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ABSTRACT

Renewable energy harvested from the environment is an at-
tractive option for providing green energy to homes. Unfor-
tunately, the intermittent nature of renewable energy results
in a mismatch between when these sources generate energy
and when homes demand it. This mismatch reduces the ef-
ficiency of using harvested energy by either i) requiring bat-
teries to store surplus energy, which typically incurs ~20%
energy conversion losses; or ii) using net metering to trans-
mit surplus energy via the electric grid’s AC lines, which
severely limits the maximum percentage of possible renew-
able penetration. In this paper, we propose an alternative
structure wherein nearby homes explicitly share energy with
each other to balance local energy harvesting and demand
in microgrids. We develop a novel energy sharing approach
to determine which homes should share energy, and when,
to minimize system-wide efficiency losses. We evaluate our
approach in simulation using real traces of solar energy har-
vesting and home consumption data from a deployment in
Ambherst, MA. We show that our system i) reduces the en-
ergy loss on the AC line by 60% without requiring large
batteries, ii) scales up performance with larger battery ca-
pacities, and iii) is robust to changes in microgrid topology.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Sys-
tems— Command and control

General Terms
Design, Measurement, Management
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1. INTRODUCTION

To reduce carbon footprint, energy harvesting devices (e.g.,
solar panels) are becoming increasingly popular in homes
nowadays. With the renewable energy generated by solar
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panels and energy storage units (e.g., batteries), homes can
be integrated as a small independent energy community.
The power systems employed in such communities are re-
ferred to as microgrids. If the harvested energy surpasses
the consumption, then microgrids can work independently
and autonomously.

However, the amount of renewable energy harvested nor-
mally does not match the amount of energy consumed in
individual homes. One solution is to sell the surplus energy
to a utility company and get energy from the utility com-
pany during energy shortage. However, a large amount of
energy generated by homes can destabilize the power system
if transmitted through an alternating current (AC) line. An-
other solution is to store the energy in local batteries. How-
ever, this approach requires extremely large size batteries to
store energy for a whole day’s energy consumption. In this
paper, we solve the mismatch of energy harvesting and con-
sumption by introducing energy sharing among homes. If re-
newable energy can be shared and consumed among homes,
the traditional power system will not be interrupted by the
renewable energy. To realize the energy sharing, we propose
a hybrid design of energy transmission system, which con-
tains both the traditional AC line and a small community
level direct current (DC) power line. Compared with tradi-
tional AC line, our DC line is significantly shorter. There-
fore, the energy transmission loss over DC line is much lower
than the loss over the traditional AC line. With energy shar-
ing, the total amount of energy needed from the AC line is
significantly reduced, which in turn dramatically reduces the
total energy transmission loss from the AC line.

One of our aims is to keep the system compatible with the
traditional AC power grid and reduce the deployment and
maintenance cost. Therefore, homes are connected to a sin-
gle DC power line (called DC main bus). This introduces
another design challenge — how to monitor and quantify
the amount of energy shared among homes. If homes pro-
vide (or extract) energy to (or from) the DC power line at
the same time, we cannot fully control the amount of en-
ergy shared between different pairs of homes. To address
this challenge, we propose a new approach, which is similar
to the TDMA (Time Division Medium Access) method used
in wireless communications. In our approach, different pairs
of homes share energy within different time slots. Our ap-
proach enables i) multiple homes to simultaneously provide
energy to a single home, and ii) a single home to simulta-
neously provide energy to multiple homes. In this way, our



approach not only allows us to monitor and quantify the
amount of energy shared among homes but also reduces the
time required for energy sharing.

Because transmission loss among homes differs for every pair
of homes, an efficient algorithm is needed to control the en-
ergy sharing flow. Generally, the energy loss between homes
includes two parts: i) energy loss over wires, and ii) energy
conversion loss during the battery charging and discharg-
ing stages. Energy loss over wires is mainly determined by
the distance of homes. To reduce the energy transmission
loss, we propose a greedy energy matching algorithm to re-
duce the distance of energy transmission and the amount
of energy needed to be stored in the battery. Specifically,
the main contributions of the paper can be summarized as
follows:

e To the best of our knowledge, this is the first in-depth
work to investigate the co-existence of traditional AC
power grid and DC power line for sharing renewable
energy among homes.

e We have i) designed an efficient energy sharing sys-
tem to share energy among homes, and ii) developed a
lightweight energy matching algorithm and a practical
energy transmission scheduling algorithm to minimize
the total energy loss based on the predicted energy
consumption and energy harvesting.

e We set up a series of experiments with empirical data
to verify the effectiveness of our system. The results
indicate that our system can reduce 60% of energy loss
from the AC line by efficiently sharing energy among
homes.

