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ABSTRACT

The increasing penetration of solar power in the grid has moti-
vated a strong interest in developing real-time performance mod-
els that estimate solar output based on a deployment’s unique loca-
tion, physical characteristics, and weather conditions. Solar models
are useful for a variety of solar energy analytics, including indi-
rect monitoring, forecasting, disaggregation, anonymous localiza-
tion, and fault detection. Significant recent work focuses on learn-
ing “black box” models, primarily for forecasting, using machine
learning (ML) techniques, which leverage only historical energy
and weather data for training. Interestingly, these ML techniques
are often “off the shelf”” and do not incorporate well-known phys-
ical models of solar generation based on fundamental properties.
Instead, prior work on physical modeling generally takes a “white
box” approach that assumes detailed knowledge of a deployment.
In this paper, we survey existing work on solar modeling, and then
compare black-box solar modeling using ML versus physical ap-
proaches. We then i) present a configurable hybrid approach that
combines the benefits of both by enabling users to select the param-
eters they physically model versus learn via ML, and ii) show that
it significantly improves model accuracy across 6 deployments.

1. INTRODUCTION

The penetration of intermittent solar power in the grid is rising
rapidly due to continuing decreases in the cost of solar modules.
For example, the installed cost per Watt (W) for residential photo-
voltaics (PVs) decreased by 2x from 2009 to 2015 (from ~$8/W
to ~$4/W) [17]. As a result, the return on investment for “going
solar” in many locations is now less than five years [24]. In addi-
tion, a variety of financing options are now available that lower the
barrier to installing solar systems by enabling users to avoid incur-
ring large upfront capital expenses, e.g., by leasing their roof space
or entering into a long-term power purchase agreement. However,
this increasing solar penetration is placing pressure on grid opera-
tors, which schedule generators to maintain a balanced supply and
demand. Even when aggregated across many deployments over a
large region, solar generation is more stochastic than aggregate de-
mand, since changes in cloud cover (the primary weather metric
that affects aggregate solar output) are inherently more localized
and stochastic than changes in temperature (the primary weather
metric that affects aggregate demand).

The increasing impact of solar on the grid has motivated a strong
interest in developing custom performance models that estimate a
deployment’s real-time solar output based on its unique location,
dynamic and static physical characteristics, and weather condi-
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tions. Solar performance models are useful for a variety of energy
analytics, including indirect solar monitoring [16], solar forecast-
ing [9, 33], “behind the meter” solar disaggregation [28, 22, 13],
anonymous localization [14], and fault detection [19, 7]. Signifi-
cant recent work focuses on learning “black box” models, primarily
in the context of forecasting [9, 33], using machine learning (ML)
techniques. Black-box approaches are attractive because they use
only historical energy and weather data for training. Thus, utilities
and third-parties that remotely monitor tens of thousands of solar
deployments, e.g., via smart meters and other sensors, can directly
apply black-box techniques at large scales to vast archives of data.

Interestingly, these ML techniques are often “off the shelf” and
do not leverage well-known physical models of solar generation
based on fundamental physical properties. Instead, prior work on
physical modeling generally takes a “white box” approach that as-
sumes detailed knowledge of a deployment and its location, such
as the number of modules and their size, tilt, orientation, effi-
ciency, nominal operating cell temperature, wiring, inverter type,
etc. White-box physical models translate this information into the
parameters the models require. The PV Performance Modeling
Collaborative documents a variety of white-box modeling meth-
ods [32], and has implemented them as part of the pvlib library [8].
This approach typically decouples the different effects on solar gen-
eration and models them separately. For example, different models
exist for estimating ground-level irradiance versus estimating a de-
ployment’s efficiency at converting this irradiance to power. The
former applies physical models to local or remote sensing data,
e.g., ground-level pyranometers or satellites, to estimate irradiance,
while the latter applies physical models to estimate the efficiency
of converting this irradiance to power. Note that our work focuses
on accurately modeling the real-time output of existing solar de-
ployments under current conditions, and not the potential output of
future solar deployments. Many tools exist, such as PVWatts [2]
and SAM [5], that estimate solar potential using white-box models.

