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Abstract

Grid computing environments need secure resource control
and predictable service quality in order to be sustainable.We
propose a grid hosting model in which independent, self-
contained grid deployments run within isolated containers
on shared resource provider sites. Sites and hosted grids in-
teract via an underlying resource control plane to manage a
dynamic binding of computational resources to containers.
We present a prototype grid hosting system, in which a set
of independent Globus grids share a network of cluster sites.
Each grid instance runs a coordinator that leases and config-
ures cluster resources for its grid on demand. Experiments
demonstrate adaptive provisioning of cluster resources and
contrast job-level and container-level resource management
in the context of two grid application managers.

1 Introduction

The investments in grid research and technology have
yielded large-scale cyberinfrastructure deployments that
serve the needs of multiple scientific communities. The Ter-
aGrid and Open Science Grid (OSG) grew out of pioneering
efforts to promote sharing of computational resources and
datasets withinvirtual organizations—distributed user com-
munities sharing across administrative boundaries.

For public grid systems to be dependable and economi-
cally sustainable, they must supportresource controlmecha-
nisms and standards that are sufficiently powerful to balance
the needs of resource providers and consumers.

• Resource provider sites should have autonomy to con-
trol how much of each resource type they allocate to
each consumer at any given time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC2006 November 2006, Tampa, Florida, USA
0-7695-2700-0/06 $20.00c©2006 IEEE

• Resource consumers need predictable service quality
(performance isolation) even in the presence of com-
petition for shared resources. Service quality is espe-
cially crucial for urgent computing applications such as
weather prediction and disaster response, and for real-
time distributed computing, e.g., teleimmersion.

Secure, integrated resource control is essential for partic-
ipants to quantify and control what they contribute to a grid
and what they obtain from it. A number of projects have ad-
dressed resource control and adaptation [9, 10, 15, 16, 23,
29, 31, 33]. Even so, effective resource control continues to
be elusive in the practice of grid computing.

This paper1 proposes to advance resource management
goals by integrating resource control functions at two dif-
ferent levels of abstraction:jobs and containers. Jobs—
individual tasks or task workflows—are the basic unit of
work for high-throughput computing, so middleware sys-
tems for clusters and grids focus on job management as the
basis for resource control. Our premise is that the architec-
ture should also incorporate resource control functions atthe
level of the logical context or “container” within which the
jobs and the middleware services run. Advances in virtu-
alization technologies—including but not limited to virtual
machines—create new opportunities to strengthen container
abstractions as a basis for resource control and for isola-
tion and customization of hosted computing environments,
including grid environments [8, 19, 22, 26, 30, 31].

Our goal is to evolve the foundations of the grid to en-
able flexible policies governing thephysical resourcesthat
are bound to the containers hosting grid services and appli-
cations. This paper makes the following contributions:

• We propose an architecture forgrid hosting that pro-
vides container-grained resource management func-
tions in a resource control planeoperating at a level
below the middleware and even below the node operat-
ing system. The control plane may be viewed as “un-
derware” rather than middleware.

1This research is supported by the National Science Foundation through
ANI-0330658, CNS-0509408, EIA-99-72879, and CNS-0451860, and by
IBM, HP Labs, and Network Appliance. Laura Grit is a NationalPhysical
Science Consortium Fellow.
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Figure 1:Two architectural alternatives for resource providers serving multiple grid user communities, or VOs. In (a), the VOs’application
manager (AM) submit jobs through a common gatekeeper at eachsite; job scheduling middleware enforces the policies for resource sharing
across VOs. In (b), each VO runs a private grid within isolated workspaces at each site. Isolation is enforced by a foundational resource
control plane. Each VO grid runs a coordinator (GROC) that controls its middleware and interacts with the control plane to lease resources
for its workspaces.

• We show how hosted grids can negotiate with the re-
source control plane to procure resources across grid
sites in response to changing demand. We present the
design and implementation of a prototype system based
on the Shirako [19] toolkit for secure resource leasing
from federated resource provider sites. Cluster sites are
managed with Cluster-on-Demand [8] and Xen virtual
machines [3]; the hosted grid software is based on the
Globus Toolkit (GT4) [13].

• Within this supporting infrastructure, we explore co-
ordinated mechanisms for programmatic, automatic,
service-oriented resource adaptation for grid environ-
ments.

2 Overview

In grid systems, user communities, or virtual organizations
(VOs), generate streams of jobs to execute on shared re-
source sites, e.g., cluster farms. These cluster sites provide
computational resources to VOs. We refer to the entities that
generate the jobs asapplication managers. The term denotes
a domain-specific entry point to a grid; VO users may sub-
mit jobs through a portal framework or gateway, a workflow
manager, or a simple script interface. Section 4 presents ex-
periments with application managers for a storm surge pre-
diction service (SCOOP [28]) and a web-based bioinformat-
ics service (Bioportal [5]).

Figure 1(a) depicts an example of a standard Globus grid
with two VOs executing on two sites. A VO’s application
manager submits each task to a “gatekeeper” at one of the
sites, which validates it and passes it to a local batch schedul-

ing service for execution. There are four key dimensions to
resource control policy in such a system:

• Resource allocation to VOs.The sites control their re-
sources and determine how to allocate them to serve the
needs of the competing VOs. A site may assign differ-
ent shares or priorities to contending VOs, and/or may
hold resources in reserve for local users.