The paper is organized as follows. In Section 2, we discuss
the need for energy sharing. Section 3 gives an overview
of the system architecture. Models, detailed system design,
and evaluation are presented in Sections 4, 5, and 6, re-
spectively. Practical issues and related work are discussed
in Sections 7 and 8, respectively. Finally, we conclude our
paper in Section 9.

2. MOTIVATION

This work is motivated by the mismatch between energy har-
vesting and energy consumption in a single home as shown in
Figure 1. The mismatch occurs mainly due to the mismatch
between the time when renewable energy is harvested and
each home’s peak demand time. As a result, today’s Dis-
tributed Generation (DG) deployments rely heavily on net
metering, where consumers sell the unused energy they pro-
duce back to the utility company, which offsets their cost
relative to grid energy. DG is a much less attractive op-
tion if net metering is not available. Net metering laws and
regulations vary widely across states; it is not available in
at least four states of United States and the regulations are
weak in many others [5]. Unfortunately, even where avail-
able, states typically place caps on both the total number of
participating customers and/or the total amount of energy
contributed per customer [2]. After exceeding these caps,
utilities are no longer obligated to accept excess power from
DG deployments. For example, the state of Washington
caps the total number of participating customers at 0.25%
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Figure 1: Mismatching between energy harvesting
and energy consumption

of all customers. One reason for the strict laws limiting DG’s
contribution is that injecting significant quantities of power
into the grid from unpredictable energy source on a large
scale has the potential to destabilize the grid by making it
difficult, or impossible, for utilities to balance supply and
demand.

Today’s energy prices do not make DG financially attrac-
tive enough for consumers to reach even these low state
caps. However, more widespread adoption of renewable en-
ergy sources is critical to meet existing goals. For example,
the Renewables Portfolio Standard targets 25% of electric-
ity generation from intermittent renewables in California [4],
while California’s Executive Order S-21-09 calls for 33% of
generation from renewables by 2020 [3]. Given current laws,
if DG becomes more widespread, residential consumers will
have to look beyond net metering to reduce costs and bal-
ance on-site energy production and consumption. One al-
ternative approach is to use on-site energy storage, such as
batteries. However, batteries are expensive. For example,
according to Mckinsey’s report, the average price of electric
vehicle battery per kWh is around $500 in June 2012 [1].
In [25], we have demonstrated that a 12kWh battery can-
not buffer sufficient renewable energy for a regular home’s
daily energy consumption, which means we may need ev-
ery home to be equipped with battery at a price of more
than $6,000. Moreover, charging and discharging batteries
introduce significant energy loss. Therefore, we propose to
share harvested energy among small-scale networked homes
to balance the energy harvesting and consumption in the
microgrid. Because the distances between homes are typ-
ically much shorter than the distances from homes to the
utility company, energy sharing can significantly reduce en-
ergy loss.

3. SYSTEM OVERVIEW

In this section, we briefly overview the system architecture
and introduce the hardware architecture to achieve energy
sharing among multiple homes.

Our energy sharing system uses a cluster controller to con-
trol the energy sharing among homes. The cluster con-
troller collects information from homes and then arranges
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the transmission among homes. To guarantee the backward
compatibility with traditional power system, we adopt the
tree topology (shown in Figure 2) similar to the one in a
traditional power grid to connect homes for energy sharing.
Homes are connected to the cluster controller with both a
power meter and a switch. The power meter is used to mea-
sure energy harvesting and consumption information while
the switch is used to control how to share energy with other
homes. Because cluster controllers do not need to measure
energy information, they are connected to higher layer con-
trollers only through switches. In our system, energy is first
shared among homes within a cluster and then shared among
homes in different clusters in a higher layer repeatedly until
all possible energy transmissions are finished.

To realize energy sharing, we propose a three-layer design,
which contains hardware layer, local control layer and global
control layer (shown in Figure 3).

e The hardware layer uses a power meter to measure
i) energy harvesting rate from renewable energy de-
vices such as solar panels; and ii) energy consumption
rate from appliances such as heating devices. This
energy information will be periodically transferred to
local control layer for prediction of future energy har-
vesting and consumption rate. The hardware layer will
then execute energy transmission with the control sig-
nal transferred from power control at the local control
layer. The proposed hardware architecture is shown in
Figure 4. The harvesting devices (solar panel in our
paper) are directionally connected to a power meter
and switch because the energy cannot be transmitted
to solar panels. Meanwhile, home appliances and bat-
tery are bidirectionally connected to a power meter
and switch to measure and control the energy flow.
The power meter and switch will be connected to DC
main bus for energy sharing with other homes.

