
Good Things Come to Those WhoWait: Optimizing
Job Waiting in the Cloud

Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy
University of Massachusetts Amherst

ABSTRACT
Cloud-enabled schedulers execute jobs on either fixed re-
sources or those acquired on demand from cloud platforms.
Thus, these schedulers must define not only a scheduling
policy, which selects which jobs run when fixed resources be-
come available, but also awaiting policy, which selects which
jobs wait for fixed resources when they are not available,
rather than run on on-demand resources. As with scheduling
policies, optimizing waiting policies requires a priori knowl-
edge of job runtime. Unfortunately, prior work has shown
that accurately predicting job runtime is challenging. In this
paper, we show that optimizing job waiting in the cloud is
possible without accurate job runtime predictions. To do so,
we i) speculatively execute jobs on on-demand resources for
a small time and cost to learn more about job runtime, and ii)
develop a ML model to predict wait time from cluster state,
which is more accurate and has less overhead than prior
approaches that use job runtime predictions. We evaluate
our approach on a year-long batch workload consisting of
14 million jobs, and show that it yields a cost and average
wait time within 4% and 13%, respectively, of the optimal.

CCS CONCEPTS
• Computer systems organization → Cloud comput-
ing.

KEYWORDS
Cloud computing, job scheduling, cost-efficiency

ACM Reference Format:
Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy.
2021. Good Things Come to Those Who Wait: Optimizing Job Wait-
ing in the Cloud. In ACM Symposium on Cloud Computing (SoCC
’21), November 1–4, 2021, Seattle, WA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3472883.3487007

1 INTRODUCTION
Batch job schedulers, such as Slurm [2] and LSF [11], exe-
cute a large fraction of the workload in high-performance
computing (HPC) clusters and data centers. While these
schedulers were originally designed to manage a fixed set
of servers, they are now generally “cloud-enabled” and ca-
pable of autoscaling by programmatically acquiring virtual
machines (VMs) from cloud platforms on demand to execute

jobs [1]. Thus, these schedulers must not only schedule jobs
on fixed resources, but also decide when to acquire and re-
lease on-demand cloud resources. Hybrid clouds often use
cloud-enabled schedulers to “burst” into the cloud when their
fixed private resources are fully utilized [21]. Cloud platforms
have also begun to offer native cloud-enabled schedulers with
autoscaling, such as Amazon Web Services (AWS) Batch [9]
and Azure Batch [10].

Cloud-enabled scheduling differs from conventional sched-
uling on fixed resources in that cost, in addition to job wait-
ing time, is a critical metric. Indeed, jobs submitted to a
cloud-enabled scheduler never need to wait for fixed re-
sources, since the scheduler can always immediately acquire
on-demand resources to execute them. However, forcing
some jobs to wait for fixed resources can lower cost by using
fewer on-demand resources, which are generally more ex-
pensive than highly utilized fixed resources. For example, in
AWS, reserved VMs are a form of fixed resource, and are ∼40-
60% cheaper than on-demand VMs when utilized fully over
a 1-3 year term. In addition, once purchased, fixed resources
represent a sunk cost that cannot be recovered.

As a result, cloud-enabled schedulers must not only define
a scheduling policy, which selects which jobs run when fixed
resources become available, but also a waiting policy, which
selects which jobs wait for fixed resources, and for how long,
when they are not available before running on on-demand
resources. Waiting policies often mirror traditional sched-
uling policies, such as Shortest Job First (SJF). Prior work
analytically models simple waiting policies, including All
Jobs Wait (AJW), No Jobs Wait (NJW), Long Jobs Wait (LJW),
and Short Waits Wait (SWW), and shows that combining
LJW and SWW offers a much better cost-waiting time trade-
off than the others [13]. We provide background on waiting
policies and their relationship to scheduling policies in §2.

Importantly, as with many scheduling policies, optimizing
the waiting policies above requires a priori knowledge of job
runtimes. In particular, LJW directly requires job runtimes,
since it forces jobs with runtimes larger than some threshold
to wait for fixed resources, but runs shorter jobs immediately
by acquiring on-demand resources. LJW has a similar effect
as SJF in prioritizing short jobs, but with the additional cost
of renting on-demand resources. Likewise, SWW indirectly
requires job runtimes, since it forces arriving jobs expected

https://doi.org/10.1145/3472883.3487007

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy

to wait less than some threshold for fixed resources to actu-
ally wait, but runs jobs expected to wait longer immediately
by acquiring on-demand resources. In this case, a job’s ex-
pected waiting time is dependent on the runtimes of the
jobs ahead of it in the queue [15, 33]. Unfortunately, sched-
uling policies that require knowing job runtimes, such as
SJF, are often not widely used because accurately predicting
job runtimes remains challenging. Recent work highlights
many reasons for the low prediction accuracy, including
a lack of sufficient features for training machine learning
(ML) models and non-stationarity in workloads that leads to
inconsistent performance [25]. Directly implementing the
waiting policies above suffers from the same challenges.

