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ABSTRACT
Cloud spot markets offer virtual machines (VMs) for a dynamic
price that is much lower than the fixed price of on-demand VMs. In
exchange, spot VMs expose applications to multiple forms of risk,
including price risk, or the risk that a VM’s price will increase rela-
tive to others. Since spot prices vary continuously across hundreds
of different types of VMs, flexible applications can mitigate price
risk by moving to the VM that currently offers the lowest cost. To
enable this flexibility, we present HotSpot, a resource container that
“hops” VMs—by dynamically selecting and self-migrating to new
VMs—as spot prices change. HotSpot containers define a migration
policy that lowers cost by determining when to hop VMs based on
the transaction costs (from vacating a VM early and briefly double
paying for it) and benefits (the expected cost savings). As a side
effect of migrating to minimize cost, HotSpot is also able to reduce
revocation risk without degrading performance. HotSpot is simple
and transparent: since it operates at the systems-level on each host
VM, users need only run a HotSpot-enabled VM image to use it. We
implement a HotSpot prototype on EC2, and evaluate it using job
traces from a production Google cluster. We then compare HotSpot
to using on-demand VMs and spot VMs (with and without fault-
tolerance) in EC2, and show that it is able to lower cost and reduce
the revocation risk without degrading performance.
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1 INTRODUCTION
Infrastructure-as-a-Service cloud platforms (IaaS) sell remote access
to computing resources, i.e., co-located bundles of CPU, memory,
and storage, in the form of virtual machines (VMs). Recent forecasts
predict that spending on public IaaS clouds will increase by more
than 4.5× over the next decade [19]. This growth has spurred these
platforms, such as Amazon’s Elastic Compute Cloud (EC2) and
Google Compute Engine (GCE), to expand their offerings to attract
new users. As a result, IaaS clouds now offer a wide range of Service
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Level Objectives (SLOs) for VMs that differ in their cost model, price
level, performance guarantees, and risk exposure [1, 5]. In particular,
IaaS clouds have begun to offer a new type of transient VM [37,
38], which they may take back, or revoke. Transient VMs enable
platforms to earn revenue from their idle capacity, while retaining
the flexibility to reclaim it to satisfy requests for higher-priority
on-demand VMs, which platforms try not to revoke. Transient VMs
are attractive, since platforms offer them for 50-90% less price than
on-demand VMs to compensate for their revocation risk.

EC2 allocates its variant of transient VMs, called spot instances,
using a dynamic market-like mechanism [2]. Users place a bid for
VMs, such that if a user’s bid price exceeds the VMs’ current spot
price, EC2 allocates the VMs to the user, who pays the spot price for
them. However, if the spot price ever rises above the bid price, EC2
revokes the VMs after a brief warning [11]. EC2’s documentation
states that a VM’s spot (or “clearing”) price “...fluctuates periodically
depending on the supply and demand of Spot instance capacity,”
and implies that it is set equal to the lowest winning bid in a con-
tinuous multi-unit uniform price auction [8]. EC2’s spot market
is complex: it sets a different dynamic spot price for each type of
VM in each Availability Zone (AZ)1 of each region, and currently
includes over 7,500 separate VM “listings” across 44 AZs in 16 Re-
gions with announced plans for 14 more Regions in the future [3].
By comparison, there are only around 6,000 stocks listed across
both the New York Stock Exchange and the NASDAQ.

Many researchers [20, 22, 31, 33, 34, 40, 47–49] and startups [4,
24, 28] are actively working to exploit low price, high risk spot VMs.
Prior work primarily focuses on managing revocation risk, since
revocations are the defining characteristic of transient VMs and
unmodified applications typically do not performwell when servers
are frequently revoked. The general approach is to treat revocations
as failures and then use fault-tolerance mechanisms, particularly
periodic checkpointing, to reduce their impact. This approach is
akin to buying insurance, where the fault-tolerance mechanism’s
overhead represents the “premium” an application pays, while its
ability to limit the amount of lost work after a revocation is the
“payout.” However, spot VMs also expose applications to another
form of risk: price risk, or the risk that a VM’s price will increase
relative to others. Since spot prices vary across hundreds of different
types of VMs, flexible applications canmitigate price risk bymoving
to the VM that offers the current lowest cost.

To enable this flexibility, we present HotSpot, a resource con-
tainer that automatically “hops” spot VMs—by selecting and self-
migrating to new VMs—as spot prices change. Our key insight is
that applications can proactively and transparently migrate to spot
VMs that currently offer the lowest cost. An important design goal
of HotSpot is simplicity: to use it, applications need only select
and run a HotSpot-enabled VM image that requires little configura-
tion. Applications then execute inside a resource container, while
1Each AZ is akin to a separate data center.
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Figure 1: When the price of HotSpot’s host VM rises, it self-
migrates or “hops” to another VM with a lower cost.

HotSpot’s systems-level monitoring and migration functions run
transparently in the host VM. Thus, HotSpot is self-contained, re-
quiring no application modifications or external infrastructure, as
its functions execute within its current host VM.

HotSpot executes a migration policy in its host VM that deter-
mines when to migrate the container to another VM based on the
transaction costs (from vacating a VM early and briefly double
paying for it) and expected cost savings. As a side-effect of VM
hopping to minimize cost, we show that HotSpot is also able to
reduce the number of revocations without degrading performance.
Our hypothesis is that VM hopping is a useful approach for man-
aging spot VMs that can transparently lower cost and reduce risk
compared to prior fault-tolerance-based approaches. In evaluating
our hypothesis, we make the following contributions.
Market-level Analysis. We analyze market-level characteristics
and make a number of observations, including: price risk is more
dynamic than revocation risk, with the market’s lowest-cost VM
type changing frequently; the lowest-cost VM tends to also have a
low revocation risk (as a high discount reflects low demand relative
to supply); and a VM’s normalized cost per unit of resource is
independent of its capacity. Our observations show an opportunity
to lower an application’s cost via automated VM hopping without
increasing its revocation risk or decreasing its performance.
HotSpot Design. We design a self-migrating server that runs appli-
cations within a resource container, and then executes a migration
policy to determine when and where to migrate the container to
maximize cost-efficiency (in terms of cost per unit of resource uti-
lized). In particular, the policy only hops VMs if it expects the
savings to outweigh the overhead of migration.
Implementation and Evaluation. We implemented HotSpot on
EC2 using Linux Containers (LXC) [6], and publicly released it.2
We evaluated and compared HotSpot’s cost, risk, and performance
against using i) on-demandVMs, ii) spot VMswithout fault-tolerance
(as in SpotFleet [12]), and iii) spot VMs with fault-tolerance (as in
SpotOn [40]). We performed this evaluation using a small-scale
prototype, and at large scales over a long period in simulation using
a production Google workload trace [30, 42] and publicly-available
EC2 spot price traces. Our simulation results show that HotSpot is
able to lower cost and reduce the number of revocations without
degrading performance.
2https://github.com/sustainablecomputinglab/hotspot
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Figure 2: Depiction of HotSpot’s basic control loop, which
monitors spot prices and application resource usage, deter-
mines when and where to self-migrate based on its migra-
tion policy, and then executes the migration.

2 BACKGROUND AND ANALYSIS
HotSpot is motivated by both the maturing of systems-level migra-
tion for virtualized cloud hosts, e.g., via resource containers [6, 10]
or nested virtualization [13, 36, 43], and continuing advances in
data center networking, which are reducing the overhead of migrat-
ing memory state and accessing remote disks. Figure 1 illustrates
HotSpot’s basic function: when a VM’s price spikes, HotSpot mi-
grates its container to another VM with a lower price to maintain a
high cost-efficiency. We define cost-efficiency as the cost (in dollars)
per unit of resource an application utilizes per unit time. As we
discuss in §3.1, we define utilization based on a VM’s average CPU
utilization. Figure 2 depicts HotSpot’s basic control loop, which i)
monitors real-time spot prices across the market and application
resource usage, ii) uses the information to determine when and
where to migrate based on its migration policy, and then iii) exe-
cutes the migration. These functions are hidden from applications,
which run within an isolated virtualized environment—a resource
container in our prototype—capable of systems-level migration.