e The local control layer predicts i) renewable energy
that a home expects to harvest based on weather fore-
cast; and ii) expected energy consumption based on
historical usage data. Then the amount of energy har-
vested is compared to the amount of energy consumed
for dividing homes into two categories. A home with
energy surplus is called an energy supplier while a
home with energy shortage is called an energy deman-
der.

e The global control layer uses predicted energy informa-
tion to determine pair sets of homes for energy shar-
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Figure 4: Hardware architecture for energy sharing
among multiple homes

ing. Based on the current battery level and the ex-
pected available energy, it also determines the amount
of energy for a home to share with other homes and
to store in its local battery. Then an energy trans-
mission scheduling component decides the order (i.e.,
schedule) of energy transmission based on matching re-
sults. The energy sharing algorithm used in our paper
is referred to as Global Energy Sharing (GES).
Homes’ energy sharing information is transferred to
a power controller in the local control layer, and fi-
nally control signals would be delivered to hardware
for physical energy transmission.

4. MODEL

In this section we describe the model used in our paper. Let
X = {1,2,...,z} be the set of homes. Time is divided into
time slots and the size of a slot is referred to as window
size w. Let AE;(nw) be the difference between harvested
energy EH;(nw) and consumed energy EC;(nw) for home
¢ in the time interval [nw, (n + 1)w]. Homes can be divided
into energy suppliers set S and energy demanders set D
according to whether AE;(nw) is positive or negative. S
and D partition X, i.e., X =SUD and SN D = 0.

When ¢ transmits F;_,j(nw) units of energy to j via DC lines
in time interval [nw, (n + 1)w], j receives only a fraction of
E;_,;(nw) due to energy loss. The energy loss during trans-
mission contains both energy transmission loss over wires
and battery conversion loss. Energy transmission loss over



Parameter | Definition

EH;(nw) Harvested energy of ¢ in [nw, (n + 1)w]
EC;(nw) Consumption energy of ¢ in [nw, (n + 1)w]
AE;(nw) EH;(nw) — EC;(nw)

Ei_j(nw) Energy transferred from 7 to j in [nw, (n + 1)w]
R j(nw) Energy loss rate from ¢ to j in [nw, (n + 1)w]
E;(nw) Energy lack of ¢ after sharing in [nw, (n + 1)w]
R; Energy loss rate of ¢ to get energy from AC line

Table 1: Definition of parameters

wires is mainly determined by the amount of energy trans-
mitted, the length and type of power lines and the transmis-
sion voltage. During the energy transmission, since renew-
able energy may not be consumed by a home immediately,
extra energy might be stored in a local battery. The portion
of energy stored in battery during transmission introduces
not only energy transmission loss, but also battery conver-
sion loss during battery charging. Thus, we should store the
minimum amount of energy in battery to reduce the energy
loss.

Since energy transmission takes time, energy sharing should
be based on the future energy information. For example,
at time w, we use the energy harvesting and consumption
information in time interval [2w, 3w] to determine how en-
ergy should be shared instead of energy information in time
interval [w, 2w].

When a home still lacks energy after sharing, it fetches en-
ergy from the power grid via an AC line. This situation
occurs mainly either at night when harvested energy is not
sufficient or the transmission loss rate R;—;(nw) between
two homes is larger than transmission loss rate R; over the
AC line.

Given supplier set S and demander set D over time, the
purpose of energy sharing is to generate an ordered pair set
Qn ={(S1,D1), ..., (Sms Dm), ..., (S|Qn‘,D|Q"|)} at time nw
to determine energy sharing in time interval [nw, (n + 1)w],
where Sy, C S, Dy, C D and |Qy] is the size of Q.. Our goal
is to minimize the total amount of energy loss from battery,
DC, and AC lines:

> (B () - Recss (mw) + 37 Bi(mw) - Ri) - (1)

n )
with the following constraint:

|Sm| =1 or |Dn|=1 m=1,2,..,|Qnx] (2)

where i € S; j € D; R; is the energy transmission loss rate
of home 7 from the AC line and E;(t) is the amount of energy
shortage after the energy sharing. Constraint in Equation 2
ensures that there can be i) more than one supplier if they
are providing energy to same demander and ii) more than
one demander if they are obtaining energy from the same
supplier.

