using renewable energy
sources or participating in demand response programs. As
one example from above, sorting under a stable power will
only consume 69% of the energy required by the best Green-
Sort policy (priority in this case), when the power varies
based on real-time electricity prices. Thus, in this case, real-
time prices should be at least 31% lower than fized prices to
warrant opting into using them.

6. RELATED WORK

Energy-agility is related to energy-proportionality [6] in
that it also benefits from energy-proportional servers capa-
ble of precisely varying their power usage over a wide ac-
tive power range. However, a perfectly energy-proportional
server would not necessarily optimize energy-agility, as
energy-proportionality only dictates that server power us-
age increases linearly with utilization, regardless of the
energy-efficiency at a particular utilization level. In con-
trast, energy-agility incorporates both energy-efficiency and
the ability to rapidly adapt power usage over a wide dynamic
power range. In addition, unlike energy-proportionality,
energy-agility is power-driven, rather than workload-driven.
While energy-proportionality applies directly to web appli-
cations and batch schedulers, where the workload intensity
varies over time based on user request volume, it is not ap-
plicable to long-running parallel tasks, such as distributed
sorting, with no variance in the workload. Thus, recent work
on energy-efficiency focuses on designing balanced systems

m Blinking
g 1250 Round-fobig o
3 1000 | Priority - sem—
[0)
E 750+
2 500
£ I
é 250

0

Static pwr Spot prc Solar Random

Input power trace

1257 Blinking s
Round-robin mwmmm
Priority mem—
0.75

0.5

0.25

Energy-agility factor

0
Static pwr Spot prc Solar Random

Input power trace

Figure 11: Performance on real power signals showing the effect on (a) running time and (b) agility.

that optimize peak performance per watt, e.g., at 100% uti-
lization [4, 30, 31]. In contrast, energy-agility encourages
applications to operate efficiently at all utilization levels.

Prior work on enforcing soft power caps generally focuses
on time-shifting data center energy usage via energy stor-
age [18, 39], workload scheduling [16, 17], or both [15] to re-
duce energy costs. This group of work exploits temporal and
spatial variations in electricity prices to minimize costs with-
out violating applications’ quality-of-service (QoS) require-
ments, e.g., job deadlines or response latency requirements.
In contrast, our work is not cost-oriented, but instead intro-
duces energy-agility as a cost-independent metric to quantify
an application’s ability to adapt to variable power. Opti-
mizing energy-agility is important for long-running delay-
tolerant tasks, since adapting their power usage to available
power is less expensive than masking power variations with
energy storage [18, 39]. Long-running tasks are also less
amenable to scheduling policies than short tasks, which may
simply be deferred until power is cheap or plentiful [16, 17].

There has been much less prior work on adapting systems
to dynamically-changing hard power caps. While a variety
of power capping mechanisms exist for individual servers,
these mechanisms ignore the inter-node dependencies that
affect performance in distributed applications [7, 14, 22].
Thus, prior work focuses on regulating power using simplis-
tic workloads, e.g., compute-intensive batch jobs with few
data dependencies, that readily permit time-shifting work-
load to satisfy power caps [24]. Finally, the only prior work
we are aware of that accounts for inter-node dependencies
when capping power focuses on interactive services, e.g., a
distributed memory cache [32] and file system [33], and not
the delay-tolerant jobs that are most amenable to demand-
side management. However, we show that a similar blink-
ing abstraction applies to these workloads, albeit differently
than with interactive workloads.

7. CONCLUSION

This paper introduces energy-agility as a metric to evalu-
ate green datacenter applications that adapt to power vari-
ations, and then design GreenSort to illustrate fundamental
tradeoffs in energy-agile design. While we focus on sort-
ing, we believe our experience in designing GreenSort re-
veals some general lessons for energy-agile design that are
applicable to a broader range of data-intensive applications,
such as MapReduce [8]. We summarize these lessons below.
Inactive Power Capping is Useful, Despite its Over-
head. Prior work largely focuses on active power cap-
ping [10, 25, 27, 28], since inactive power capping is not

appropriate for all workloads. For example, online data-
intensive (OLDI) workloads may need immediate access to
data stored on any server at any time, and, thus, cannot
incur the transition latency associated with inactive power
capping [25, 27]. In contrast, for data-intensive, parallel
batch jobs, such as sorting, we show that inactive power cap-
ping is much more efficient than using active power capping
because it concentrates more power on doing useful work.
This useful work offsets the transition overhead associated
with inactive power capping. In addition, while applications
could employ active power capping to satisfy caps as low as
~50% peak power, we find setting active caps, which slow
down server progress to activate additional servers, is not
beneficial due to high server idle power.