• Resource control within VOs. VOs determine the rights
and powers of their users with respect to the resources
allocated to the VO.

• Task routing. The application managers for each VO
determine the routing of tasks to sites for timely and
efficient execution.

• Resource recruitment.Entities acting on behalf of the
VOs negotiate with provider sites for resources to serve
the VO’s users.

One important feature of current practice is that the sites
implement their ownresource allocation policiesas job-level
policies within the batch schedulers. A scheduler may give
higher priority to jobs from specific user identities or VOs,
may export different queues for different job classes, and
may support job reservations.Resource recruitmentis cur-
rently based primarily on reciprocal and social agreements
requiring human intervention (person-to-person rather than
peer-to-peer); a recent example is the notion ofright-of-way
tokensin the SPRUCE [32] gateway extensions for urgent
computing. Many current deployments also rely on ad hoc
routing of tasks to grid sites, given the current lack of stan-
dard components to coordinate task routing.



2.1 Resource Control with Containers

Figure 1(b) depicts the architectural model we propose for
hosted grids with container-level resource control. Each site
instantiates a logical container for all software associated
with its hosting of a given VO. The container encapsulates a
complete isolated computing environment orworkspace[14]
for the VO grid’s point-of-presence at the site, and should not
be confused with the individual JVMs that run Java compo-
nents at the site. Each VO grid runs a separate batch task
service within its workspace. The site implements resource
control by binding resources to containers; the containers
provide isolation, so each instance of the batch scheduler
only has access to the resources bound to its container, and
not other resources at the site.

In essence, we propose a “Grid” comprising a set of au-
tonomous resource provider sites hosting a collection of in-
dependent “grids”:

• Each grid serves one or more communities; we speak as
if a grid serves a single VO, but our approach does not
constrain how a hosted grid shares its resources among
its users.

• Each grid runs a private instance of its selected middle-
ware to coordinate sharing of the data and computing
resources available to its user community.

• Each grid runs within a logically distributed container
that encapsulates its workspaces and is bound to a dy-
namic “slice” of the Grid resources.

2.2 GROC

While the sites control how they assign their resources to
each hosted grid, the grids control the other three areas of
policy internally. We propose that each hosted grid include
a coordinating manager, which we will call the GROC—a
loose acronym for Grid Resource Oversight Coordinator.2

The GROC performs two inter-related functions, which are
explained in detail in Section 3:

• The GROC is responsible for advising application man-
agers on the routing of tasks to sites. In this service
brokering role the GROC might be called ametasched-
uler or superscheduler.

• The GROC monitors the load and status of its sites
(points of presence), and negotiates with providers to
grow or shrink its resource holdings. It may resize the
set of batch worker nodes at one or more sites, set up
new grid sites on resources leased from new providers,
or tear down a site and release its resources.

2The novelist Robert Heinlein introduced the verbgrokmeaning roughly
“to understand completely”. The name GROC emphasizes that each hosted
grid has a locus of resource policy that operates with a full understanding
of both the resources available to the grid and the grid’s demands on its
resources.

The GROC thus serves as the interface for a VO applica-
tion manager to manage and configure its resource pool, and
may embody policies specific to its application group. Cru-
cially, our approach requires no changes to the grid middle-
ware itself. Our prototype GROC is a service built atop the
Globus toolkit and it is the sole point of interaction with the
underlying resource control plane.

2.3 Resource Control Plane

The GROC uses programmatic service interfaces at the
container-level resource control plane to acquire resources,
monitor their status, and adapt to the dynamics of resource
competition or changing demand. The control plane is based
on the SHARP [17] leasing abstractions as implemented in
the Shirako toolkit [19]. Each lease represents a contract
for a specified quantity of typed resources for some time in-
terval (term). Each resource provider runs a local resource
manager called Cluster-on-Demand (COD [8]), and exports
a service to leasevirtual clustersfrom a shared server cluster.
Each virtual cluster comprises a dynamic set of nodes and as-
sociated resources assigned to some guest (e.g., a VO grid)
hosted at the site. COD provides basic services for booting
and imaging, naming and addressing, and binding storage
volumes and user accounts on a per-guest basis.

The GROC interacts with the site to configure its virtual
clusters and integrate them into the VO’s grid (Section 3.4).
When the lease expires, the grid vacates the resource, making
it available to other consumers. The site defines local poli-
cies to arbitrate requests for resources from multiple hosted
grids. In our prototype (Section 3) the leased virtual clusters
have an assurance of performance isolation: the nodes are
either physical servers or Xen [3] virtual machines with as-
signed shares of node resources. We use Xen VMs because
they boot faster and more reliably than physical servers, but
the concept applies equally to physical servers.

2.4 Separation of Concerns

While the hosted VOs and their grid middleware retain their
control over job management, the GROC managers interact
with the resource control plane to drive the assignment of
resources to VOs. The assignment emerges from the inter-
action of GROC policies for requesting resources and the
resource provider policies for arbitrating those resourcede-
mands. In effect, the architecture treats the grid nodes and
their operating systems as managed entities. Provider sites
allocate resources to workspace containers without concern
for the details of the middleware, applications, or user iden-
tities operating within each workspace isolation boundary.