To understand the benefits of automated VM hopping, especially
when compared with using prior fault-tolerance-based approaches
on spot VMs, we analyze EC2’s market-level characteristics and
make a number of observations. These observations demonstrate
an opportunity to increase cost-efficiency via VM hopping, while
reducing revocation risk (independent of applying additional fault-
tolerance mechanisms) without degrading performance.
Spot Price Data. Our analysis below and in §5.2’s evaluation uses
spot price data from 2017-03 to 2017-06 across five AZs in the
us-east-1 region, which has the most VM types of any EC2 region.
Across all five AZs, the region has 402 VM types from eight VM
families. We have included a link to this data with the public release.

2.1 The Importance of Price Risk
While using fault-tolerance-based approaches on spot VMs offers
significant cost savings relative to using on-demand VMs, revoca-
tions are not frequent events in EC2’s current market, and thus the
savings relative to using spot VMs without any fault-tolerance is of-
ten not significant. To understand why, recall that users do not pay

https://github.com/sustainablecomputinglab/hotspot
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Figure 3: The average Time-to-Revocation (TTR) for 402
Linux spot VMs in EC2’s us-east-1 region when bidding at
the on-demand price and 10× the on-demand price over a
twomonth period. The average TTR across all servers is ∼25
and ∼47 days, respectively, for 1× and 10× bids.

their bid price for VMs, but instead pay the spot price. As a result,
there is no penalty for bidding high, as long as applications are flex-
ible enough to switch to lower cost VMs if their current VM’s price
rises [32]. Thus, even a simple strategy that bids well above the
on-demand price is highly effective, since applications can prevent
revocations by shifting to a cheaper fixed-price on-demand VM
once the spot price rises to near the on-demand price, and before it
comes close to the bid price. Since a VM’s spot price rarely exceeds
its on-demand price, the revocation rate at the on-demand bid level
is low for most spot VMs. As we discuss in §3.2.3, HotSpot actually
bids 10× the on-demand price (the maximum bid EC2 allows [7]),
further reducing the revocation rate.

Figure 3 illustrates this point by showing the average Time-to-
Revocation (TTR) over a two month period (from 2017-03 to 2017-
04) for 402 Linux spot VMs across five AZs of the us-east-1 region
when bidding the on-demand price and when bidding 10× the on-
demand price. As the graph shows, while a few VMs have low TTRs,
the vast majority of VMs have high TTRs. The horizontal lines show
the number of VMs that did not experience any revocation over
the two month period, which includes >35% and >75% of spot
VMs when bidding the on-demand price and 10× the on-demand
price, respectively. Overall, the average TTR across the 402 Linux
spot VMs in us-east-1 is ∼25 and ∼47 days when bidding the
on-demand price and 10× the on-demand price, respectively.

These results reflect that spot prices often experience long pe-
riods of stability interspersedwith short periods of volatility, as illus-
trated in Figure 4. In this case, the m4.large spot VM in us-east-1a3
maintains a low and stable spot price for much of the four month
period, while experiencing a few highly volatile periods. As the
graph shows, during volatile periods, the spot price can rise higher
than the on-demand price. These steep rises could occur for many
reasons including: “convenience bidding” where users bid high as-
suming the spot price will not spike and do not vacate VMs when
it does [16]; EC2 reclaiming spot VMs by artificially raising their
price; or unavailability of on-demand VMs that increases demand
for spot VMs [29]. Regardless of the reason, applications should
react to price spikes by vacating high-priced spot VMs.

Our analysis above indicates that revocation risk in the current
market is low, although it could increase in the future, especially
if EC2 alters its bidding rules such that users pay their bid price
instead of the spot price, or if users adopt our optimizations and

3Note that AZ labels are not consistent across EC2 accounts. For example, one account’s
us-east-1a may be labeled as us-east-1b under another account.
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Figure 4: Example spot price trace for an m4.large VM with
long periods of price stability and short periods of volatility.
those proposed in prior work. In contrast, the market’s price risk—
or the risk that a VM’s price will increase relative to others—is much
higher than the revocation risk.We quantify price risk bymeasuring
the average difference between the price of each AZ’s cheapest VM
(in terms of its normalized cost per unit of resource) at t0 and its
price at each time t > t0 as the market’s cheapest VM changes.
In this case, we normalize relative to a VM’s EC2 Compute Unit
(ECU)—Amazon’s measure of a VM’s integer processing power [9].

The difference between the price of the cheapest server at t0
and the price of the cheapest server as it changes reflects the cost
savings possible from hopping VMs assuming the application i)
can fully utilize a VM of any capacity, ii) incurs no overhead when
migrating between VMs, and iii) does not experience revocations.
Under these assumptions, any approach that does not hop to the
cheapest VM incurs a higher cost. Note that we relax these as-
sumptions in HotSpot’s design (§3), since in practice applications
cannot always fully utilize VMs of any capacity and do incur an
overhead when migrating. As a result, our analysis here only sets
an upper bound on HotSpot’s cost savings, and does not reflect the
migrations HotSpot would actually make.

Figure 6 shows the potential cost savings from hopping VMs
within each AZ of the us-east-1 region over two months start-
ing 2017-03. The average savings in each AZ is between 15% and
65% with an average of 33% across all AZs. Since the results are
dependent on the cheapest VM’s price at the start of each interval,
the error bars reflect the maximum and minimum savings from 10
randomly selected start times within the two month period. The
low minimum savings reflect times where the price of the cheapest
VM at t0 remained stable and was always near that of the dynamic
cheapest VM. Note that the figure represents additional savings
relative to using spot VMs without hopping, which is already sig-
nificantly cheaper (∼50-90%) than using on-demand VMs.

Figure 5 then shows the average time until the cheapest VM in the
market changes, which we call the Time-to-Change (TTC), on the y-
axis for each AZ of the us-east-1 region. In this case, the cheapest
VM across the 402 spot VMs changes every 1.1 hours, which shows
that there is an opportunity to reduce cost by migrating to the
cheapest spot VM. Since the TTC is two orders of magnitude less
than the TTRs in Figure 3, applications are much more likely to
experience a change in the cheapest spot VM during their execution
than a revocation. Of course, each change in price of the cheapest
spot VM might be small relative to the cost of a revocation.

2.2 Revocation Risk and Performance
As mentioned above and discussed in §3, HotSpot containers mi-
grate to new cloud VMs to maximize their cost-efficiency. Thus,
the migration policy does not consider either revocation risk or
application performance, which are both important metrics. In gen-
eral, at any time, the lowest cost VM is not necessarily the one with
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Figure 5: The Time-to-Change (TTC) for the cheapest VM in
each ofAZs of the us-east-1 region over a twomonth period.
The average TTC across all AZs is 1.1 hours.

the absolute lowest revocation risk or highest capacity. As a result,
migrating to optimize cost-efficiency has the potential to increase
revocation risk and decrease performance. Of course, HotSpot could
define a migration policy that also considers revocation risk and
performance. Configuring such a migration policy would require
users to compare and weight the relative importance of each metric.
Fortunately, as we show below, hopping VMs tominimize cost tends
to also lower revocation risk and does not decrease performance on
average. Thus, HotSpot’s migration policy focuses on minimizing
cost, and does not consider revocation risk or performance.