An example of energy sharing is shown in Figure 5. With
the bipartite graph of supplier set S and demander set D,
a matching result is given as home 1 provides energy to 2;
3 and 4 provide energy to 5; and 7 provides energy to 6

Suppliers Demanders

Pair set Q: {({1}, {2}), ({3, 4}, {5}, ({7}, {6, 8})}

Figure 5: An example of matching results (S, and
D,, can be one home or multiple homes. Numbers
in O is home id and number beside () is surplus or
shortage energy)

and 8. The energy transmission order follows the order of
pair set. Constraint in Equation 2 means we do not allow
simultaneous energy sharing such as ({1,3},{2,5}). In this
case, we are not able to control whether energy transmission
is from 1 to 2 and 3 to 5 or from 1 to 5 and 3 to 2. The
detailed discussion of energy transmission order is described
in Section 5.4.

5. SYSTEM DESIGN

In this section, we introduce detailed system design for en-
ergy sharing. Firstly, we give energy harvesting and con-
sumption prediction algorithms for predicting future energy
information. Then, with the predicted energy information,
we describe energy sharing within the cluster through match-
ing energy among homes and scheduling energy transmis-
sions. Finally, we explain how the energy sharing can be
extended in homes with tree topology.

5.1 Renewable Energy Prediction

For renewable energy, we use a prediction model similar to
Sharma et al. [24] that translates a weather forecast from
the National Weather Service (NWS) into a solar or wind
energy harvesting prediction. Since solar energy is the pre-
dominant renewable energy source in residential DG deploy-
ments, this paper focuses on solar energy. However, the
prediction model and energy sharing method can also be
applied to other types of renewable energy such as wind en-
ergy. We briefly summarize the model below, which uses
forecasted sky condition to predict solar energy harvesting.
The NWS releases a sky condition forecast, in addition to
other weather metrics, every hour for the next 24 hours.
At any time t, based on predicted sky condition percentage
C(t), we compute the solar panel’s energy harvesting power
PH,(t) as:

PHz(t) = Pmaz ° (1 - C(t)) (3)

where Pp,qz is the solar panel’s maximum possible harvest-
ing power. Sharma et al. [24] quantify the accuracy of Equa-
tion (3) and show that it is more accurate than existing tech-
niques that use the past to predict the future. Thus, based
on Equation (3), at any time ¢ = nw, we predict the solar
energy harvesting within the next energy sharing intervals
w as follows:



_ (n+1)w
EHi((n+ 1)w) = / PHi(r)dr (4)

nw

where w is the energy sharing window size.

5.2 Energy Consumption Prediction

To predict the home’s energy consumption, we use a simple
model based on an Exponentially Weighted Moving Average
(EWMA). The EWMA exploits the diurnal nature of home
consumption, while it also adapts to seasonal variations. On
a typical day, we expect the total energy consumption to be
similar to the total energy consumption of previous days
with slight deviations in weather and daily activities. More
sophisticated models that consider changing weekend activ-
ity patterns, weather conditions, or other information are
possible.

One goal of this work is to quantify how much renewable
energy we are able to utilize with a simple and straightfor-
ward prediction model. Let EC;(nw) denote the amount of
energy consumed in [nw, (n + 1)w] and E‘Z’Z((n + 1w) de-
note the predicted energy consumed in [(n + 1)w, (n + 2)w],
which is given by:

ECi((n+ Dw) =a-EC;(nw) + (1 — a) - EC;(nw)  (5)

The value of « is chosen by using the method in [13].

5.3 Energy Matching Algorithm

With the predicted energy harvesting and consumption in-
formation, we introduce the energy matching algorithm in
this section. We use a greedy energy search algorithm to
match the energy among homes.

The details of matching algorithm are shown in Algorithm 1.
With the information of energy harvesting and consumption
described in sections 5.1 and 5.2, we generate a bipartite
graph as illustrated in Figure 5. If the harvested energy of
home ¢ is larger than its consumed energy, ¢ is categorised
as S, shown in the left set in Figure 5, otherwise ¢ will be
categorised as D, shown in the right set in Figure 5. We
sort homes in D in decreasing order based on the amount of
energy demanded (Line 1). Then we fetch the first home j
in sorted D, and match the shortage energy from its nearest
neighbor ¢ in S (Lines 2-3). If ¢ has enough energy, we up-
date E;_;(nw) and AFE;(nw) (Lines 4-5). We also update
({*},{4}) in Q to ({*} U {i},{s}) and the match of j is fin-
ished (Lines 6-8). {*} is the matching sets of homes for j in
Q. Otherwise, we also update the matching result of j in @
and continue to match energy for j until its energy demand
is fulfilled (Lines 9-12). After the match of j, we continue
the match of homes in D repeating the same process (Line
13).

Although Algorithm 1 does not guarantee the optimum so-
lution of the energy matching problem, it has a low complex-
ity, which is |D|(log |D| + |S|log |S]). As the energy match
interval is limited and the number of homes might be large,
we adopt Algorithm 1 for energy matching instead of other
sophisticated approaches.