Grid hosting with container-level management is particu-
larly important as the Grid evolves toward a stronger sepa-
ration between resource providers and consumers. TeraGrid
and Open Science Grid are examples of the growth of large
infrastructure providers. They signal a shift from a tradi-
tional emphasis on reciprocal peer-to-peer resource sharing
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Figure 2: Overview of components for a GROC managing a VO
grid hosted on virtual clusters leased from multiple cluster sites.
The application manager interacts with Globus services, instanti-
ated and managed by the GROC, for job and data management.

within VOs to a new emergence of resource providers that
serve computational resources to multiple competing user
communities or VOs.

Containment and container-level management also enable
resource providers to serve more diverse needs of their VOs.
A resource provider site can host different grid stacks or
other operating software environments concurrently. For
example, this flexibility may make it possible to unify the
hosting infrastructure for the Grid and NSF GENI network
testbed initiatives. In the longer term, containment can pave
the way for a practical cyberinfrastructure economy: one
path to reducing the overhead of economic protocols (e.g.,
bidding and auctions) is to apply them at the container level,
rather than at the granularity of individual jobs.

Our approach assumes that the grid middleware can adapt
to a dynamically changing set of worker nodes at the sites. In
fact, adaptation is always required in a dynamic world: com-
pute servers may fail or retire, and provider sites deploy new
servers in response to bursts of demand or funding. With a
grid hosting model, grids may grow dynamically to use ad-
ditional resources as they become available. One limitation
is that batch services often do not have adequate support to
checkpoint or reschedule nodes when worker nodes fail or
shutdown. Checkpointing and migration continue to be ac-
tive research topics, and these capabilities are increasingly
crucial for long-running jobs in a dynamic world.

3 Design and Implementation

We present the design and implementation of a prototype
system that coordinates dynamic resource leasing and task
routing, based on the grid hosting architecture outlined
above. Our prototype leverages the standard Globus Toolkit
(GT4) for resource management within each hosted grid: job

management, resource discovery, identity management and
authorization, and file transfer. Dynamic resource leasingis
based on Shirako, a service-oriented toolkit for constructing
SHARP resource managers and COD cluster sites, which is
described in detail in [19].

Figure 2 illustrates the interactions among the most im-
portant components within a hosted grid, as implemented or
used in the prototype.

• The nucleus of the hosted grid is the GROC, which or-
chestrates task flow and resource leasing. The GROC

is the point of contact between the Globus grid and the
Shirako resource control plane.

• The application managers (e.g., portals) control the flow
of incoming job requests. They consult the GROC for
task routing hints (Section 3.2), then submit the tasks to
selected sites.

• A Globus Resource Allocation Manager (GRAM) runs
on a master node (head node) of a virtual cluster at each
provider site, acting as a gatekeeper to accept and con-
trol tasks submitted for execution at the site.

• The application managers interact with a secure staging
service on each head node to stage data as needed for
tasks routed to each site, using Reliable File Transfer
(RFT) and Grid File Transfer Protocol (GridFTP).

• When a task is validated and ready for execution,
GRAM passes it to Torque, an open-source batch task
service incorporating the Maui job scheduler.

• The GROC receives a stream of site status metrics as
a feedback signal to drive its resource requests (Sec-
tion 3.1). Each site exposes its status through a Globus
Monitoring and Discovery Service (MDS) endpoint.

• The GROC acts as a Shirakoservice managerto lease
resources on behalf of the VO; in this way, the GROC

controls the population of worker nodes bound to the
hosted grid’s batch task service pools (Section 3.3). The
GROC seamlessly integrates new worker nodes into its
grid (Section 3.4) from each site’s free pool.

The following subsections discuss the relevant aspects of
these components and their interactions in more detail.

3.1 Site Monitoring

In our prototype, the GROC acts as a client of WS-MDS (a
web service implementation of MDS in GT4) to obtain the
status of the resources at each site, including the number of
free nodes and the task queue length for each batch pool. The
WS-GRAM publishes Torque scheduler information (num-
ber of worker nodes, etc.) through the MDS aggregator
framework using the Grid Laboratory Uniform Environment
(GLUE) schema. MDS sites may also publish information



to upstream MDS aggregators; in this case, the GROC can
obtain the status in bulk from the aggregators.

Currently the GROCqueries the MDS periodically at a rate
defined by the MDS poll interval. The poll interval is a trade-
off between responsiveness and overhead. We use a static
poll interval of 600ms for our experiments. The results of
thesite pollare incorporated immediately into the task rout-
ing heuristics. A simple extension would use MDS triggers
to reduce the polling, but it is not a significant source of over-
head at the scale of our experiments.

3.2 Task Routing

A key function of the GROC is to make task routing rec-
ommendations to application managers. The GROC factors
task routing and other resource management functions out
of the application managers: one GROC may provide a com-
mon point of coordination for multiple application managers,
which may evolve independently. The task routing interface
is the only GROC interface used by a grid middleware com-
ponent; in other respects the GROC is non-intrusive.