2.2.1 Revocation Risk. Prior work generally estimates revoca-
tion risk in terms of a spot VM’s TTR at a given bid level based
on its historical spot price over some previous time period, e.g., a
few days to weeks. However, since HotSpot frequently switches
VMs, its revocation risk is not a function of any single spot VM’s
TTR, but the TTR of the multiple VMs it uses (weighted by the time
it spends on them). Our key insight is that there is a relationship
between a VM’s instantaneous revocation risk and its current spot
price relative to its on-demand price. This relationship derives from
the observation that the lower the ratio of the spot price to the
on-demand price, the further away the supply/demand balance
is from being constrained and thus causing a spike in prices that
triggers revocations to occur. That is, assuming the spot price is
based on supply and demand (as Amazon claims [8]), the lower
a VM’s spot price relative to its “risk free” on-demand price, the
greater the change in the balance of supply and demand required
for the spot price to rise above the on-demand price. As a result, a
spot VM’s spot-to-on-demand price ratio is an indirect measure of
its instantaneous revocation risk relative to other spot VMs.

Figure 7 illustrates the relationship between the revocation risk
and the spot-to-on-demand ratio across 402 Linux spot VMs in
the us-east-1 region from 2017-03 to 2017-04. The graph shows
that, as the average spot-to-on-demand ratio decreases, the average
revocation risk also decreases. While the spot VM with the lowest
spot-to-on-demand ratio is not always the same as the most cost-
efficient one at any time, the most cost-efficient VM often has a low
spot-to-on-demand ratio. This correlation exists, in part, because
on-demand prices for VMs in the same family are uniform when
normalized per unit of resource, so a low normalized spot price
implies a low spot-to-on-demand ratio relative to other spot VMs
in the same family [1]. The cost per ECU-hour for VMs in different
families is also similar. To illustrate, Figure 8 shows the on-demand
price per ECU-hour for all families in the us-east-1 region. The
c4, m4, r4, and i3 families range from 1.25-2.56 ¢/ECU-hour, while
the more specialized memory-optimized (x1), storage-optimized
(d1), and GPU instances (p2) have a higher normalized cost.
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Figure 6: Ideal cost savings from automated VM hopping
within each AZ in the us-east-1 region over one month.
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Figure 7: The x-axis is the spot-to-on-demand ratio, while
the y-axis is the average revocation rate across spot VMs
when the spot price is less than or equal to the x-axis value.

However, as we discuss in §3, HotSpot normalizes spot prices per
unit of resource utilized, so variations in an application’s workload
also affect a VM’s cost-efficiency. In this case, we define utilization
as the VM’s average CPU utilization. As a result, if a VM has a
low average CPU utilization, e.g.,≪100%, then it is wasting CPU
capacity, which increases the relative cost of the CPU capacity it
utilizes. Thus, there is the possibility that the VM with the lowest
spot-to-on-demand ratio could have a high capacity that is over-
provisioned for the application and wastes resources, resulting in
a low cost-efficiency. If only high-capacity VMs over-provisioned
for an application were to have a low spot-to-on-demand ratio, it is
technically possible for the most cost-efficient VM to have a high
revocation risk. However, we have not seen this scenario occur, as
there are usually many spot VMs at all capacities with low spot-to-
on-demand ratios. Thus, given the correlations above, migrating
to the most cost-efficient VM results in a low revocation risk. For
example, in the experiment from Figure 6, the most cost-efficient
VM was never revoked over the two month period.

Of course, the high TTRs in Figure 3 from §2.1 show that revo-
cation risk is not a serious concern in EC2. However, our insight
above implies that i) hopping VMs to reduce price risk and lower
cost will not increase revocation risk, and ii) if spot prices were to
become more volatile, VM hopping could reduce revocation risk.
Table 1 illustrates the latter point. Here, we emulate a more volatile
market by taking the 10 most volatile spot VMs in the us-east-1
region and assume that we can only migrate among them. The
table shows the average revocation rate for each of these volatile
VMs from 2017-03 to 2017-04, as well as the average revocation
rate that results from migrating to the spot VM with the lowest
spot-to-on-demand ratio (and the lowest revocation risk) as spot
prices fluctuate. As the table shows, hopping to the spot VM with
the lowest instantaneous revocation risk results in a revocation rate
nearly 0.5× that of any single VM. Thus, VM hopping is a useful
mechanism for managing revocation risk if it ever increases.

2.2.2 Performance. As with revocation risk, HotSpot’s migra-
tion policy does not consider performance when determining when
andwhere tomigrate. SinceHotSpotmigrates based on cost-efficiency,
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Figure 8: The cost-efficiency of on-demand VMs in the
us-east-1 region for different types of VMs in EC2.

which is a function of resource utilization, it favors VMs that do
not waste resources. Given this, HotSpot may select a host VM that
is under-provisioned and degrades an application’s performance.
During our initial analysis of spot price data in us-east-1 (from
2016-08 to 2016-09), we observed that there was a volume discount:
higher-capacity VMs were cheaper on average than lower-capacity
ones. As a result, the most cost-efficient VM on average aligned with
a high-capacity VM that prevented performance throttling. How-
ever, our more recent analysis in Figure 9 across multiple regions
shows that this volume discount no longer applies. This change
reflects how markets conditions can alter HotSpot’s performance.

The figure shows the average normalized price per unit of re-
source for spot VMs in the m4 family from 2017-03 to 2017-04, where
the error bars represent the maximum and minimum price across
each region’s AZs. The graph indicates there is no consistent rela-
tionship between VM capacity and normalized cost: neither high-
capacity nor low-capacity VMs are consistently cheaper per unit
of resource. As a result, migrating solely based on cost-efficiency
should not favor either low-capacity VMs, which degrade an appli-
cation’s performance, or high-capacity VMs, which may improve
its performance. However, as we discuss in §3, HotSpot’s migration
policy takes into account multiple other factors when making mi-
gration decisions that favor higher-capacity VMs, assuming equal
cost-efficiency. Thus, while HotSpot optimizes for cost-efficiency,
in practice, it can also improve application performance.
Summary. Our data analysis indicates that hopping to the most
cost-efficient spot VMs can reduce cost up to 15-65% on average rel-
ative to not hopping. While HotSpot considers only cost-efficiency
in selecting its host VM, based on our analysis, this VM also tends
to have a low revocation risk and does not degrade performance on
average. As a result, HotSpot does not explicitly consider revocation
risk or performance in its migration policy.

3 HOTSPOT DESIGN
HotSpot containers automatically self-migrate to new host VMs
to optimize cost-efficiency as spot prices and application resource
usage change. HotSpot migrations leverage existing systems-level
migration mechanisms now offered by resource containers [10].
Since HotSpot’s migration functions and policies are entirely em-
bedded into its host VM, it requires no external infrastructure. A
key goal of HotSpot is to lower the barrier to entry to leveraging
cloud spot markets. Despite their high potential for savings, prior
estimates suggest only 3-5% of VMs allocated by EC2 come from
the spot market [21], likely due to the complexity of tracking spot
prices across hundreds of VMs, selecting a specific VM, determining
a bid, etc. Despite this complexity, prior work on optimizing for
spot VMs is neither transparent nor general: it requires configuring

Spot Market Revocations
(per day)

c3.8xlarge.vpc.us-east-1d 15.4
g2.2xlarge.us-east-1d 12.1
r3.xlarge.us-east-1d 9.4
g2.8xlarge.vpc.us-east-1d 9.0
r3.8xlarge.us-east-1d 7.9
c3.2xlarge.vpc.us-east-1d 6.9
g2.2xlarge.vpc.us-east-1d 6.0
g2.2xlarge.us-east-1b 5.6
g2.2xlarge.us-east-1a 5.1
r3.4xlarge.us-east-1a 4.5
HotSpot VM 2.3

Table 1: Migrating to the spot VM with the lowest spot-to-
on-demand ratio has >0.5× revocations than other servers.

complex external infrastructure [34, 40] or making application-
specific modifications [20, 22, 31, 33, 47]. Thus, prior work is not
accessible to many users, especially those with moderate workloads
that require few VMs. In contrast, HotSpot enables users requiring
even a single VM to leverage low spot prices by running within a
HotSpot-enabled VM image.