Algorithm 1 Energy Matching Algorithm

Input: Energy supplier set S, energy demander set D
Output: Energy transmission pair set @

1: Sort D by energy shortage in descending order;

2: Fetch home j from sorted D with highest AE;(nw);

3: Search the nearest neighbor i of j from S;

4: if Riﬂj(nw) < Rj & |AE1(W/LU)‘ > |AE](’/L’U))| then

5. Ei,j(nw) = |AEj(nw)|, AE;j(nw) = AE;(nw) —
AE, (nw)l;

6:  Update ({},{j}) in Q to ({x} U {i},{j});

7:  Remove j from D;

8:  Go to Step 2;

9: else if R;,;(nw) < R; then

0: FEij(nw) = AEi(nw), AEj(nw) = AFEj(nw) +
AE;(nw);

11:  Update ({*},{j}) in @ to ({} U {i},{j});

12: Remove ¢ from S;

13:  Go to Step 3;

14: end if
(1 (1)
=/ =/
% o
(2) (2)
=
3
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Figure 6: Examples of energy transmission

5.4 Energy Transmission Scheduling

With the matching results, we can execute energy trans-
missions. The homes are all connected to one main bus of
DC line shown in Figure 6(a). If two energy transmissions
({1},{2}) and ({3},{4}) occur simultaneously, we cannot
ensure the energy is transmitted from home 1 to 2 and 3 to
4 or home 1 to 4 and 3 to 2, which we refer to as transmis-
sion chaos. Because energy transmission pairs are already
determined to minimize transmission loss, the transmission
from home 1 to 4 and 3 to 2 may cause more energy loss.

To solve the problem, we develop a solution similar to TDMA
to schedule energy transmission. The basic idea of transmis-
sion scheduling is to have transmissions executed simultane-
ously only if those transmissions do not cause transmission
chaos. Generally, transmissions with one supplier do not
cause transmission chaos because demanders cannot fetch
energy from other homes and energy transmission flow can
be controlled. Transmissions with one demander also do not
cause transmission chaos. Thus, our solution is to combine
the transmissions that share the same supplier or demander.

According to Algorithm 1, energy matching is processed one
by one for homes in D. Thus, the transmissions of match-
ing result have only one demander, such as ({1},{2}) or
({1,2},{3}). Our algorithm needs to combine the trans-
missions with a same supplier. The detailed algorithm is
shown in Algorithm 2. Firstly, we combine pair sets such as
({1},{2}) and ({1}, {3}) to ({1},{2,3}) to reduce transmis-
sion time as shown in Figure 6(b) (Lines 1-5). Since energy
matching is based on the energy information of next time



Algorithm 2 Transmission Scheduling Algorithm

Algorithm 3 Energy Sharing Algorithm

Input: Energy transmission pair set @

1: for every two pairs (S;, D;) and (S;, D;) in @ do
3 Combine these two sets to (S, {Di, D;});
4 end if

5: end for

6: Ttotal = 07

7: for every transmission ¢ € (Q do

8: if Tiotar < w then

9 Execute transmission g;

10 Add transmission time to Tiotai;

11 end if

12: end for

window, total time of energy transmissions should not ex-
ceed window size w. We initialize total transmission time
Tiotar = 0 (Line 6). After the combination of transmissions,
we execute transmissions sequentially until all the transmis-
sions are finished or total transmission time T},tq1 Surpasses

w (Lines 7-12).

5.5 Energy Sharing Among Clusters

In this paper, we adopt the tree topology in Figure 2 to do
energy sharing. This is because i) the current power grid
system uses a tree topology, which reduces the cost for re-
construction and design; ii) since only one energy transmis-
sion can be executed at a time within the cluster, the num-
ber of homes in a cluster should be limited to reduce the
energy transmission time. However, the energy matching
algorithm and transmission scheduling algorithm (described
in Sections 5.3 and 5.4) are mainly applicable for energy
sharing within the clusters. In this section, we introduce
how these two algorithms can be applied to a system with a
tree topology in Algorithm 3.

At the beginning, every cluster will execute Algorithm 1 for
homes in that cluster with the energy information obtained
from its children (Lines 1-2). The child can be either a
home or a cluster of lower layer. Then we initialize the free
transmission pair set in cluster Q" as () and total transmis-
sion time Tiotar as 0 (Line 3). The cluster checks if there
are more than one child of itself free to execute transmis-
sion. If yes, it combines the transmissions in those children
that can be executed simultaneously (Lines 4-10). A child is
free if there is no transmission executing in the child. After
combinations, every transmission in each cluster is executed
sequentially in a way similar to Algorithm 2 (Lines 11-18).