To perform its task routing function, the GROC ranks
the sites based on the results from its site poll and a plug-
gable ranking policy. Information available to the policy in-
cludes cluster capacity at each site, utilization, and job queue
lengths. In addition, the policy module has access to the
catalog of resources leased at each site, including attributes
of each group of workers (e.g., CPU type, clock rate, CPU
count, memory size, interconnect).

The coordinating role of the GROC is particularly impor-
tant when multiple user communities compete for resources.
The GROCmaintains leases for the resources held by the VO
grid: its task routing choices are guided by its knowledge of
the available resources. Since it observes the grid’s complete
job stream, it can also make informed choices about what
resources to request to meet its demand.

Our goal at this stage is to evaluate the grid hosting archi-
tecture, rather than to identify the best policies. Our proto-
type policy considers only queue length and job throughput
for homogeneous worker nodes. In particular, we do not con-
sider data staging costs. Job routing in our prototype uses a
simple load balancing heuristic. It estimates the aggregate
runtime of the tasks enqueued at each site, and the time to
process them given the number of workers at each site. It se-
lects the site with the earliest expected start time for the next
job.

3.3 Resource Leasing

In the absence of support for resource leasing, the GROC

could act as a task routing service for a typical grid configu-
ration, e.g., a set of statically provisioned sites with middle-
ware preinstalled and maintained by administrators at each
site. In our system, the GROC can also use the resource con-
trol to change the set of server resources that it holds. The

GROC invokes Shirako’s programmatic resource leasing in-
terface to acquire and release worker nodes, monitor their
status, and/or instantiate points of presence at new cluster
sites when resources are available and demand exists. This
control is dynamic and automatic.

The GROC seeks to use its resources efficiently and re-
lease underutilized resources by shrinking renewed leasesor
permitting them to expire. This good-citizen policy is auto-
mated, so it is robust to human failure. An operator for the
VO could replace the policy, but we presume that the VO
has some external incentive (e.g., cost or goodwill) to pre-
vent abuse. Note that our approach is not inherently less ro-
bust than a conventional grid, in which a greedy or malicious
VO or user could, for example, submit jobs that overload a
site’s shared storage servers. In fact, the leased container
abstraction can provide stronger isolation given suitablevir-
tualization technology, which is advancing rapidly.

Resource provider sites in SHARP delegate power to al-
locate their resource offerings—possibly on a temporary
basis—by registering them with one or morebrokers. A
SHARP broker may coordinate resource allocation across
multiple sites, e.g., to co-schedule resources for a VO across
the wide area and/or to arbitrate global resources at a com-
mon point. However, we do not experiment with shared bro-
kers in this paper. Instead, each site keeps exclusive control
of its resources by maintaining its own broker. We use the
term “site” to mean the resource provider (COD server) and
its broker together.

The GROC uses pluggable policies to determine its target
pool sizes for each site. Section 4 defines the policies used
in our experiments. The prototype GROC uses a predefined
preference order for sites, which might be based on the site’s
resources or reputation, peering agreements, and/or other
factors such as cost. Similarly, the sites implement a fixed
priority to arbitrate resources among competing GROCs.

3.4 Configuring Middleware

Typically, grid middleware is configured manually at each
site. One goal of our work is to show how to use Shi-
rako/COD support to configure grid points of presence re-
motely and automatically. The responsibility—and power—
to manage and tune the middleware devolves to the VO and
its GROC, within the isolation boundaries established by the
site. This factoring reduces the site’s administrative over-
head and risk to host a grid or contribute underutilized re-
sources, and it gets the site operators out of the critical path,
leaving the VOs with the flexibility to control their own en-
vironments.

COD does require site operators to administer their clus-
ters using the RFC 2307 standard for an LDAP-based net-
work information service. Standard open-source services ex-
ist to administer clusters and networks from an LDAP reposi-
tory compliant with RFC 2307. The COD site authority con-
figures virtual clusters in part by writing to the site’s LDAP
repository.



Configuration of a COD node follows an automated series
of steps under the control of the Shirako leasing core. When
a site approves a lease request for new worker nodes, the
GROC passes a list ofconfiguration propertiesinterpreted
by a resource-specific pluginsetuphandler that executes in
the site’s domain. Thesetuphandler instantiates, images,
and boots the nodes, and enables key-based SSH access by
installing a public key specified by the GROC. It then re-
turns a lease withunit propertiesfor each node, including
IP addresses, hostnames, and SSH host keys. The GROC

then invokes a pluginjoin handler for each node, which con-
tacts the node directly with key-based root access to perform
an automated install of the middleware stack and integrate
the node into the VO’s grid. Similarly, there is ateardown
handler that reclaims resources (e.g. machines), and aleave
handler that cleanly detaches resources from the middleware
stack. To represent the wide range of actions that may be
needed, the COD resource driver event handlers are scripted
usingAnt [2], an open-source OS-independent XML script-
ing package. We preparedjoin and leavehandler scripts to
configure the middleware components shown in Figure 2.