HotSpot’s design includes a controller daemon that runs on each
host VM, which executes HotSpot’s monitoring, migration, and
policy functions. By default, HotSpot runs only a single container
per host VM, which has access to all of the VM’s resources. Figure 2
from §1 depicts the role of HotSpot’s controller in its control loop.
To migrate, the source controller first requests and spawns a new
VM via cloud APIs and then migrates the container to it (via a stop-
and-copy migration in our prototype) before ceding control of the
container to the controller daemon running on the new host VM.
Finally, upon gaining control, the new controller terminates the
source VM via cloud APIs. We assume containers are long-lived and
thus may execute multiple jobs. For example, HotSpot containers
may serve in a batch pool that continually assigns them tasks.

While HotSpot is compatible with any systems-level virtual-
ization technology that supports transparent migration, we use
Linux Containers (LXC) for multiple reasons. First, containers per-
mit transparent VM-to-VM migration without requiring explicit
support from the cloud platform or VM hardware. EC2 does not
permit access to native VM migration that enables applications to
migrate VMs. While nested VMs [13, 43] also enable VM-to-VM
migration, they have a higher performance overhead than contain-
ers, especially for I/O-intensive tasks [17]. In addition, containers
allow migrations to and from any VM, and not just those running
on physical servers with hardware virtualization extensions (as
with current nested VMs [43]). Finally, container migration is more
efficient than VM migration, as the size of a container’s memory
state scales dynamically with its applications’ memory footprint.
In contrast, nested VM migration must transfer the entire nested
VM memory state, regardless of its applications’ memory footprint.

Containers’ primary drawback is that their migration functions
are less sophisticated than VMs’. For example, LXC does not yet sup-
port standard optimizations that minimize downtime and network
traffic [18, 45, 46]. However, given containers’ rising popularity, we
expect them to adopt these optimizations in the near future.
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3.1 Migration Policy
HotSpot’s migration policy determines when and where to migrate
its resource container based on current spot prices across all VMs
within its AZ and its current resource usage. Sincemigrations across
AZs and regions require significant additional overhead to migrate
disk state, we limit HotSpot to migrating within an AZ, where it
can migrate disk state by re-mounting a remote disk volume, e.g.,
via EC2’s Elastic Block Store (EBS), with little overhead. We discuss
policies for “global” migration across AZs and regions in [35]. As
mentioned in §2, HotSpot’s migration policy optimizes for cost-
efficiency, or the cost per unit of resources an application utilizes per
unit time. However, quantifying a VM’s utilization is complex, since
it includes many resources, e.g., computation, memory, I/O, etc. Our
policy quantifies cost-efficiency based on processor utilization, and
only uses an application’s memory footprint to eliminate candidate
VMs. Specifically, sincememory significantly degrades performance
when constrained, our migration policy includes a rule to never
migrate to a VM with less memory than the container’s memory
footprint. Since platforms often price network and disk I/O capacity
separately from VMs, our policy does not consider them, although
we could apply a similar elimination rule as for memory.

At each time t , HotSpot’s migration policy computes the ex-
pected cost-efficiency of every type of spot and on-demand VM
within an AZ in units of $/ECU-utilized/hour. To do so, HotSpot
estimates the expected utilization on every potential VM i based
on the utilization of its current VM. HotSpot makes this estimate
by considering two separate cases based on the current utilization.
Low Utilization. If the ECU utilization on the current VM c is
below an upper threshold (near 100%), we approximate ECU uti-
lization ui on VM i by proportionately scaling the ECU utilization
of c across the number of ECUs offered by i . In this case, since c
is not fully utilized, new VMs that have more ECUs than c should
be even less utilized, while new VMs that have less ECUs than c
should have a proportionate increase in utilization up to 100%.
High Utilization. Alternatively, if the current VM c’s utilization is
above the upper threshold, new VMs that have fewer ECUs than c
should also have a utilization near 100%. However, if new VMs have
more ECUs than c , we do not know how many additional ECUs the
application is capable of consuming. In this case, our policy makes
the aggressive assumption that the application can saturate any
number of ECUs. This assumption encourages HotSpot to try out
higher-capacity VMs, which can improve application performance.

Given the two cases above, we estimate the utilization ui of a
new VM i based on the utilization of the current VM c using the
equation below. The equation includes a variable ϵ , which sets our

upper threshold and dictates how aggressive the policy migrates to
higher-capacity VMs. Note that the variables that are a function of
t represent values that are dynamic and change over time.

ui (t ) =



min(
uc (t )

ECUi /ECUc
, 1) if uc (t ) < 1 − ϵ

1 if uc (t ) > 1 − ϵ

Since HotSpot is application-agnostic, we also make the simpli-
fying assumption that applications are able to utilize any number
of cores (or hardware threads) on a new VM, specified as vCPUs in
EC2. Note that, if our assumptions are wrong, then the migration
policy will self-correct, as the actual utilization and cost-efficiency
will be less than expected, and, if low enough, will trigger another
migration. Extending the policy to model container performance
and infer its degree of parallelism is future work. Given the es-
timated utilization ui on each new VM i , HotSpot computes its
cost-efficiency as below, where pi (t ) is the VM’s current spot price.

ei (t ) =
pi (t )

ECUi × ui (t )
(1)

Next, for each potential host VM i that is more cost-efficient than
our current host VM, HotSpot performs a cost-benefit analysis to
determine when and where to hop VMs.

3.2 Cost-Benefit Analysis
Our analysis in §2.1 assumes an ideal migration policy that is able to
migrate with no overhead to the VMwith the highest instantaneous
cost-efficiency at each time t . Of course, in practice, migrations can
incur a substantial overhead. This overhead comes in two different
forms: a performance overhead that stems from the downtime (or
performance degradation) caused by a migration, and a cost over-
head that stems from paying for two VMs during the migration
and vacating a VM early (before the end of its billing period). The
combined cost of these overheads represents a migration’s transac-
tion cost. HotSpot’s migration policy only hops VMs if it expects
the savings to outweigh the transaction cost.

3.2.1 Transaction Cost. From above, the two things HotSpot
requires to estimate the transaction cost are i) the time remaining
Tr in the current billing interval and ii) the time required Tm to
migrate the container. HotSpot tracks Tr , which is computed from
the running time on the current VM and the billing interval, which is
well-known. The migration timeTm is a function of the container’s
memory footprint and network bandwidth. As we discuss in §4,
HotSpot uses a memory-to-memory stop-and-copy migration that
copies the container’s memory state from the memory of the source
VM to the memory of the destination VMwithout saving it to stable
storage. Thus, we estimate Tm based on the container’s memory
footprint M at time t of the migration divided by the available
bandwidth B, plus a constant time overhead O to interact with
EC2’s APIs to configure the new VM, so Tm (t ) = M (t )/B +O . We
evaluate the migration time and the constant time overheads in §4.

During the migration, HotSpot must pay for both the source and
destination VM. In addition, since HotSpot uses a stop-and-copy
migration, it does no work on either VM during the migration time,
i.e., both VMs have 0% application utilization. Thus, we compute
the transaction cost to migrate to a new VM i at time t as below.

Ci (t ) = pi (t ) ×Tm (t ) + pc (t ) ×max (Tr ,Tm ) (2)



Here, pi (t ) and pc (t ) are the current spot price of the new host
VM i and current host VM c , respectively. This equation represents
the cost of the source and destination VM over the migration time,
since neither is doing useful work, plus the cost of the remaining
unused time HotSpot must pay in the source VM’s billing interval.
Note that the source VM’s spot price pc (t ) is fixed, as EC2 charges
for the spot price at the beginning of each billing interval. Since
migration times are short, as shown in §4, we also assume the
destination’s spot price is fixed during the migration.