Prior work also leverages stochastic ML techniques to estimate
irradiance, and then uses white-box models for estimating conver-
sion efficiency [23]. An example of such a white-box tool is Plant-
Predict.! Unfortunately, while these white-box approaches have
high accuracy, gathering this information at large scales for mil-
lions of small-scale deployments is infeasible. As a result, these
tools are typically only used for utility-scale solar farms. Of course,
while less well-studied, black-box physical modeling using the
same fundamental properties is also possible: as we discuss, it sim-
ply requires determining the model parameters by finding the val-
ues that best fit the data. Such physical modeling generally requires
much less data to calibrate (akin to training) than ML modeling, as
the physical models embed detailed information about the relation-
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ship between its input parameters and solar output.

We survey prior work on solar performance modeling, and
then compare black-box approaches using machine learning versus
physical modeling [10, 15]. We examine both a canonical “pure”
machine learning technique from prior work [28] and a “pure” an-
alytical approach from prior work, which leverages several well-
known physical properties of solar generation [13]. We show that
a significant drawback of black-box physical modeling compared
to ML is that simple physical models i) do not exist for all the
variables that potentially affect solar generation, especially the dy-
namic factors that degrade output, and ii) may require inputs that
are difficult to accurately measure. For example, there are no sim-
ple physical models that quantify degradation in output due to dust
build up, high humidity, or air velocity on solar conversion effi-
ciency [27]. In addition, physical models of cloud cover’s impact
on solar irradiance requires accurately quantifying cloud cover,
which is difficult to measure. In contrast, ML techniques automat-
ically learn these unknown relationships from observed data, and
adapt as they change over time. Thus, while black-box physical
models have the potential to be more accurate than data-driven ML
models, they are generally less accurate in practice.

Unfortunately, ML techniques require a significant amount of
historical data to train an accurate model. Prior work requires any-
where from months to years [20, 31], while a recent survey states
that at least 30 days of data is necessary to train a reasonably accu-
rate model [9]. However, historical data is generally not available
for either new deployments or deployments that do not continu-
ously monitor and store the data. In contrast, black-box physical
models require calibration, and not training, and thus require sig-
nificantly less historical data, since the physical properties that gov-
ern solar generation are well-known. Physical models can often be
calibrated using only a few datapoints, mitigating the need for a
monitoring infrastructure to gather and store data for training.

In this paper, we compare the accuracy of black-box physical
and ML solar performance models, as well as the amount of data
required for calibration or training. We then present a hybrid solar
performance modeling technique that combines elements of both
approaches. Our hypothesis is that a hybrid approach can achieve
the best of both worlds by combining well-known relationships
from the physical models with unknown relationships learned via
ML to improve accuracy, while requiring no more training data
from the deployment under test than the pure physical model. Im-
portantly, our hybrid approach is configurable: it can either apply a
physical model to quantify the effect of an input parameter on solar
output or it can learn the effect via ML from training data. How-
ever, as we discuss, by normalizing the output of our ML model
based on physical solar properties, this training data need not be
gathered from the deployment under test. In evaluating our hy-
pothesis, we make the following contributions.

Pure Solar Modeling Approaches. As reference points, we first
discuss both a pure ML approach to black-box solar performance
modeling from prior work [28] and a pure physical approach, which
combines several well-known physical models of solar generation.
Hybrid Solar Performance Modeling. We present a configurable
hybrid model that combines ML and physical approaches. In
essence, the hybrid approach uses physical models for selected pa-
rameters (where physical models are available), and uses ML for
the other parameters (where physical models are unavailable).

Implementation and Evaluation. We implement the ML, physi-
cal, and hybrid modeling approaches above and evaluate their ac-
curacy across 6 solar deployments with widely different character-
istics. We show that the hybrid approach significantly improves
the accuracy of the pure ML and physical approach. In addition,

we evaluate multiple variants of our hybrid approach by selectively
adding more parameters with physical models. We show that the
accuracy of the hybrid model incrementally improves as we model
more of the input features using physical models.

2. BACKGROUND

While there is significant prior work on ML-based solar model-
ing, most of it is in the context of solar forecasting, as detailed in
recent surveys [9, 33, 23] that cite well over one hundred papers on
the topic. Unfortunately, this prior work generally conflates mod-
eling and forecasting, and thus does not evaluate them separately.
In addition, these forecasting approaches often implicitly embed
assumptions about their specific problem variant, such as its tem-
poral horizon, temporal resolution, spatial horizon, i.e., forecasting
one solar deployment versus many deployments, spatial resolution,
performance metrics, weather data, and deployment characteristics.
These variants are generally not relevant to solar modeling, which
simply estimates solar output (at some resolution) given a set of
known conditions, e.g., the location, weather, and time. As a re-
sult, extracting a solar performance model from prior work on ML-
based forecasting is non-trivial. Thus, for our pure ML-based tech-
nique we instead adapt a technique originally proposed for solar
disaggregation, which focuses on separating solar generation from
aggregate energy data that also includes consumption [28]. How-
ever, instead of applying the technique to disaggregate such “net
meter” data, we use it to model pure solar data. The technique has
been patented by Bidgely, Inc. [29] and is in production use [21].