Blinking is Preferred when Coordination is Neces-
sary. While blinking incurs high latencies at regular short
intervals, it does not affect an application’s pattern of re-
mote I/O, since servers are always concurrently active for
some fraction of each interval. In contrast, any policy that
deactivates some fraction of servers has the potential to alter
applications’ remote I/O patterns and degrade performance,
e.g., by changing sequential I/O to random 1/0, since servers
may not always be concurrently active. In addition to sort-
ing, MapReduce and other “big data” platforms also have
frequent periods of large-scale coordinated data movement.
In contrast, the priority policy works well for embarrass-
ingly parallel tasks that require no coordination, since it
minimizes transition overheads.

When Deactivating Servers, Organizing Data is Ben-
eficial. As the transition latency increases, the useful work
performed when blinking decreases. At some point, min-
imizing this overhead by deactivating servers, as per our
priority policy, becomes attractive. Since naively deacti-
vating servers affects I/O patterns, actively organizing the
data in conjunction with the power management policy is
important. As we show, incurring additional I/O upfront
to maximize sequential I/O later can improve performance.
Since today’s server platforms do not support ACPI's S3
state, their transition latencies warrant this approach.

Our results suggest that energy-agile design is a poten-
tially rich area for future research, especially given the
diminishing returns on improving energy-efficiency and
the increasing use of variable power. Our work shows
the importance of energy-agility in quantifying how power
variations increase the time and energy to complete a task.

This research is funded by the
grants 1422245,

Acknowledgements.
National Science Foundation under
1405826, and 1339839.

8.
1]

[9]

[10]
[11]
[12]
[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl,
and R. Gupta. Somniloquy: Augmenting Network
Interfaces to Reduce PC Energy Usage. In NSDI,
April 2009.

A. Aggarwal and J. Vitter. The Input/Output
Complexity of Sorting and Related Problems. 1988.

B. Aksanli, J. Venkatesh, L. Zhang, and T. Rosing.
Utilizing Green Energy Prediction to Schedule Mixed
Batch and Service Jobs in Data Centers. In HotPower,
October 2011.

D. Andersen, J. Franklin, M. Kaminsky,

A. Phanishayee, L. Tan, and V. Vasudevan. FAWN: A
Fast Array of Wimpy Nodes. In SOSP, October 2009.
Apple and the Environment. http:

/ /www.apple.com/environment/renewable-energy/,
Accessed November 2013.

L. Barroso and U. Hoélzle. The Case for
Energy-Proportional Computing. Computer, 40(12),
December 2007.

R. Cochran, C. Hankendi, A. Coskun, and S. Reda.
Pack & Cap: Adaptive DVFS and Thread Packing
Under Power Caps. In MICRO, December 2011.

J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI,
December 2004.

Q. Deng, D. Meisner, L. Ramos, T. Wenisch, and

R. Bianchini. MemScale: Active Low-Power Modes for
Main Memory. In ASPLOS, March 2011.

X. Fan, W. Weber, and L. Barroso. Power Provisioning
for a Warehouse-sized Computer. In ISCA, June 2007.
State of the Markets Report 2008. Technical report,
Federal Energy Regulatory Commission, August 2009.
K. Fehrenbacher. The Era of the 100MW Data Center.
In Gigaom, January 31 2012.

K. Finley. Facebook Says its New Data Center Will
Run Entirely on Wind. In Wired, November 13th 2013.
A. Gandhi, M. Harchol-Balter, R. Das, J. Kephart,
and C. Lefurgy. Power Capping via Forced Idleness. In
Weed, June 2009.

I. Goiri, W. Katsak, K. Le, T. Nguyen, and

R. Bianchini. Parasol and GreenSwitch: Managing
Datacenters Powered by Renewable Energy. In
ASPLOS, March 2013.

I. Goiri, K. Le, M. Haque, R. Beauchea, T. Nguyen,

J. Guitart, J. Torres, and R. Bianchini. GreenSlot:
Scheduling Energy Consumption in Green
Datacenters. In SC; April 2011.