3.2.2 Expected Savings. HotSpot estimates its expected cost sav-
ings Si (t ) from migrating to new host VM i at time t as the differ-
ence between its cost-efficiency ec (t ) on its current VM c and its
expected cost-efficiency ei (t ) on new VM i multiplied by both the
time Ti it expects to spend on i and the number of ECUs it uses.

Si (t ) = (ec (t ) − ei (t )) × (ui (t ) × ECUi ) ×Ti (3)

The expected net cost-benefit Ni from hopping to VM i is then
Si (t )−Ci (t ): HotSpot only hops VMs if this value is positive. Among
all hosts i where ei (t ) < ec (t ) and Ni > 0, the migration policy
selects the one that maximizes the net benefit Ni . Note that the
expected savings is, in part, a function of the number of ECUs on
the new VM i , while the transaction cost above is independent of
VM capacity. This favors hopping to higher-capacity hosts, which
improve performance, assuming the container can utilize their
resources, as higher-capacity hosts are able to “pay back” their
transaction costs faster than lower-capacity hosts.

The key unknown variable in Equation 3 is Ti , or the time
HotSpot expects to spend on a new host VM i . HotSpot must have
an accurate estimate of Ti to determine whether the expected sav-
ings exceed the transaction costs. However, Ti is challenging to
estimate, since it depends on the future value of numerous other
variables, including the remaining lifetime of the container, the
application’s future resource usage, and the relative spot prices of
every VM. A significant phase change in any of these variables can
decrease the time Ti that HotSpot spends on a new VM, reducing
the expected savings and altering the cost-benefit analysis.

Since HotSpot requires estimates of each of these variables to
estimate Ti , its migration policy is a heuristic. Our current policy
makes simple assumptions to infer these variables, and leaves more
complex heuristics to future work. First, we assume containers are
long-lived, and thus do not terminate before paying off their trans-
action costs. We also assume an application’s utilization is constant
in the near term. Given these assumptions, HotSpot estimates Ti
as the maximum of the billing interval and the average Time-to-
Change (TTC) of the lowest cost VM. The TTC is the average time
until we expect to hop VMs in the ideal case. However, if the TTC is
shorter than the billing interval, HotSpot is unlikely to migrate until
the end of the billing interval to prevent a large double payment.

Finally, HotSpot may migrate to a more cost-efficient VM, incur-
ring transaction costs, only to find an even more cost-efficient VM
becomes available before it has recouped the previous transaction
costs. Thus, our policy also reduces the expected savings Si (t ) in
Equation 3 from hopping to a new host VM i to account for any “un-
paid” transaction costs not recouped from previous migrations. As
a result, HotSpot only hops to a new VM if its price is low enough
to yield a positive net benefit even after paying off accumulated

transaction costs from previous migrations. This choice is conserva-
tive in rate-limiting migrations and preventing accumulating large
transaction costs that increase cost. HotSpot also enables users to
specify a minimum time between migrations to rate-limit them.

3.2.3 Bidding. When requesting a new spot VM, HotSpot must
place a bid. Since EC2’s current spot market requires applications to
pay the spot price and not their bid price, HotSpot does not require
a sophisticated bidding strategy, as it automatically migrates to
a new VM if the spot price rises. In contrast, the bidding policy
is more important in prior work [22, 40, 53], which commits to
spot VMs until they are revoked, as the greater the bid the lower
the probability of revocation and the higher the potential cost.
Thus, HotSpot adopts a simple bidding strategy: it always bids the
maximum price, which is 10× the on-demand price in EC2. Since
HotSpot also includes on-demand VMs in its cost-benefit analysis,
it will never pay near its bid price, since it will always migrate to
an on-demand VM if the spot price of all spot VMs ever rises above
their corresponding on-demand price. Note that the specific bidding
policy is orthogonal to HotSpot’s design. For example, if EC2 were
to change the spot market rules such that applications paid their bid
price, instead of the spot price, HotSpot could support a different
bidding policy without altering any of its other functions.

3.3 Qualitative Discussion
In reducing price risk, HotSpot addresses problems with current
fault-tolerance-based approaches that manage revocation risk. In
particular, the primary problemwith fault-tolerance-based approaches
is that applications configure their fault-tolerance mechanism based
on the historical TTR from traces of past spot prices. However, as
discussed in §2.1, spot prices often experience phases of stability
and volatility. Thus, if applications experience a phase change in
the prices, they may incorrectly configure their fault-tolerance
mechanism, e.g., by checkpointing too much or too little, causing
them to “pay” non-optimal premiums. The benefits of employing
fault-tolerance are also probabilistic, and must be amortized across
long time periods or a large number of applications. As a result,
any individual application may end up paying high premiums with-
out ever receiving a payout, e.g., if a revocation never occurs. In
comparison, HotSpot has the following advantages.
• More Deterministic. Since migration decisions are largely

based on current cost, risk, and performance information, they
are more deterministic than decisions on how to configure
fault-tolerance mechanisms, which are based on probabilistic
expectations of future cost, risk, and resource usage.
• LowerOverhead.Automated VMhopping does not incur fault-
tolerance overhead based on probabilistic information. While
each migration incurs an overhead, it serves as a natural check-
point that applications only “pay” if the expected savings exceed
the costs. HotSpot often migrates more frequently than the opti-
mal checkpointing interval in fault-tolerance-based approaches,
which obviates the need for these approaches.
• Lower Risk. VM hopping reduces price and revocation risk,
since low-cost VMs also have a low revocation risk.
HotSpot’s design has some limitations. In particular, to remain

application-agnostic, our migration policy makes a number of sim-
plifying assumptions in §3.1 that do not apply to all applications.



Operation Min
(sec)

Mean
(sec)

Max
(sec)

Price and Resource Monitoring <1 <1 <1
Acquire On-demand VM 16 28 31
Acquire Spot VM 31 67 167
Transferring Disk & Network 18 28 48
Terminate Source VM 31 44 46
Total ∼64-80 ∼101-140 ∼126-262
Table 2: Migration latencies for EC2 API operations.

Designing migration policies for specific applications that limit
these assumptions is future work. In addition, to simplify our de-
sign, HotSpot VMs are self-contained and do not coordinate their
migration decisions with other HotSpot VMs. As a result, HotSpot’s
local migration decisionsmay not be globally optimal for distributed
applications with complex dependencies. Applying HotSpot to dis-
tributed applications by coordinating their migration is future work.

Finally, HotSpot uses stop-and-copy migrations that cause ap-
plication downtime. We do not consider live migration because
containers do not yet support it. While live migration decreases
application downtime, it still causes some performance degradation
during the migration and increases the total migration time Tm ,
and thus also incurs a transaction cost. However, live migration
requires a different transaction cost model. We plan to incorporate
live migration into HotSpot once it becomes reliable for containers.

4 IMPLEMENTATION
We implement HotSpot’s controller daemon in Python, including
the migration policy from §3 and the monitoring and migration
functions described below. Specifically, HotSpot uses EC2’s Python
binding Boto3, and Linux Container (LXC) 2.0.7’s Python API.

4.1 Spot Price and Resource Monitoring
Our prototype operates within an AZ and monitors real-time spot
prices, which continuously vary, from each spot VM. While the
number of VMs varies across AZs, the largest AZs in us-east-1
have 172 types of spot and on-demand VMs with distinct prices. To
monitor spot prices, HotSpot’s controller polls EC2’s REST API and
keeps a window of recent prices in memory, while maintaining a
log of historical prices on disk. Likewise, HotSpot also monitors
container resource usage via lxc-info, including its CPU, memory,
bandwidth, and block I/O usage. HotSpot also caches a window
of recent processor utilization and memory footprint readings in
memory, and stores the historical usage data on disk. Despite the
large number of VMs, the performance overhead of monitoring is
not significant. In addition to spot prices, HotSpot also maintains
a table of VM types and their resource allotments, including their
memory and number of ECUs and vCPUs, required for computing
cost-efficiency. This table also stores each VM’s on-demand price.