As discussed in Section 1, prior work on physical modeling gen-
erally takes a white-box approach [15, 10]. Our approach to black-
box physical modeling is similar to these white-box approaches, in
that it uses the same well-known physical models, but instead of di-
rectly measuring the necessary input parameters for a deployment,
we infer them by searching for values that best fit the available data.

2.1 Black-box ML-based Modeling

Prior work on ML-based black-box solar modeling has the
same broad characteristics. Since solar generation varies based on
weather conditions, input features include a variety of weather met-
rics that are publicly available, e.g., from the National Weather Ser-
vice (NWS) or Weather Underground, such as temperature, dew-
point, humidity, wind speed, and sky cover. Note that all ap-
proaches assume a deployment’s location, and thus its weather is
well-known. The dependent output variable is often the raw solar
output. Given historical weather data and raw solar output, a variety
of supervised ML techniques, e.g., regression, neural nets, Support
Vector Machines (SVMs), can learn a model that maps the weather
metrics to raw solar output. However, since solar generation poten-
tial varies significantly each day and over the year, this approach
requires learning a separate model for each time period [31]. This
significantly increases the training data required to learn an accu-
rate model, as each sub-model requires distinct training data.

To reduce the size of the training data, ML-based modeling can
normalize the input and output variables, such that it can use each
datapoint to learn a single model [20]. Our pure ML-based ap-
proach normalizes these variables without using detailed physical
models of the system [28, 29]. In particular, the approach normal-
izes the output variable by dividing the raw solar power by the solar
capacity, defined as the system’s maximum generation over some
previous interval, which it calls the solar intensity. While the prior
work does not specify this interval, in this paper, we divide by a so-
lar deployment’s maximum generation over a year. In addition, the
approach also adds the time of each datapoint to the input features
along with the time of sunrise and sunset. The time information en-
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Figure 1: Solar data along with a best fit Gaussian curve.

ables the model to automatically learn the solar generation profile.
For example, a time closer to sunrise or sunset will have a lower
solar intensity, even in sunny clear sky conditions, compared to a
time closer to solar noon. The approach then uses a Support Vec-
tor Machine (SVM) with a Radial Basis Function (RBF) kernel to
learn a model from the training data. SVM-RBF is common in so-
lar modeling, since it attempts to fit a Gaussian curve to solar data
and solar profiles are similar to Gaussian curves [31, 28, 11]. Fig-
ure 1 depicts a typical solar profile and its best fit Gaussian curve.
As the figure shows, the Gaussian curve fits well in the middle of
the day, but diverges at the beginning and end of each day.

Note that the approach above is completely data-driven and does
not incorporate any physical models of solar generation, other than
the insight that solar curves vary over time and are similar in shape
to Gaussian curves. While the approach requires multiple months
of training data to learn an accurate model, the authors claim that
the normalization enables them to train the model on different solar
deployments than they test on, since all solar profiles exhibit the
same Gaussian shape. In fact, this model was developed for solar
disaggregation, where solar data from the deployment under test is
unknown, thus requiring the model to be trained using data from
separate deployments. Of course, as we show,, the model is more
accurate when trained data from the deployment under test due to
physical differences between deployments that affect solar output.

2.2 Black-box Physical Modeling

Our approach to physical modeling leverages several well-
known relationships that govern solar generation. Note that our
approach is adapted from an approach we proposed in recent
work [13]. However, our prior work, as above, focuses on solar dis-
aggregation of net meter data and not solar performance modeling
of pure solar data. Our physical model leverages existing models
that estimate the clear sky solar irradiance at any point in time at
any location based on the Sun’s position in the sky. Many clear sky
irradiance models have been developed over the past few decades
with varying levels of complexity [26]. There are multiple libraries
available that implement these models [3, 1] with the simplest mod-
els requiring as input only a location, i.e., a latitude and longitude,
and time. The output is then the expected clear sky irradiance (in
W/m?) horizontal to the Earth’s surface. This is the maximum solar
energy available to a solar module to convert to electricity.