6. IMPLEMENTATION AND EVALUATION

In this section, we evaluate the performance of our energy
sharing system. We collect real data of energy harvesting
and consumption in Amherst, MA; then we compare effi-
ciency of our system against other solutions; finally we show
that our system can work with different battery sizes and
home topology.

6.1 Data Collection

We collected energy consumption data of 50 homes (shown
in Figure 7). We find the peak demand of different homes

1: for every cluster do

2:  Execute Algorithm 1 in the cluster;

3: Q/ — @, Ttotal - 07

4:  if more than one child of the cluster are free then
5: Add all transmissions in children to @Q’

6: for every (S;, D;) and (S;, D;) in Q' do

7I lf Sl == S]' & |Sz‘ ==1 then

8: Combine these two sets to (S, {Di, D;});
9: end if

10: end for

11: for every transmission in cluster do

12: if Tiotar < w then

13: Execute transmission;

14: Add transmission time to Tiotai;

15: end if

16: end for

17:  end if

18: end for

0
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Figure 7: Consumption energy in six days

varies. Furthermore, the peak demand of one home varies
on different days. The consumption pattern of homes in our
paper are not similar because they are not from the same
location. Moreover, even in the same location, people with
different living habits and jobs may have different energy
consumption patterns.

We also deploy solar panels in one home to collect the energy
harvesting data. The energy harvesting of a home is shown
in Figure 8. In a day, the solar panel begins to harvest
energy at around 7 am; it reaches the energy peak around
12 pm and ends the harvesting around 8 pm. However, due
to the varying weather conditions, the harvesting energy in
different days varies. Since the energy harvesting pattern
from solar panels is similar in an area, we use the trace to
generate energy harvesting data of other homes with some
variance.

The energy consumption data of 50 homes is collected every
minute over six days. The energy harvesting data is collected
every hour over six days. We use the weather forecast data
from National Weather Station. Then with the raw data,
we calculate the prediction data of energy harvesting and
consumption over six days and use it in our simulations.

6.2 Evaluation Baseline and Metrics

Baseline: To verify the efficiency of our energy sharing al-
gorithm GES, we compare our design with i) Oracle, which
uses the same energy sharing algorithm as GES, but assumes
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Figure 8: Harvesting energy in six days

real energy consumption and harvesting data for next win-
dow is available. In comparison with Oracle, we aim to
evaluate the impact of our prediction algorithm; ii) Local
Energy Sharing (LES), which only allows homes to share
energy with their nearest neighbor, thus the efficiency of en-
ergy sharing is low as the constraints for energy sharing are
more stringent; iii) No Energy Sharing (NES), which
adopts a large battery for every home to store all the sur-
plus harvesting energy for future usage; if there is no energy
in battery, it gets energy from AC line.

Metrics: We use two metrics to evaluate the efficiency of
our algorithm in our experiment, i) Energy Loss Savings:
energy loss of four algorithms compared to the energy loss
of homes that always get energy from AC line if local energy
does not suffice; ii) Battery Size: the battery size used for
homes to store extra energy. One simple way to select bat-
tery size for a home is to choose maximum amount of surplus
or shortage energy in whole time. However, it will require
every home to install large size of batteries. To balance price
and energy efficiency, we select battery size for a home to
hold maximum amount of surplus or shortage energy in any
two consecutive windows.

6.3 Evaluation Results

In this section, we evaluate the effectiveness of our energy
sharing system, which includes the efficiency of our system,
the impact of the window size and the number of homes in a
cluster. All results are simulated with the six days empirical
data of energy harvesting and consumption introduced in
Section 6.1. The battery loss rate we use is 15% [23]; AC
and DC transmission loss rates are around 22.6% and 7.6%,
which varies with different distances of homes [15].

6.3.1 System Efficiency

Figure 9 shows the energy loss savings of four different algo-
rithms. In this simulation, the total number of homes varies
from 10 to 50 and the number of homes in one cluster is
fixed at 10. In all four algorithms, the energy loss savings
increase when the total number of homes increases. This
is because with more homes, more energy can be shared or
stored in local batteries. Our algorithm outperforms LES
and is quite close to Oracle. NES performs worst, since the
harvesting and consumption in a home usually do not match,
thus many homes have less harvesting energy and need to
get more energy from AC line. Other homes that have more
harvested energy will need larger batteries to store energy.
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Figure 9: Energy loss savings (Total energy loss of
four different algorithms, which includes transmis-
sion loss over wires, battery and AC line)
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Figure 10: Detailed transmission loss (Transmission
loss by DC wires, battery and AC line of 50 homes
with 5 clusters)