4.2 Host Migration and Handoff
When triggered by the migration policy, HotSpot’s controller must
request and migrate to a new EC2 host. The controller performs
a sequenced handoff to complete a migration to a new host VM
by first requesting the VM via EC2’s REST API, waiting until it is
running, and then transmitting the container’s memory state to
it. The source controller must also perform a hand-off to a new
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Figure 10: The time to transfer a container’s memory state
and restore it as a function of its memory footprint. The
graph shows the average from four trials with error bars rep-
resenting the minimum and maximum transfer time.

controller running on the destination VM. This hand-off requires
transferring the metadata necessary to request and configure new
host VMs via EC2’s REST API, including the credentials necessary
to access the API, such as the Secret Key. The source controller
must also transfer container configuration meta-data, including the
IP address and name of the root EBS volume, which the destination
VM must configure via EC2’s REST API before re-activating the
container. Once the source controller transfers this information,
the destination controller terminates the source VM. Finally, after
restarting the container from its checkpoint, the destination con-
troller saves the checkpoint to EBS storage, so HotSpot can restart
the container from this point if a revocation occurs.

We ran a series of microbenchmarks to quantify the overhead
of the REST API operations associated with migration, as listed in
Table 2. Since there is some variance in the latency, we report the
mean, maximum, and minimum latency over 25 experiments. The
table shows that price and resource monitoring overhead (from
monitoring 402 spot prices) is negligible, even at per-second reso-
lution. While the latency to acquire an on-demand or spot VM is
between 15s and 167s, these operations do not result in application
downtime, as the source VM continues to run during this period.
Likewise, the 30-46s required to terminate the source VM also does
not incur downtime. Application downtime is a function of the time
to i) disconnect and reconnect the container’s disk and network
interfaces, and ii) physically transfer the container’s memory state.

As the table shows, the time to disconnect/reconnect the disk
and network interfaces ranges from 17s to 48s. Figure 10 then
shows the average time to transfer container memory state as
the application memory footprint increases. The EBS approach
checkpoints container memory state to a remote disk on the source
VM and then reads it from the remote disk on the destination VM,
while RAMfs signifies an approach that uses a direct memory-to-
memory network transfer of container memory state. As the graph
shows, the memory-to-memory transfer enables migrations of up
to 32GB in ∼30s (using EC2’s 10Gbps interfaces), while transfers of
32GB over EBS take ∼200s (using I/O-optimized EBS drives).

Note that, while thememory-to-memory transfers are near linear
in the amount of data transferred, the EBS approach appears super-
linear. While we do not know the specific reason for this super-
linearity, it could be due to caching effects in EBS. For example, the
time difference between the EBS and memory-to-memory transfers
is small for low memory footprints and only increases as the size of
the memory footprint increases. This might indicate the presence
of an EBS cache that can accommodate low memory footprints.



In any case, HotSpot’s prototype uses direct memory-to-memory
transfers, resulting in application downtimes ranging from 20s to
80s, depending on the size of the memory state. Of course, even
these minimal downtimes could be eliminated with native support
for live migration, which GCE already provides.

HotSpot uses EC2’s Virtual Private Cloud (VPC) to assign its con-
tainer a separate IP address from the controller daemon, which uses
the default public IP address allocated by EC2. The controller selects
an available private IP address from the VPC’s address space via
EC2’s REST API and configures the container with this IP address,
such that all traffic to the VPC IP address is forwarded to the con-
tainer. When migrating, the controller transfers this IP address to
the new VM by detaching it from the source VM and re-attaching it
to the destination VM. Thus, when restarted, the migrated container
always retains the same VPC-allocated IP address.

5 EXPERIMENTAL EVALUATION
We evaluate HotSpot at small scales using a prototype on EC2, and
at large scales over a long period in simulation using a production
Googleworkload trace [30, 42] and publicly-available EC2 spot price
traces. Our simulator, also implemented in Python, executes the
same migration policy as our prototype, but replaces its real-time
monitoring with functions that read spot price and resource usage
data from traces. The traces include each application’s processor uti-
lization and memory footprint over time. Instead of migrations, the
simulator inserts a downtime derived from our microbenchmarks
based on an application’s current memory footprint.

We compare HotSpot with three other approaches, which select
the single optimal i) on-demand VM, ii) spot VM, and iii) spot
VM plus optimal fault-tolerance mechanism to run the application.
The first case represents current practice; the second case is akin to
EC2’s SpotFleet tool, which automates bidding for spot instances (at
the on-demand price by default), and the third case uses SpotOn [40],
which is a representative fault-tolerance-based approach. Note that
SpotOn only switches VMs on a revocation. Our evaluation then
compares three metrics—cost, performance, and revocation risk—
for each approach.

5.1 Prototype Results
We intend these experiments to exercise our prototype and isolate
key factors, such as price characteristics and application resource
usage, that influence HotSpot’s relative cost, performance, and
revocation risk, and not to quantify its benefits in practice. These
experiments do not reflect the possible values of all time-varying
variables, such as spot prices and resource usage, that influence
HotSpot, as there are too many variables to emulate in a controlled
setting. To enable control of application resource usage, we use a job
emulator that generates a fixed, predictable CPU load and memory
footprint. We use this emulator to create a baseline job that takes
30 minutes to execute on a m4.4xlarge VM with a steady memory
footprint of 8GB and processor utilization of 50%. We run this job
in an LXC container on EC2 for each approach above, and perform
all HotSpot functions, i.e., acquiring, migrating, checkpointing,
terminating, etc., on real EC2 VMs.

To enable price control, we also generate synthetic spot price
traces that reflect important characteristics in the real market. We

define synthetic spot prices for five separate VMs (each of type
m4.4xlarge) that vary based on a sinusoidal price function with
a period of one hour and peak/trough values equal to $0.8/hour,
and $0.08/hour, respectively. In this case, the maximum spot price
of the VMs is equal to the on-demand price of a m4.4xlarge VM,
which costs $0.8/hour in us-west-1. We use synthetic spot prices
instead of EC2 spot price traces, since synthetic prices are defined
by a well-known function that we can alter to examine the effect
of changing price volatility on cost and performance.

We initialize each experiment by setting the start time of each
price function to a random offset within its period. Thus, on average,
the TTC of the lowest-cost VM is 12 minutes, which is 5.5× faster
than we observed in reality. Thus, our migration policy sets the TTC
to 12 minutes when performing its cost-benefit analysis. We also
set an emulated bid price in the experiment equal to the maximum
price, which results in an average of one revocation per hour. While
this revocation rate is high relative to real revocation rates, we select
it so our emulated job has the potential to experience revocations.
This enables us to illustrate the impact of revocations on the relative
cost and performance of each approach, although the magnitude of
our results is not representative of real spot VMs.

We construct synthetic price traces to exhibit the correlation
between price level and revocation risk in the real market, where a
low-cost server is less likely to be revoked. While our experiments
isolate some key factors in HotSpot’s design, they do not isolate
all of them. In particular, we set the billing interval to one minute,
rather than one hour, so the experiments do not include the increase
in cost from vacating a VM early. We use a short billing interval to
enable us to isolate other factors when running half-hour jobs. Thus,
in these experiments, HotSpot’s transaction cost derives solely
from its migration overhead. Note that this overhead is higher, as a
fraction of a job’s running time, the shorter the job. The migration
overhead ranges from 25 − 56s, or 0.7-1.6% of the running time for
our baseline half-hour jobs. We evaluate real-world performance
over longer periods with an hour-long billing interval in §5.2.