Of course, solar modules cannot convert all the available solar
energy into electricity. Their efficiency is based on the type of mod-
ule, e.g., poly- versus mono-crystalline, as well as their orienta-
tion and tilt. The simple well-known equation below describes the
amount of power a solar module generates based on its tilt (5) and
orientation (¢) relative to the Earth’s surface, and the Sun’s zenith
(©) and azimuth («) angles (which are a direct function of the loca-
tion and time [12]). Assuming clear skies, I;incident 1S the clear sky
solar irradiance, and k is a module-specific parameter that is com-

bines conversion efficiency (as a percentage) and module size (in
m?). Similar expressions exist for deployments that track the sun,
or consist of multiple modules with different tilts and orientations.

Ps(t) = Lincident(t) * k x [cos(90 — ©) * sin(8) * cos(¢ — a)

+sin(90 — ©) x cos(B)] (1)

White-box models can directly measure the module angles, size,
and efficiency. While black-box models cannot directly measure
these values, given the relationships above, it can search for these
parameters via curve fitting. In particular, Ps(t) follows the equa-
tion above and I;ycident(t) is known from existing clear sky mod-
els. To search, we can set the tilt and orientation to their ideal values
(a tilt equal to the location’s latitude and a south-facing orientation
in the northern hemisphere), and then conduct a binary search for
the k that both minimizes the Root Mean Squared Error (RMSE)
with the observed data and represents a strict upper bound on the
data, as we know generation should never exceed the maximum
dictated by the clear sky irradiance. After fitting k, we then con-
duct a similar binary search for orientation and tilt. We iterate on
the search until the parameters do not significantly change. In prior
work, we have shown that this searching method results in highly
accurate values for £ and the orientation and tilt angles [13].

The model found above assumes that k is static and never
changes. However, module efficiency changes over time based on
numerous dynamic conditions, such as temperature, rain, snow, hu-
midity, dust, etc. In particular, the effects of temperature on module
efficiency are well-known, and are described by a variety of phys-
ical models. The simplest model is the Nominal Operating Cell
Temperature (NOCT) model, which specifies the cell temperature
based on the ambient air temperature and the cell temperature at
1kW/m? in 25C. For every degree increase (or decrease) in T eii,
module efficiency drops (or rises) by roughly a constant percentage,
which varies between modules, but is ~0.5% per degree Celsius.

To account for temperature effects, we can re-calibrate our model
by adjusting the original value of k above based on the temperature
at each datapoint using the equation below, where Ty setine 1S the
temperature at the datapoint that is closest to the upper bound so-
lar curve in the model above. Note that the relationship between
cell temperature and air temperature is a constant. While efficiency
varies strictly based on cell temperature, the cell temperature’s re-
lationship to air temperature differs only by an additive constant,
which cancels out when subtracting two cell temperatures (leaving
only the air temperature below). The baseline temperature should
represent the coldest point in the year that has a clear sky. Again,
we search for the value of c that minimizes the RMSE with the
observed data but remains a strict upper bound on the data.

k,(t) =k x (1 =+ c* (Tbaseline - Tﬂl”'(t))) (2)

The adjustment above represents a temperature-adjusted clear
sky solar generation model. Of course, skies are not always clear,
such that the solar irradiance that reaches Earth is much less than
the clear sky solar irradiance. The amount of cloud cover is the
primary metric that dictates the fraction of the maximum solar ir-
radiance that reaches the ground. As above, there are numerous
well-known physical models [30, 34] that translate cloud cover
into a clear sky index, which is the solar irradiance that reaches
the Earth’s surface divided by the clear sky solar irradiance [25].
For example, one well-known cloud cover model is below [4].

Iincident/lclearsky = (1 - 0-7577/3‘4) (3)

Here, Iincident represents the solar irradiance that reaches the
Earth, Icjcarsky represents the solar irradiance from the clear sky
model, and n represents the fraction of cloud cover (0.0-1.0). This
cloud cover (or sky condition) is typically measured in oktas, which



represents how many eighths of the sky are covered in clouds, rang-
ing from O oktas (completely clear sky) through to 8 oktas (com-
pletely overcast). The sky conditions reported by the NWS trans-
late directly to oktas [6]. For example “Clear/Sunny” is <1 okta,
“Mostly Clear/Mostly Sunny” is 1-3 oktas, “Partly Cloudy/Partly
Sunny” is 3-5 oktas, “Mostly Cloudy” is 5-7 oktas, and “Cloudy”
is 8 oktas. While the sky condition reported by the NWS (and other
sources) is a rough measure of cloud cover, more accurate measures
can be extracted from satellite images [18]. However, this is non-
trivial and these measures are not reported by weather sites.