To instantiate a point of presence at a new site, the GROC

first obtains separate leases for a master node (with a pub-
lic IP address) that also serves as a scratch storage server for
data staging. It instantiates and configures the Globus com-
ponents, Torque and Maui on the master, and configures the
file server to export the scratch NFS volume to a private sub-
net block assigned to the virtual cluster. When a new worker
node joins, thejoin handler installs Torque and registers the
worker with the local master node. Thejoin handler for the
master configuration is about 260 lines of Ant XML, and the
worker join handler is about 190 lines.

Our prototype makes several concessions to reality. It as-
sumes that all worker nodes are reachable from the GROC;
in the future, we plan to proxy the workerjoin operations
through the public head node for each virtual cluster so that
workers may use private IP addresses. Thesetupattaches a
shared NFS file volume containing the Globus distribution
to each virtual cluster node, rather than fetching it from a
remote repository. For the sake of simplicity, all the hosted
grids use a common certificate authority (CA) that is config-
ured using Globus’s SimpleCA, although there is nothing in
our architecture or prototype that prevents the hosted grids
from each using a private CA. Interaction with the CA is
not yet automated; instead, the GROChas preconfigured host
certificates for the DNS names that its master nodes will re-
ceive for each potential site that it might use. The Shirako
mechanisms for the GROC to install user identities for the
virtual cluster are not yet complete, so a set of common user
identities are preconfigured at the sites. Finally, for thispa-
per, we prestage all applications and data required by the
VO’s users when we instantiate the site. We leave dynamic
data staging to future work.

Currently, we use the default First Come First Served
(FCFS) scheduling policies for Torque/Maui, but the GROC

is empowered to set policies at its points of presence as de-
sired. Thus, the application manager is able to rely on the
VO’s GROC to implement policies and preferences on how
its available resources might be used by different members
of the community, and to adapt these policies as the resource
pool size changes.

3.5 Robustness

The GROC is stateless and relies on recovery mechanisms
in Shirako, which maintains all lease state in a local LDAP
repository. If a GROC fails, it will recover its knowledge
of its sites and resource holdings, but it will lose its history
of task submissions and the MDS feedback stream from the
sites. Once recovered, the GROCmaintains its existing leases
and monitors grid operation for a configurable interval be-
fore adjusting its lease holdings. Reliable job submission
and staging are handled using existing Globus mechanisms
that do not involve the GROC.

As noted in Section 2.4, robust grid services must be ca-
pable of restarting jobs when nodes fail or leave the service.
In our approach, nodes may depart due to resource competi-
tion, as governed by the site policies and the GROC interac-
tions with the dynamic resource control plane. Although the
GROC has advance warning of node departures, the Torque
batch service in our current prototype is not able to suspend
or migrate tasks running on those nodes; thus some tasks
may be interrupted. We believe that support for virtual ma-
chinecheckpoint/migrateis a promising path to a general so-
lution; our Xen-based prototype supports VM migration, but
we do not explore its use for robust adaptation in this paper.

3.6 Security

The important new security requirement of our architecture
is that each GROC must have a secure binding to each of its
candidate hosting sites. Each SHARP actor has a keypair and
digitally signs its control actions. To set up the trust binding,
there must be some secure means for each site and GROC

to exchange their public keys. Related systems to delegate
policy control to a VO—or a server (such as a GROC) acting
on behalf of a VO—also make this assumption. Examples
include the VO Membership Service (VOMS) [1] and Com-
munity Authorization Service (CAS) [25].

One solution is to designate a common point of trust to
endorse the keys, such as a shared certificate authority (CA).
Although each grid selects its own CA to issue the certifi-
cates that endorse public keys within the grid, the provider
site authorities exist logically outside of the VO grids in our
architecture. Thus reliance on a common CA would presume
in essence that the public key certificate hierarchy (PKI) ex-
tends upwards to include a common CA trusted by all re-
source provider sites and all hosted grids. An alternative is
to rely on pairwise key exchange among the sites and VO op-
erators. In our prototype the public keys for the brokers and
GROC s are installed through a manual operator interface.
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Figure 3:The testbed has three cluster sites with a maximum ca-
pacity of 15 virtual machines each. There are two hosted grids (the
Bioportal and SCOOP applications). Each site assigns a priority for
local resources to each grid, according to its local policies.

To instantiate a new site point of presence, the GROC

passes the gateway host certificate and private key in an
encrypted connection duringjoin. Note, however, that the
GROC cannot hide the site private keys used by its middle-
ware from the hosting resource provider, since the resource
provider knows the private SSH key of each leased node.
There are many ways that a malicious resource provider can
subvert or spy on its guests.

4 Evaluation

We conducted an experimental evaluation of the prototype
to illustrate how hosted grids configure and adapt their re-
sources to serve streams of arriving jobs. The experiments
demonstrate on-demand server instantiation for hosted grids,
dynamic adaptation driven by GROC policies, and the inter-
action of policies at the sites and grids

Application workloads. We consider here two specific
grid application services: Bioportal [5], a web-based inter-
face that allows VO users to submit bioinformatics jobs, and
SCOOP [28], a system that predicts storm surge and local
winds for hurricane events. Bioportal uses a simple policy
to route user jobs to a local cluster and the TeraGrid. In
its original incarnation it has no mechanism to ensure pre-
dictable service quality for its users. We selected four com-
monly used Bioportal applications (blast, pdbsearch, glim-
mer, clustalw) from the Bioportal tool suite to represent the
workload.