5.1.1 Baseline Experiment. Figure 11 compares the cost, running
time, and revocation risk of using the on-demand, SpotFleet, Spo-
tOn, and HotSpot approaches. Note that the y-axis of the first two
graphs is normalized relative to the metric’s value using on-demand
VMs. For each approach, we execute three trials with a different set
of randomly chosen offsets for each spot VM in the synthetic price
function, where the error bars reflect the maximum and minimum
values. As expected, the cost (left) decreases between 30-75% when
we switch from using on-demand VMs to any approach that uses
spot VMs, since spot VMs are cheaper on average than on-demand
VMs. Thus, even when the SpotFleet approach, which does not use
fault-tolerance or migration, experiences a revocation and has to
restart the job from the beginning, it remains cheaper than using
an on-demand VM. The cost further decreases for SpotOn (by 34%)
and HotSpot (by 65%) compared to SpotFleet, since SpotOn benefits
from periodic checkpoints that limit the work lost after a revocation,
while HotSpot does not experience a revocation. Finally, we see
that HotSpot’s cost is 45% less than SpotOn, since HotSpot always
migrates to the lowest cost VM, while SpotOn remains on each VM
until it is revoked and thus experiences high price periods.
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Figure 11: Comparison of cost (left), run time (middle), and revocation-related events (right) when using on-demand VMs, spot
VMs without fault-tolerance (SpotFleet), spot VMs with checkpointing (SpotOn), and HotSpot when running our baseline job
on our HotSpot prototype. The error bars represent the maximum and minimum of each metric across three trials.

Figure 11(middle) shows that the job’s running time increases
relative to using an on-demand VM. This occurs because our ex-
periment, in contrast to EC2’s actual spot market, does not include
VMs with multiple capacities at different normalized prices. As a
result, there is no opportunity to improve on the performance of
an on-demand VM by selecting a higher-capacity spot VM. In the
figure, the average running time of SpotFleet is worse than both
SpotOn and HotSpot. For SpotFleet, the decrease in running time
derives from the large overhead of having to restart the job from the
beginning after each revocation, while, for SpotOn and HotSpot, the
decrease derives primarily from the smaller overhead of checkpoint-
ing and migration, respectively. As shown in Figure 11(right), while
HotSpot migrates an average of ∼2 times, its performance over-
head does not exceed either SpotFleet or SpotOn. Unlike SpotFleet,
HotSpot experiences no revocations and never has to recompute
lost work. The figure also shows that HotSpot executes fewer migra-
tions than SpotOn executes checkpoints. However, each checkpoint
only has an overhead of 8s, while the migration overhead of the 8GB
memory footprint ranges from 25-56s. These overheads balance
out such that SpotOn and HotSpot maintain a similar performance.

5.1.2 ChangingMemory Footprint. Wenext evaluate how changes
in an application’s memory footprint, which dictate the transaction
cost of migration, affect cost and running time relative to our base-
line 8GB memory footprint. Figure 12 shows the results where the
error bars indicate the maximum and minimum value across three
trials. Using the same configuration as our baseline experiment,
we vary the memory footprint from 8GB to 64GB. As before, the
cost (left) of using an on-demand VM is high relative to the other
approaches in nearly all cases. In this experiment, note that the
cost and performance of using an on-demand VM is the same for
any size memory footprint. Only SpotOn with a 64GB memory
footprint costs slightly more than using an on-demand VM due to
its high periodic checkpointing overhead. SpotOn’s cost decreases
relative to using on-demand VMs as the memory footprint and the
resulting checkpointing overhead decrease. SpotFleet maintains the
same cost across all memory footprints, since it does not perform
any checkpoints or migrations. HotSpot’s cost is consistently lower
than both SpotFleet and SpotOn, since it always migrates to the
lowest-cost server. As the memory footprint increases, the overhead
of these migrations also increase, which reduces the cost savings rel-
ative to using on-demand VMs. However, even for a 64GB memory
footprint, HotSpot’s cost is 40% less than the on-demand VM.

Figure 12(middle) shows that HotSpot’s running time is also
consistently equal to or less than the running time of SpotFleet

and SpotOn as the memory footprint varies. SpotFleet’s running
time remains constant since it does not depend on the memory
footprint, and is greater than HotSpot’s running time even for a
64GB memory footprint. SpotOn’s running time is nearly equal to
HotSpot’s running time for the 8GB memory footprint, as discussed
in §5.1.1. However, SpotOn’s running time increases more rapidly
as the memory footprint increase compared to HotSpot’s running
time. For a 64GB memory footprint, HotSpot’s running time is
nearly 40% lower than SpotOn’s running time.

The differences in running time stem from the overheads of
checkpointing, migrating, and recomputing lost work after each
revocation. Figure 12(right) plots the number of revocations, check-
points, and migrations, where the order of the bars for SpotFleet,
SpotOn, and HotSpot are the same as the adjacent figures. We do
not include the on-demand approach, since it does not experience
any revocation-related events. The graph shows that HotSpot never
experiences a revocation, since it always migrates to the lowest-cost
server with a low revocation risk. In contrast, SpotFleet and SpotOn
experience at least one revocation on average. For low memory
footprints, SpotOn checkpoints frequently, since the overhead of
checkpointing is low. However, for large memory footprints, the
checkpointing overhead is high so SpotOn only checkpoints once.
Thus, the revocations for SpotOn at large memory footprints incur
a large recomputation overhead that increases its running time.

5.1.3 Changing Spot Price Volatility. We also vary the frequency
of revocations relative to our baseline to illustrate the impact of
market volatility on cost and running time. In this case, we vary
the revocation rate by changing the periodicity of our sinusoidal
price function. Figure 13 plots the resulting revocation rate (in re-
vocations per hour) on the x-axis. Again, all spot-based approaches
in Figure 13(left) cost less on average than using an on-demand VM.
The error bars represent the maximum and minimum cost across
three trials. We also see that HotSpot has a lower cost than the other
approaches across all revocation rates. As the spot price becomes
more volatile, HotSpot’s cost advantage improves relative to both
SpotFleet and SpotOn due to the overhead they experience from
both checkpointing and recomputing lost work after a revocation.

Figure 13(middle) plots the job running time as the revocation
rate changes. We see that SpotFleet’s performance is highly sen-
sitive to the revocation rate, since each revocation incurs a large
recomputation overhead. Note that once the revocation rate in-
creases to two per hour SpotFleet never finishes, so we label ∞
for its cost, running time, and system events. By comparison, both
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Figure 12: Comparison of cost (left), run time (middle), and system events (right) when using on-demand VMs, spot VMs
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Figure 13: Comparison of cost (left), run time (middle), and system events (right) when using on-demand VMs, spot VMs
without fault-tolerance (SpotFleet), spot VMs with checkpointing (SpotOn), and HotSpot as the spot price volatility changes.
The error bars represent the maximum and minimum of each metric across three trials. Once the revocation rate increases to
two per hour SpotFleet never finishes, so we label∞ for its cost, running time, and system events.

SpotOn and HotSpot have similar running times across all revoca-
tion rates. While SpotOn experiences some revocations at higher
revocation rates, as shown in Figure 13(right), the performance
impact of these revocations is limited by its periodic checkpoints.
As before, the order of the bars for SpotFleet, SpotOn, and HotSpot
in Figure 13(right) are the same as the adjacent figures.