Thus, using the equation above we can adjust the output of our
physical model by multiplying the solar output in our temperature-
adjusted model above by the fraction Lincident/Icicarsky. Note
that, while Equation 3 is in terms of solar irradiance and not solar
power, the ratio of observed solar power to maximum solar gener-
ation potential after the temperature adjustment (from Equation 1)
are equivalent, since the effect of the physical characteristics cancel
out. Recent work refers to this value as the clear sky photovoltaic
index [16]. We could continue to adjust our model downwards
based on physical models for other conditions, such as humidity,
air velocity, and dust buildup [27]. Unfortunately, similar types of
simple models are not readily available for these parameters.

One benefit of the physical model above is that it requires very
little data to calibrate. In the limit, it requires only two datapoints
during clear skies with a significant difference in temperature. In
recent work, we show that physical models of clear sky genera-
tion (without the cloud cover adjustment) built with only two days
of data have similar accuracy to those built with a year’s worth
of data [13]. However, unlike the ML-based models, our physical
model is necessarily custom to each deployment based on its unique
location, tilt, orientation, efficiency, and sensitivity to temperature.
Our physical model also does not account for shade from surround-
ing structures, e.g., buildings and trees, or multi-module systems
with different tilts, orientations, and efficiencies that are wired to-
gether, e.g., in series, parallel, or a combination. While accounting
for these effects in the physical model is possible, it would signifi-
cantly increase its complexity. In contrast, the ML-based model is
capable of inherently incorporating these effects into its model.

3. A BLACK-BOX HYBRID MODEL

The black-box ML and physical solar performance models from
the previous section have both benefits and drawbacks. The ML
model generally requires months of training data to build an accu-
rate model. As we show, while we can train the pure ML model on
data from one set of solar deployments, and then use it to model
a separate set of solar deployments, this significantly decreases
the model’s accuracy, since the approach does not take into ac-
count different physical system characteristics, e.g., tilt, orienta-
tion, size, and efficiency. In contrast, while our physical model
requires little data to calibrate, it is generally less accurate than
the ML model in practice because it i) depends on coarse measure-
ments of cloud cover that are often inaccurate and ii) does not incor-
porate the effect of other conditions that degrade output, such as ad-
ditional weather metrics, complex multi-panel characteristics, dust
and snow buildup, and regular shading patterns from nearby struc-
tures. Thus, to leverage the benefits of both approaches, we present
a configurable hybrid approach that combines both approaches.

Our hybrid approach first builds a physical model of solar out-
put, as in Section 2.2, based on a deployment’s location, tilt, ori-
entation, size, efficiency, and any other relevant parameters where
physical models exist. The approach then trains a ML classifier,
similar to the one in Section 2.1, that includes as input features any
relevant parameters not included in the physical models. However,

a key difference relative to Section 2.1 is that the dependent output
variable is not the raw power normalized by the (static) solar ca-
pacity, but is instead the raw power normalized by the generation
potential from the physical model above. Thus, the dependent out-
put variable represents the additional percentage reduction in so-
lar generation beyond that estimated by the physical model due to
the parameters in the ML model. For example, the physical model
might estimate a solar output of 1kW based on the current location,
time, temperature, and cloud cover. However, based on the other
metrics, the ML model may then estimate the actual output to be
80% of this 1kW output. In this case, the labeled data in the train-
ing set for the ML model would include any input features that are
not physically modeled with an output variable of 0.80.

Thus, our hybrid model estimates solar output by multiplying the
estimated output from the physical model by the fraction specified
in the ML model. Note that, when the physical model includes only
the metrics that affect module efficiency, e.g., tilt, orientation, size,
and temperature, this ratio represents the clear sky (photovoltaic)
index [16]. Our hybrid approach is configurable because we can
either model input features with physical models, or using the ML
model. For example, in our evaluation, we examine different hybrid
variants that physically models different sets of parameters.