We also show the detailed transmission loss in Figure 10.
The result is for 50 homes of five clusters. The transmis-
sion loss over AC line still comprise a large portion of the
total energy loss. However, our algorithm reduces 60% AC
transmission loss compared to NES. LES has less energy
transmission over DC line than GES, therefore it needs more
energy from AC line. Since the transmission loss over AC
line is larger than battery conversion loss and DC transmis-
sion loss, it explains why transmission loss of LES is larger
than GES in Figure 9. Since the predicted data is not ac-
curate, some homes may envision transferring more energy
than they can harvest to other homes. In such a case, they
have to get energy from AC line after sharing with our algo-
rithm. That explains why our algorithm needs more energy
from both AC and DC lines as compared to Oracle.

The battery size needed for every home is shown in Fig-
ure 11. Compared to NES, the other three algorithms need
smaller size of battery at each home. The distribution of
battery size among homes is proportional to the energy har-
vesting and consumption of homes. Our algorithm and Or-
acle need almost the same battery size for every home.

The energy transmission over AC line per hour is shown in
Figure 12. All three energy sharing algorithms are compared
to NES. For Oracle, homes seldom need any energy from AC
line except when the harvesting energy from solar panel is
not enough in day 3 (Hour 48 to 72). Our algorithm is
quite close to Oracle, in which for nearly 10 hours of one



500

T T
-Oracle
400} GES |
= [ =S
= NES
< 300}~ _
Q
.N
(0]
<. 200} .
o
®
m 100+ | —
0 | |4| | | | | il ||Jl | | ||JI4|JIJI| |||IJI| " Jll ”JIJI ||
0 5 10 15 20 25 30 35 40 45 50
Home ID

Figure 11: Battery sizes needed for homes
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Figure 12: Energy transmission over AC line (Three
algorithms (solid line) compared to NES (dash line))

day, homes do not need to get energy from AC line. LES
needs less energy than NES especially when there is not
enough harvesting energy at night. The peak of AC line
transmission is also reduced from 70kWh to 50kWh in all
three algorithms.

Figure 13 shows the energy transmission by DC per hour.
The algorithms with less AC line transmission need more
from DC, and NES does not have DC transmission. Note
that in our algorithm, the prediction is not always accurate;
thus a home may anticipate transferring more energy than it
will harvest in the next window. In this case, it needs to get
energy from AC line. Thus, even though energy transmission
from AC line of our algorithm is larger than Oracle, DC
transmission is still close to Oracle.

6.3.2 Impact of Battery Size

As shown before, our algorithm can reduce the battery size
needed by homes compared to NES. However, in some situ-
ations, the required large battery size is still not acceptable.
In this section, we investigate the impact of battery size.
We set the battery size to store energy harvested in two
consecutive windows and show the amount of energy trans-
mission loss savings with different window size in Figure 14.
The result is using our algorithm for 50 homes with five
clusters and one cluster. With the increase of the window
size, the battery size increases for both five clusters and one
cluster. Energy loss savings also generally increases with
window size. The reasonable explanation is that with large
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Figure 13: Energy transmission over DC line (Two
algorithms compared to LES, NES does not use DC)
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Figure 14: Energy loss savings of different battery
sizes (50 homes with both five clusters and one clus-
ter. Note that battery size for five clusters and one
cluster is almost the same.)

battery size, homes can use more energy from the battery
rather than relying on the AC line. However, the increase
rate of energy loss savings decreases with the increase of win-
dow size. Thus for different situations, the tradeoff should
be balanced by the price of battery and the energy loss sav-
ings.

6.3.3 Impact of Number of Homes In One Cluster

We show the impact of number of homes in one cluster to
demonstrate the robustness of our system. Figure 15 shows
the energy loss savings of different number of homes in a
cluster (10 and 50). As the total number of homes is fixed
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Figure 15: Energy loss savings of different number
of homes in one cluster

Window Size 1 2 3 4 5 6
Cost ($10°) 3.26 | 5.21 | 6.68 | 7.41 | 7.93 | 7.83

Benefit ($10°/yr) | 0.65 | 0.93 | 1.00 | 1.05 | 1.05 | 1.05

Years for Return | 5.01 | 5.60 | 6.68 | 7.01 | 7.53 | 7.44

Table 2: Cost and Benefit for Different Window Size

at 50, and the increase of number of homes per cluster, the
number of clusters decreases. Generally, the performance
with five clusters is better than with only one cluster.With
more clusters, the energy transmission can occur in paral-
lel, which increases the amount of energy transmitted over
the DC line in a window size, and then reduces the AC line
energy transmission; the reduction of AC energy transmis-
sion, in turn, it reduces the total energy loss. Besides, when
there is only one cluster, the performance gap between dif-
ferent algorithms decreases with the number of homes. This
is because as the number of homes increases, the amount
of energy transmission that can occur in a window size de-
creases. Therefore the performance of our algorithm and
Oracle reduces.