The North Carolina SCOOP Storm Modeling system is an
event-based system that triggers a series of Advanced Circu-
lation (ADCIRC) runs on arrival of wind data. Executions
are triggered periodically during the hurricane season based
on warnings issued by the NOAA National Hurricane Cen-
ter (NHC). One interesting aspect of SCOOP is its ability to
forecast its demand since the hurricane warnings are issued
every six hours during storm events. In the original version, a
simple resource selection interface schedules the runs when
each warning arrives; although SCOOP knows when runs
will be issued, it cannot ensure that sufficient resources will
be available to complete the models in a timely manner.

The experiments use GROC policies appropriate for each
workload. Bioportal uses anon-demandpolicy that main-
tains a target upper bound on waiting time. The total number
of nodes to request at each decision point is given by:

BioportalRequestt =

max

{

(WaitingJobst −FreeCPUst)
WaitingFactor∗Resourcest

,0

}

Our experiments useWaitingFactor= 2.
SCOOP’s GROC uses alook-aheadpolicy to reserve re-

sources in advance of expected demand. It considers the cur-
rent backlog and expected arrivals over a sliding time win-
dow. The total number of new nodes to request is given by:

SCOOPRequestt =

max

{(

(WaitingJobst −FreeCPUst)+
t+∆t

∑
i=t

ExpectedJobsi

)

,0

}

Experimental setup. All experiments run on a testbed of
IBM x335 rackmount servers, each with a single 2.8Ghz In-
tel Xeon processor and 1GB of memory. Some servers run
Xen’s virtual machine monitor version 3.0.2-2 to create vir-
tual machines. All experiments run using Sun’s Java Virtual
Machine (JVM) version 1.5. COD uses OpenLDAP version
2.2.23-8, ISC’s DHCP version 3.0.1rc11, and TFTP version
0.40-4.1 to drive network boots.

We partition the cluster into three sites (Figure 3). Each
site consists of a COD server that configures and monitors al-
located machines, a broker server that implements the site’s
policy for allocating its resources to competing consumers,
and five physical machines. The sites divide the resources
of each physical machine across three virtual machines, giv-
ing a total resource pool of 45 machines for our experiment.
Previous work [19] has shown that the leasing and configu-
ration mechanisms scale to much larger clusters. The sites in
our experiments use a simple priority-based arbitration pol-
icy with priorities as shown in Figure 3. All leases have a
fixed preconfigured lease term.

Reservations and priority. This experiment illustrates
how GROCs procure resources to serve growing load, and il-
lustrates the mechanisms and their behavior. We consider
two synthetic load signals that have a linearly increasing
number of jobs arriving over a short interval. The duration
of the load is 50 minutes and worker node lease term is 4
minutes.

Figure 4 shows the average number of waiting jobs across
the three sites (a) without and (b) with advance reservations.
In both cases, the sites use priorities from Figure 3, and Bio-
portal uses its simpleon-demandresource request policy. In
Figure 4 (a), SCOOP’s look-ahead horizon is zero, so it ef-
fectively uses an on-demand request policy as well. In Fig-
ure 4 (b), SCOOP reserves resources in advance of its antic-
ipated need, significantly reducing its job delays and queue
lengths.
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Figure 4:Average number of waiting jobs. In (b), the SCOOP grid reserves servers in advance to satisfy its predicted demand.
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Figure 5: Site resources are allocated to competing GROCs according to their configured priorities. (a) shows the decrease in resources
available to Bioportal as more machines are reserved to SCOOP, as shown in (b). Bioportal reacquires the machines as SCOOP releases them.
(c) shows the progress of resource configuration events on sites and GROCs.

Figures 5 (a) and (b) show the distribution of resources
among the two GROCs, illustrating the impact of site pol-
icy. This experiment is slightly different in that the Bioportal
load submits jobs at a constant rate after it reaches its peak,
producing a backlog in its queues. As more computation is
allocated to serve the SCOOP burst, Bioportal’s worker pool
shrinks. The impact is greatest on Site C where Bioportal
has lower priority. As SCOOP’s load decreases, Bioportal
procures more resources eventually reduces its backlog.

The GROCs adapt to changing demand by adding and re-
moving worker nodes as the experiment progresses, using
the mechanisms described in Section 3.4. Figure 5 (c) shows
the completion times of configuration events across all three
sites for an experiment similar to Figure 5. At the start of
the experiment, each GROC leases and configures a mas-
ter node at each of the three sites. These six nodes boot
(setup) rapidly, but it takes about 336 seconds for the master
join handler to copy the Globus distribution from a network
server, and untar, build, install, and initialize it. As jobs ar-
rive, the GROCalso leases a group of six worker nodes. Once
the master nodes are up, the workersjoin rapidly and begin
executing jobs; as load continues to build, both GROCs issue
more lease requests to grow their capacity. After each worker

boots, it takes the GROC’s workerjoin handler about 70 sec-
onds to initialize the node with a private copy of Torque, and
register it with its Torque master at the site. The GROCs
permit some leases to expire as the queues clear; theleave
(deregister) andteardownhandlers complete rapidly. In this
experiment, the Bioportal takes a while to clear its queued
jobs, so the remainder of theleavesand teardownsoccur
later in the experiment.