I. Goiri, K. Le, T. Nguyen, J. Guitart, J. Torres, and
R. Bianchini. GreenHadoop: Leveraging Green Energy
in Data-Processing Frameworks. In FuroSys, 2012.

S. Govindan, A. Sivasubramaniam, and B. Urgaonkar.
Benefits and Limitations of Tapping into Stored
Energy for Datacenters. In ISCA, June 2011.

D. Irwin, N. Sharma, and P. Shenoy. Towards
Continuous Policy-driven Demand Respone in Data
Centers. In GreenNets, August 2011.

J. Koomey. Growth in Data Center Electricity Use
2005 to 2010. In Analytics Press, Oakland, California,
August 2011.

A. Krioukov, C. Goebel, S. Alspaugh, Y. Chen,

D. Culler, and R. Katz. Integrating Renewable Energy
Using Data Analytics Systems: Challenges and

(22]

23]

[24]

(25]

(26]

27]

28]

29]

(30]

(31]

32]

33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

Opportunities. In Bulletin of the IEEE Computer
Society Technical Committee, March 2011.

C. Lefurgy, X. Wang, and M. Ware. Server-level Power
Control. In ICAC, February 2007.

C. Li, A. Qouneh, and T. Li. iSwitch: Coordinating
and Optimizing Renewable Energy Powered Server
Clusters. In ISCA, June 2012.

Z. Liu, A. Wierman, Y. Chen, B. Razon, and N. Chen.
Data Center Demand Response: Avoiding the
Coincident Peak via Workload Shifting and Local
Generation. 70(10), 2013.

D. Lo, L. Cheng, R. Govindaraju, L. Barroso, and

C. Kozyrakis. Towards Energy Proportionality for
Large-scale Latency-Critical Workloads. In ISCA,
June 2014.

D. Meisner, B. T. Gold, and T. F. Wenisch.
PowerNap: Eliminating Server Idle Power. In
ASPLOS, March 2009.

D. Meisner, C. Sadler, L. Barroso, W. Weber, and

T. Wenisch. Power Management of On-line Data
Intensive Services. In ISCA, June 2011.

P. Ranganathan, P. Leech, D. Irwin, and J. Chase.
Ensemble-level Power Management for Dense Blade
Servers. In ISCA, June 2006.

A. Rasmussen, M. Conley, R. Kapoor, V. Lam,

G. Porter, and A. Vahdat. Themis: An I/O-Efficient
MapReduce. In SoCC; October 2012.

A. Rasmussen, G. Porter, M. Conley, H. Madhyasthay,
R. Mysore, A. Pucher, and A. Vahdat. TritonSort: A
Balanced and Energy-Efficient Large-Scale Sorting
System. TOCS, 31(1), February 2013.

S. Rivoire, M. Shah, and P. Ranganathan. JouleSort:
A Balanced Energy-Efficient Benchmark. In SIGMOD,
June 2007.

N. Sharma, S. Barker, D. Irwin, and P. Shenoy. Blink:
Managing Server Clusters on Intermittent Power. In
ASPLOS, March 2011.

N. Sharma, S. Barker, D. Irwin, and P. Shenoy. A
Distributed File System for Intermittent Power. In
IGCC, June 2013.

R. Singh, D. Irwin, P. Shenoy, and K. Ramakrishnan.
Yank: Enabling Green Data Centers to Pull the Plug.
In NSDI, April 2013.

Sort Benchmark Home Page.
http://sortbenchmark.org/, Accessed July 2014.

C. Stewart and K. Shen. Some Joules Are More
Precious Than Others: Managing Renewable Energy
in the Datacenter. In HotPower, October 2009.

N. Tolia, Z. Wang, M. Marwah, C. Bash,

P. Ranganathan, and X. Zhu. Delivering Energy
Proportionality with Non-Energy-Proportional
Systems: Optimizing the Ensemble. In HotPower,
December 2008.

D. Tsirogiannis, S. Harizopoulos, and M. A. Shah.
Analyzing the Energy Efficiency of a Database Server.
In SIGMOD, June 2010.

R. Urgaonkar, B. Urgaonkar, M. Neely, and

A. Sivasubramaniam. Optimal Power Cost
Management Using Stored Energy in Data Centers. In
SIGMETRICS, March 2011.

A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad.
Opportunities and Challenges for Data Center
Demand Response. In IGCC, June 2014.