7. DISCUSSION

Return-on-Investment. To implement energy sharing,
the main expense is to construct the DC line, use solar panels
and large battery to harvest and store energy. For battery,
the price is around $200/kWh. For solar panels, the price
is around $0.6/Watt. For wires, the maximum power of DC
line is around 150kW, thus we choose wires with 2 AWG
and the price is $14.58 for 500 feet. Assuming the total dis-
tance of 50 homes is 10 miles, then the total price for wires
is $1539. The price of other equipment, such as inverter and
energy monitor, is listed in our earlier work [18]. The benefit
brought with our system design is mainly due to the savings
of energy transmission over AC lines. The utility price in
Ambherst, MA is $0.13/kWh. We present an analysis of ben-
efit and cost in Table 2. The benefit and cost both increase
with the window size. However, due to the high increase
ratio of battery size shown in Figure 14, the cost increases
faster than benefit. To return the investment sooner, win-
dow size of one hour should be chosen for practicality.

Centralized vs. Distributed. Our current system de-
sign is a centralized control. A centralized cluster controller
needs to collect energy harvesting and consumption infor-
mation of all the homes in a cluster. However, since the

number of homes in a cluster is limited, the computation
and storage consumption is low. After the energy is shared
in a cluster, the cluster controllers need only to send the en-
ergy information of homes that still have energy surplus or
shortage to a higher layer controller. Thus, the total compu-
tation and storage overhead is low. Moreover, we also plan
to develop distributed control in future, which allows homes
to collect energy information from their neighbors to further
reduce the computation and storage cost of controllers.

Algorithm under TOU (Time of Use). Nowadays, the
price of electricity at different time varies under TOU. Al-
though our solution is not based on the TOU, it can be easily
revised to cope with the TOU. When the price of energy is
high, we can simply assume the energy loss over AC line is
larger, and when the price is low, the energy loss over AC
line is smaller. Then with dynamic energy loss over AC line
at different time, we can still have the optimum solution for
all the homes with lowest cost.

Price Design. Since we are mainly concerned with min-
imizing the energy loss in energy sharing, we do not pay
much attention to the price of energy shared between homes.
However, when considering the price factor, the incentives
for homes to share energy may change. Some homes may
not have enough incentives to share energy if the price of
shared energy is low. We plan to adapt some market-based
solutions to design the price of shared energy in the future.

8. RELATED WORK

This work builds on our experiences gained from energy
management in sensor networks projects [28, 31, 30, 26, 32,
29]. Our research is also related to energy efficient buildings,
smart power grid, and workload scheduling.

e Research in energy efficient buildings mainly focus on
energy auditing [12], design of control algorithms [10,
19] to reduce energy consumption inside a single build-
ing. Our work takes a different approach by investi-
gating energy sharing among multiple nearby homes.

e In smart power grid, researchers have i) developed
models based on measurement from phaser measure-
ment units to solve the wide area control problem of
large-scale power systems [6], [7], [8], ii) investigated
the integration of renewable energy into power grid [9,
14, 16, 17, 27], and iii) optimized the packing size of
large scale batteries to improve battery utilization in
microgrids [11]. Our work builds on previous works,
but concentrates on minimizing on minimizing energy
sharing loss over DC line at the small community level.

e Since the price of electricity varies over time, related
works focus on scheduling the workload to reduce the
energy cost [21], [22]. [20] utilizes both location and
time diversity of electricity price under multi-regional
electricity markets to minimize the total electricity
cost of Internet Data Centers (IDCs). [33] takes a stan-
dard constrained model predictive control approach to
smooth power demand and shave the power peak. Un-
like previous works, our approach reduces the energy
consumption without impacting the users’ workload.



9. CONCLUSION

In this paper, we addressed the mismatch between harvested
and consumed energy in individual homes by proposing en-
ergy sharing among nearby homes. To ensure the efficiency
of the energy sharing, we i) created a novel energy sharing
system, ii) developed a greedy matching algorithm, and iii)
designed a practical transmission scheduling method.

We evaluated our system using empirical traces of harvested
solar energy and home energy consumption in Amherst, MA.
Through extensive simulations, we verified that our system
i) can achieve high energy efficiency with small battery size,
ii) is robust with different number of homes in a cluster and
different window size, and iii) can reduce 60% of energy loss
from AC line.
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