Adaptive provisioning with varying load. This experi-
ment demonstrates adaptive resource provisioning by com-
peting grids under a more realistic load signal. The Biopor-
tal workload consists of a steady flow of jobs, with occa-
sional spikes in job arrivals. The job arrival times were ob-
tained from traces of a production compute cluster at Duke
University. We scaled the load signals to a common basis
that is appropriate for the size of our resource pools. The
SCOOP workload runs a small set of ADCIRC jobs period-
ically according to a regular schedule. In practice, the re-
source demand for the runs in each period may vary accord-
ing to weather conditions or post-processing results. For this
experiment we use a synthetic load generator to create load
spikes lasting a small time period (approximately 1 minute),
at intervals of approximately 50 minutes. The duration of
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Figure 6:Adaptive provisioning under varying load. The load signal (a) gives job arrivals. (b) shows the waiting jobs queue at Site A, while
(c) shows a stacked plot of the resource holdings of each gridacross the three sites.

this experiment is 420 minutes and the lease length of each
worker node is set to 25 minutes.

Figure 6 shows the load signal, the waiting jobs queued at
Site A, and the resources that each GROC holds across the
three sites. We see that each GROC is able to procure re-
sources according to its varying load. SCOOP periodically
demands resources to complete its runs, temporarily reduc-
ing Bioportal’s resource holdings. However, Bioportal suc-
cessfully retrieves resources between SCOOP’s periods of
activity. For simplicity, we omit the distribution of waiting
jobs at Site B and Site C, which are similar to Site A.

Resource efficiency and lease length.The last experi-
ment compares container-level control with job-level control
with respect to efficiency and fairness of resource assign-
ments to two competing VO grids. The power and gener-
ality of container-level resource control comes at a cost: it
schedules resources at a coarser grain, and may yield sched-
ules that are less efficient and/or less fair. In particular,a
container holds any resources assigned to it even if they are
idle—in our case, for the duration of its lease. Another con-
tainer with work to do may be forced to wait for its com-
petitor’s leases to expire. Our purpose is to demonstrate and
quantify this effect for illustrative scenarios.

In this experiment, the job-level control is a standard First
Come First Served (FCFS) shared batch scheduler at each
site. The container-level policy is Dynamic Fair Share as-
signment of nodes to containers: the GROCs request re-
sources on demand and have equal priority at all sites. Node
configuration and job execution are emulated for speed and
flexibility. We implement a grid emulator as a web service
that emulates the Globus GRAM and MDS interfaces (job
submission and status query) and also exports an interface to
instantiate grid sites and add or remove worker nodes from
a site. An external virtual clock drives the emulation. The
site emulation incorporates a Maui scheduler with a modi-
fied resource manager module to emulate the job execution
on worker nodes. Note that the core components (GROC,
Shirako/COD, Maui) are identical to a real deployment. One
difference is that the emulation preempts and requeues any

job running on an expired worker node, although the batch
scheduler configured in our prototype (Torque) does not sup-
port preemption.

Figure 7 (b) shows theutilization of container-level con-
trol with different lease lengths using a bursty load signal
derived from a real workload trace (Figure 7 (a)) across dif-
ferent cluster sizes. We measure utilization as how effec-
tively GROCs use their allocated resources: one minus the
percentage of unused computational cycles. As lease length
increases, container-level utilization decreases because the
system is less agile and it takes longer for resources to switch
GROCs. The decline is not necessarily monotonic: if the job
and lease lengths are such that jobs complete just before the
lease expires, then the Dynamic Fair Sharing container pol-
icy will redeploy the servers, maintaining high utilization.
However, an advantage of longer leases is that they can re-
ducing “thrashing” of resources among containers; in this
emulation we treat the context switch cost as negligible, al-
though it may be significant in practice due to initialization
costs. Also, at smaller cluster sizes, resources become con-
strained, causing utilization to increase.

To compare job-level and container-level control, we also
measure the efficiency of the resource pools. We defineeffi-
ciencyas one minus the percentage of usable resources that
are wasted. A server is “wasted” when it sits idle while
there is a job at the same site which could run on it. By this
measure, the efficiency of a site-wide batch scheduler using
FCFS is 100%, since it will always run the next job rather
than leave a server idle. In contrast, a local batch sched-
uler running within a container may hold servers idle, even
while another task scheduler in a different container has jobs
waiting to run. For the given workload, in a resource con-
strained case (10 resources per site), the average efficiency
across sites is 92% and in the overprovisioned case (30 re-
sources per site) the average efficiency is 78%. As with
utilization, efficiency is higher on smaller clusters sincethe
GROCs are more constrained and may make better use of
their resources. Efficiency is lower on larger clusters—butof
course efficiency is less important when resources are over-
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Figure 8:Stretch factor, as a measure of fairness, of two competing GROCs.

provisioned.