Note that, since the physical model is already a function of time,
our ML classifier does not need sunrise, sunset, or current time as
input features, unlike the pure ML model from Section 2.1. In addi-
tion, by specifying our output variable as a function of the physical
model, its normalization naturally takes into account the physical
differences between solar deployments. Thus, as with our pure ML
model, our hybrid approach can accurately train its ML model on
data from one set of solar deployments, and then apply it to a sepa-
rate set of deployments with widely different physical characteris-
tics. Of course, for any new deployment, we would still need to cal-
ibrate a physical model of the system, as described in Section 2.1.
However, as we discuss, this only requires a minimal amount of
data. In some sense, our physical model captures how efficiently a
solar deployment translates the available solar irradiance into elec-
tricity, while our ML model captures how much solar irradiance
actually reaches the module. As we show in recent work [13], the
latter is primarily due to weather effects that are general and not
dependent on specific physical deployment characteristics.

In this paper, we use the same classifier (SVM-RBF) in our hy-
brid ML model as we do in the pure ML model [28] to provide a
direct comparison. More sophisticated ML modeling techniques
could potentially learn the physical models above from training
data without requiring the manual identification we perform in our
hybrid approach. However, for systems, such as solar deployments,
where the physical effect from a subset of inputs on a dependent
output variable is well-known, and independent of the other inputs,
it is more straightforward to simply calibrate the input directly from
the data using the model. As we show, this approach significantly
increases accuracy using straightforward ML techniques.

4. IMPLEMENTATION

We implement the ML-based, physical, and hybrid black-box
solar performance models using python. We use the scikit-learn
machine learning library to implement our ML-based models. We
implement the pure ML-based model as specified in prior work [28,
29] using the same input features, dependent output variable, and
SVM-RBF kernel. In particular, we use one hour resolution
weather metrics (from Weather Underground) including the sky
cover, dewpoint, humidity, temperature, and windspeed. We trans-
late the sky cover string into a cloud cover percentage using the
standard okta translation [6]. Our physical model leverages the
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Figure 2: Solar model accuracy when training the ML model on the same deployment (top), training on different deployments on

different deployments (middle), and the accuracy (when training on different deployments) during the middle of the day.

PySolar [3] library for computing the clear sky irradiance at any
location and time, which it uses to find the tilt, orientation, size,
efficiency, and temperature coefficient that best fits the data. Our
basic hybrid ML model uses the same weather metrics as with the
pure ML-based model [28, 29], and thus does not include temper-
ature and cloud cover as part of the physical model. We implement
two other hybrid variants: one that physically models temperature
and thus takes it out of the training set of input features, and one
that physically models both temperature and cloud cover, which
also takes cloud cover out of the ML model’s training set.

We evaluate the accuracy of each model on data from 6 rooftop
solar deployments at different locations with widely different phys-
ical characteristics. Since our weather data has one-hour resolution,
we use average power data at one-hour resolution in our evaluation.
We examine model accuracy using two different training scenarios,
where we train the ML models (both pure and hybrid) using data
from either i) the same deployment we test on or ii) different de-
ployments than we test on. In the former scenario, we perform
cross-validation across one-year of data to split the dataset into a
training and testing set (in a 2:1 ratio). In the latter case, we train
the ML model using one year of data from 4 other deployments,
and then apply the model to estimate solar output over one year
from the 6 deployments. Since, due to Figure 1, the Gaussian fit is
most inaccurate during the morning/evening, we evaluate accuracy
over both the entire day and over mid-day between 10am and 2pm.

Finally, we quantify model accuracy using the Mean Absolute
Percentage Error (MAPE), as follows, between the ground truth
solar energy (.5) and the solar energy estimated by our models (Fs)
at all times ¢. A lower MAPE indicates higher accuracy with a 0%
MAPE being a perfect model.

MAPE:@ZTL:

n
t=0

5. EXPERIMENTAL EVALUATION

Figure 2 quantifies model accuracy for the 6 buildings with
rooftop deployments in our test set across multiple scenarios.
Buildings #1-#6 are located in Pennslyvania, Texas, New York,
Arizona, Washington, and Massachusetts, respectively. The de-
ployments have a wide range of sizes: buildings #1-#6 consist of
110, 16, 93, 36, 17, and 30 solar modules, respectively, with a stan-
dard size of 165cmx99cm which typically have a rated capacity of
~230-330 based on the module type. The top graph is the scenario
where we train a ML model for each deployment using its histor-
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ical data, while the middle and bottom graphs train a ML model
on 4 separate homes (not in the set of six) and then apply that
same model to each of these 6 homes. The top two graphs com-
pute MAPE over each day (across a year of data), while the bottom
graph computes it from 10am-2pm. Note that the physical model
requires no training; we include it in all the graphs for comparison.