Since the checkpointing overhead is low for our 8GB baseline
memory footprint, SpotOn is able to checkpoint many times over
the length of the job, e.g., one checkpoint every 6 minutes in the
baseline case of one revocation per hour. This frequent checkpoint-
ing limits the performance impact of revocations. In comparison,
the lowest-cost VM changes more frequently as price volatility
increases, which requires HotSpot to migrate more frequently.
While each migration incurs more overhead than each checkpoint,
HotSpot experiences no revocations and thus incurs no recompu-
tation overhead. As in Figure 11’s baseline, the checkpointing and
migration overheads of SpotOn and HotSpot, respectively, balance
out such that their performance is similar across all volatilities.

5.2 Simulation Results
Our simulator uses job traces from a production Google cluster [30,
42], and the same EC2 spot price traces described in §2. The Google
cluster traces report each job’s memory footprint and normalized
CPU utilization every five minutes. Since the Google cluster trace
normalizes the server capacity between zero and one, it does not
contain the actual CPU capacity of the servers. As a result, we re-
normalize the server capacity to between 6.5 and 195 ECUs, which
represent the minimum and maximum number of ECUs offered by
EC2 across its VM types. For the on-demand approach, we select
the VM type that has the closest number of ECUs to the ECUs in
the trace. For the spot-based approaches, we initially select the

lowest cost VM that matches each job’s average ECU utilization.
For SpotFleet, we also use this policy to select a new VM on each
revocation. SpotOn and HotSpot use their own respective policies
for selecting VMs after a revocation. We also assume each job’s
performance is a linear function of its resource utilization, i.e., ECUs
utilized. That is, if a job is at 100% utilization of its normalized server
capacity, and then migrates to a server with half the number of
ECUs, we assume a 2× slowdown. If a job’s utilization in the trace
is 100% we do not know what its utilization would be on a higher
capacity server. In this case, we make the pessimistic assumption
that the job cannot scale up to use more ECUs than it did in the
original trace. Our experiments assume EC2’s standard one-hour
billing interval, and sets the expected time to spend on a new server
Ti equal to the MTTC of 1.1 hours based on our analysis in §2.1.

We select 1000 random jobs from the job trace and assume each
job starts at a random time within the EC2 spot price trace. Since
HotSpot containers are long-lived, we restrict our evaluation to jobs
with durations greater than 24 hours to reduce the relative effect on
the total cost from terminating the container before the end of its
last billing interval. For shorter jobs, HotSpot should re-use the same
container, rather than spawn a new container per job, to mitigate
these end-of-lifetime effects. As before, we compare HotSpot’s cost,
performance, and revocation risk across the different approaches.
Note that when the HotSpot container experiences a revocation, it
restarts its job from the last migration time.

Figure 14(left) shows the average cost of each approach, where
the error bars reflect the maximum and minimum values across five
trials. As the graph shows, all of the spot-based approaches have a
significantly lower cost than using on-demand VMs. In addition,
HotSpot is able to further lower the average cost compared to both
SpotFleet and SpotOn. In addition, Figure 14(middle) shows that all
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Figure 14: Comparison of cost (left), run time (middle), and system events (right) when using on-demand VMs, spot VMs with-
out fault-tolerance (SpotFleet), spot VMs with checkpointing (SpotOn), and HotSpot from simulating jobs from a production
trace on spot VMs based on EC2 spot price traces. The error bars represent the maximum and minimum over five trials.
the spot-based approaches slightly increase the average running
time relative to using the on-demand VM specified in the job trace.
In particular, HotSpot increases the running time compared to using
on-demand VMs by <0.5% due its migration overhead, which is
less than the increase caused by both SpotOn and SpotFleet. This
increase in running time occurs because jobs in the original trace
tend to run on over-provisioned servers, such that their average
utilization is low. Thus, there is never an opportunity to improve
performance by migrating to even higher capacity servers.

To demonstrate HotSpot’s ability to improve both cost and per-
formance, we plot an another scenario that normalizes HotSpot’s
cost and performance relative to running jobs on an m4.large on-
demand VM with 6.5 ECUs, which we call HotSpot (m4). Since
running on m4.large on-demand VMs periodically bottlenecks job
performance, such that utilization reaches 100%, HotSpot is able
to decrease the running time from migrating to higher capacity
servers. However, HotSpot’s cost advantage also decreases, as the
m4.large is more cost-efficient on average than the high-capacity
on-demand VMs originally selected by the jobs. Even so, in this
case, HotSpot costs ∼25% of using m4.large on-demand VMs while
decreasing the running time by ∼27%.

Finally, Figure 14(right) shows the revocation, checkpointing,
and migration rate per day of each approach. HotSpot migrates on
average ∼6 times per day, while SpotOn executes ∼28 checkpoints
per day. While difficult to see in the graph, all approaches also ex-
perience revocations. Specifically, SpotFleet, SpotOn, and HotSpot
have average revocation rates of 0.118, 0.152, and 0.02 revocations
per day, respectively. Thus, HotSpot migration policy reduces the
revocation rate compared to the other spot-based approaches.

6 RELATEDWORK
Many researchers have recognized the opportunity to reduce cost
by leveraging spot VMs, however, there is little prior work similar
to HotSpot that supports proactive migration as market conditions
change. Instead, the focus of prior work has been on selecting the
“optimal” spot VM based on an application’s expected resource us-
age and future spot prices [20, 22, 31, 33, 34, 40, 47, 53]. Much of
the prior work focuses on reducing revocation risk by configuring
fault-tolerance mechanisms, such as checkpointing and replica-
tion [20, 22, 31, 33, 34, 40]. In §5, we compare with SpotOn [40],
which automatically selects and configures the optimal spot VM and
fault-tolerance mechanism to execute a job. Prior work applies sim-
ilar fault-tolerance-based approaches to specific distributed applica-
tions including Hadoop [53], Spark [31, 33], parameter servers [20],

and matrix multiplication [22]. In contrast, HotSpot is transparent
to the application and operates at the level of a single server (not a
distributed system). Unlike HotSpot, prior work does not dynami-
cally migrate to new VMs as spot prices change, but instead selects
new VMs after a revocation [31, 33, 40] or at periodic intervals [20].

Since prior work often implicitly commits to running on a par-
ticular spot VM until a revocation occurs, the bidding strategy
is important in balancing high costs due to an increase in the
spot price (when bidding too high) and the performance penalty
from increased revocations (when bidding too low). Thus, there
is a significant body of work on spot VM bidding strategies [25–
27, 39, 41, 44, 50–53]. In contrast, the bidding strategy is not as
important to HotSpot, as it proactively migrates as spot prices
change. HotSpot never commits to a spot VM, and often migrates
to a new VM before prices spike and cause revocations. Prior work
also notes that EC2’s spot market is artificial, since Amazon both op-
erates the market and is the sole provider. For example, Ben-Yehuda
et al. showed that before 2011, EC2 spot prices were not consistent
with a constant minimal price auction [14, 15]. However, HotSpot’s
cost benefits do not rely on spot prices being driven by supply and
demand, but only that there is a price difference between VMs.

Finally, similar to HotSpot’s container migrations, Smart Spot
instances migrate nested VMs between spot VMs in EC2 [23]. How-
ever, Smart Spot instances use a centralized scheduler that monitors
a group of nested VMs and determines an optimal packing of them
on spot VMs to reduce cost. Smart Spot Instances also do not con-
sider revocation risk in their placement decisions, and suggest
applications use fault-tolerance mechanisms, such as replication or
checkpointing to mitigate this risk, which violates transparency.

7 CONCLUSION
This paper presents HotSpot, a container that automatically “hops”
spot VMs—by selecting and self-migrating to new VMs—as spot
prices change. We demonstrate the benefits of hopping VMs in
EC2’s spot market, and its effectiveness in reducing revocation risk
and improving performance. We implement a prototype on EC2,
and evaluate it using job traces from a production Google cluster.
We compare HotSpot to using on-demand VMs and spot VMs (with
and without fault-tolerance) in EC2, and show that it can lower cost
and reduce the revocation rate without degrading performance.
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