Fairness is a closely related issue. One measure of fair
resource allocation is the relative stretch factor of the jobs
executed at a given provider site. Stretch factor is the ratio
of completion time to job duration. That is, we might view a
site as “fair” if a job incurs equivalent waiting time regardless
of which grid submitted the job to the site. (Of course, the
benefits of container-level resource control include support
for differentiated service and performance isolation, which
are “unfair” by this definition.) Both the FCFS job policy and
the Dynamic Fair Share container policy strive to be “fair” in
that they do not afford preferential treatment. Even so, these
simple policies allow one of the GROCs to grab an unfair
share of resources if a burst of work arrives while another is
idle.

Figure 8 shows the average stretch factors for two job
streams (Bioportal and SCOOP) running under both job-
level and container-level resource control. Bioportal sub-
mits an initial burst of short jobs, which fill the global FCFS
queue (for job-level control) or trigger lease requests fora
block of servers (for container-level resource control). A
subsequent burst of longer SCOOP jobs must wait for servers
to become available. These bursts are followed by another
pair of bursts of Bioportal and SCOOP jobs as shown in Fig-
ure 8 (a).

The Bioportal (Figure 8 (b)) shows a higher stretch fac-

tor than SCOOP (Figure 8 (c)) in all cases. In this partic-
ular scenario, the SCOOP bursts submit longer jobs to the
queue, increasing the waiting time for the subsequent burst
of Bioportal jobs. However, resource leasing can allow either
workload to hold its resources longer so that some are still
available for the next burst. In this case, longer leases im-
prove the stretch factor for Bioportal and increase the stretch
factor for SCOOP, improving fairness of the overall system.

In general, efficiency and fairness properties result from
the interaction of the policy choices and the workload; it is
less significant whether resource control is implemented at
the job level or container level. A rich range of policies could
be implemented at either level. The advantage of container-
level control is that its policies generalize easily to any mid-
dleware environment hosted within the containers. On the
other hand, the granularity of that control must be coarser to
avoid sacrificing efficiency and utilization.

5 Related Work

To the best of our knowledge there is no prior work that uses
dynamic resource pool resizing and multiple policy points
to manage application resource requirements and resource
provider policies in Grid sites. We provide a summary here
of related work that have common elements with our effort.



Infrastructure sharing and Community delegation.
Currently most deployed grid sites such as TeraGrid and
OSG use static SLAs to enforce sharing policies. These
policy choices need to be dynamic and adaptive to allow
both providers and consumers to be able to adapt to vary-
ing load conditions. The grid hosting architecture provides
this ability; the resource allocations result from the interac-
tions of GROC request policies and site arbitration policies.
Resource providers today use mechanisms like community
accounts or virtual organization management to provide site
autonomy and control over resources while trying to manage
large number of users through delegation. Our approach is
compatible with such approaches: it does not dictate how a
hosted VO/grid implements its security policy for its users,
or how it enforces policy at its sites.

Virtual execution environments. New virtual machine
technology expands the opportunities for resource sharing
that is flexible, reliable, and secure. Several projects have ex-
plored how to link virtual machines in virtual networks [12]
and/or use virtualization to host grid applications, including
SoftUDC [21], In Vigo [24], Collective [27], SODA [20],
and Virtual Playgrounds [22] and DVC [31]. Shared network
testbeds are another use for dynamic sharing of networked
resources.

Schedulers, Meta-schedulers, Adaptation. Grid
scheduling and adaptation techniques are used to evaluate
system and application performance are to make schedul-
ing and/or rescheduling decisions [4, 33]. Heuristic tech-
niques are often used to qualitatively select and map re-
sources to available resource pools [6, 23]. GROC is orthog-
onal to these specific techniques and can serve as a frame-
work for an application manager to apply one or more of
these techniques. Various site selection policies [11] and
meta-schedulers [7, 18] are being explored in the context
of the Grid. These provide an interface for applications to
submit jobs to multiple sites. Our architecture allows ap-
plication managers to implement policies for resource selec-
tion that are tied to the knowledge of the resources and the
application requirements in the GROC. Leases in Shirako
are also similar to soft-state advance reservations. Several
works have proposed resource reservations with bounded du-
ration for the purpose of controlling service quality in a grid.
GARA includes support for advance reservations, brokered
co-reservations, and adaptation [15, 16].

6 Conclusion

The increasing separation between resource providers and
consumers makes resource control in today’s grid both more
important and more difficult.

This work illustrates the dynamic assignment of shared
pools of computing resources to hosted grid environments.
It shows how to extend grid management services to use a
dynamic leasing service to acquire computational resources
and integrate them into a grid environment in response to

changing demand. In our prototype, each VO runs a private
grid based on an instance of the Globus Toolkit (GT4) mid-
dleware running within a network of virtual machines at the
provider sites. Each site controls a dynamic assignment of
its local cluster resources to the locally hosted grid points of
presence.

Our approach addresses resource control at the container
level, independently of the grid software that runs within the
container. Each GROC represents a hosted grid serving a
VO, with points of presence at multiple provider sites. Each
grid serves a different user community and controls its own
internal environment and policies.
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