The experiment shows that the physical model performs signifi-
cantly worse than all the models that use ML. This is primarily due
to 1) the coarseness and imprecision of the cloud cover metric, and
ii) that it cannot account for conditions that do not permit physical
modeling, including the effect of other weather metrics [27]. As
part of future work, we are leveraging various satellite images to
better quantify real-time cloud cover, such as via the HELIOSTAT
method [18], which should improve the results of the analytical
model. Unfortunately, an accurate and precise cloud cover metric
is not available via common weather services and APIs. In con-
trast, the pure ML approach can inherently incorporate such effects
and achieves a significantly higher accuracy in all cases. Impor-
tantly, though, the hybrid model, even without including temper-
ature and cloud cover, significantly improves on the pure ML ap-
proach. For example, for deployment’s #3 and #5 in the top graph,
the improvement is over a 30% reduction in MAPE. Significant, al-
though slightly lesser, improvements are also apparent in the mid-
dle graph. The reason for this reduction stems from normalizing
the output variable of the hybrid approach’s ML model based on a
custom physical model of the deployment’s output over time, rather
than a static capacity value as in the pure ML model.

In addition, as we incorporate more physical parameters into the
hybrid model, the more accurate the model becomes. This is most
evident when shifting temperature from the ML model to the phys-
ical model, which results in another significant decrease in MAPE
in all cases. Further, even though cloud cover is a coarse and im-
precise metric, by incorporating it into the physical model (along
with temperature), we again observe a slight reduction in MAPE in
all cases, relative to the hybrid model that only incorporates tem-
perature. These results hold whether we train a ML model for each
deployment using its historical data (top) or train a general model
using data from other deployments (middle). As expected, the for-
mer results in significantly higher accuracy in all cases compared to
the latter. However, as the bottom graph indicates, much of this in-
accuracy is due to imprecision at the beginning and end of each day.
When quantifying only the mid-day accuracy, the pure ML-based
approach is only slightly less accurate than our basic hybrid ap-



proach, since the Gaussian fit is much more accurate in the middle
of the day. However, our hybrid approach significantly improves
upon the pure ML model when incorporating the physical models
for temperature and cloud cover (even during the mid-day hours in
the bottom graph), especially for deployments #3, #5, and #6.

Overall, our results indicate that the hybrid approach achieves
much better accuracy than either the pure ML or pure physical ap-
proach in all cases. In addition, by training the ML model on sep-
arate deployments than we test on, the hybrid model requires only
a small amount of training data (as few as two datapoints) from the
system under test to calibrate an accurate model.

The model error of our black-box approach is likely higher
(~15-25) MAPE than that of highly-tuned white-box approaches.
However, a direct comparison is difficult as prior work uses a wide
range of error metrics. In many cases, these metrics are not normal-
ized, and thus vary based on a deployment’s capacity. In addition,
the variability of weather at a location also affects model accuracy.
For example, solar performance models are likely to be more accu-
rate in San Diego, where there is little variation in weather, com-
pared to Massachusetts where weather has more day-to-day and
season-to-season changes. As part of future work, we plan to incor-
porate more accurate estimations of ground-level irradiance from
visible satellite imagery, such as offered by SolarAnywhere and
SoDa. We expect this to significantly improve accuracy relative to
the coarse cloud-cover metrics in standard weather data.

6. CONCLUSION

This paper surveys and compares different approaches to black-
box solar performance modeling. We compare a pure ML model
from prior work [28, 29], a black-box physical model based on
well-known relationships in solar generation [13], and a config-
urable hybrid approach that combines the benefits of both by
achieving the most accurate results with little historical data. Our
results motivate using physical models when relationships are well-
known, and leveraging ML to quantify the effect of unknown rela-
tionships. Our black-box solar modeling has applications to a wide
range of solar analytics, which we plan to explore as part of fu-
ture work. Finally, our methodology is potentially generalizable to
other complex physical systems where the physical effect from a
subset of inputs on a dependent output variable is well-known, and
independent of other inputs, which have an unknown effect.
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