The primary contribution of this paper is showing that opti-
mizing waiting policies for cloud-enabled schedulers is possible
without accurate job runtime predictions, and can come close to
the cost and waiting time achievable given perfect knowledge
of job runtimes. Specifically, we show that it is possible to
approach the optimal cost and waiting time of the waiting
policies above when using an oracle with perfect knowl-
edge of job runtime. To do so, we develop two techniques
to optimize job waiting under LJW and SWW, respectively.
Intuitively, optimizing these waiting policies in the cloud
is simpler than optimizing scheduling policies for fixed re-
source because i) there is no hard resource constraint, and
ii) our waiting policy predictions require only binary classi-
fication, i.e., where a job’s running or waiting time crosses a
threshold, which does not require absolute model accuracy.
• Speculative Execution. We first leverage the availabil-
ity of on-demand cloud resources to speculatively exe-
cute all jobs for some time to learn more about each job’s
running time before deciding whether to run it on fixed
or on-demand resources. This technique informs LJW, and
is effective because, in many batch workloads, most jobs
are short, but the few long jobs account for most of the
computation. Thus, the additional cost of speculatively
executing the few long jobs incorrectly before restarting
them on fixed resources is small. This additional cost is
also smaller than using LJW with highly accurate job
runtime predictions, as low as 10% error.

• ML-based Waiting Time Predictions. We next de-
velop a ML model for predicting job waiting time, which
can inform SWW. While accurate waiting time predic-
tions are not widely used by scheduling policies, since
they are only informative for users and do not improve
scheduling performance, they are critical to optimizing
SWW. Unlike prior work that uses job runtime predic-
tions to estimate waiting time, e.g., by simulating the
schedule based on the runtime predictions [15, 33], our
ML model uses cluster state as its input, e.g., cluster size,
number of jobs running and waiting, how long jobs have

already run and waited, etc. This technique is effective for
SWW, and is more accurate than using job runtime predic-
tions, largely due to the law of large numbers, as cluster
state incorporates the attributes of many jobs rather than
individual jobs.We show that this approach is effective at
achieving near the cost and waiting time of SWW with
perfect knowledge of waiting time.
Our hypothesis is that combining speculative execution

and ML-based waiting time predictions can achieve cost and
waiting times that are close to optimal LJW and SWW with
perfect job running and waiting time predictions. In evaluat-
ing our hypothesis, we make the following contributions.
Waiting Policy-based Schedulers. We provide back-
ground on cloud-enabled schedulers, contrast them with
conventional schedulers for fixed resources, and highlight
the importance of waiting policies. We present two wait-
ing policies, LJW and SWW, describe their benefit to cost
and waiting time, and discuss their impracticality due to
requiring a priori knowledge of job runtime.
Optimizing Job Waiting. We show how to optimize LJW
and SWW without requiring job runtime predictions using
speculative execution (for LJW), and ML-based waiting time
predictions from cluster state (for SWW). Speculative execu-
tion is effective because its costs are low—re-starting some
long jobs—and its benefits are high—decreasing the waiting
time of short jobs and not incurring additional costs to run
long jobs on on-demand resources. Our ML model is effec-
tive because a large cluster’s state, i.e., its set of running and
queued jobs, correlates well with job waiting time.
Implementation and Evaluation. We implement our
waiting policies in a trace-driven simulator, and evaluate
them on a year-long batch workload consisting of 14 million
jobs run on a 14.3k-core cluster. Specifically, we show that
using both LJW with speculative execution and SWW with
ML-based wait time predictions yields a cost and waiting
time within 4% and 13%, respectively, of using LJW and SWW
with perfect knowledge of job runtime. Our evaluation in
§5.3 also shows that our insights and results generalize to a
recently released Google workload [36].

2 BACKGROUND
Below, we first provide an overview of waiting policies, then
discuss their interaction with scheduling policies, and finally
present the specific context that motivates our work.

2.1 Waiting Policy Overview
Our work focuses on batch schedulers that schedule jobs
on a cluster of servers, with a particular emphasis on cloud-
enabled batch schedulers that schedule jobs on a mix of fixed
servers and dynamically acquired on-demand servers. We

Good Things Come to Those Who Wait SoCC ’21, November 1–4, 2021, Seattle, WA, USA

assume a cloud-enabled batch scheduler that acts as a cus-
tomer of a cloud platform, and services jobs on behalf of a
set of users. These users submit jobs to the cloud-enabled
scheduler with specified resource requirements, such as their
number of required cores and memory. The scheduler can
either schedule these jobs to run on any of s fixed resources,
or acquire on-demand resources to run the jobs for an addi-
tional price p (in dollars per unit time). If the fixed resources
are fully utilized, then the jobs scheduled to run on them
must wait in a queue for them to become available. Since
fixed resources are a sunk cost, scheduling jobs on them is
cheaper than using on-demand resources, but under heavy
load can significantly increase the average and maximum
job waiting time. Cloud-enabled schedulers can explicitly
control the cost-waiting time tradeoff by defining a waiting
policy, which determines which jobs wait for fixed resources,
and for how long, before acquiring on-demand resources.
Recent work by Ambati et al. [13] analyzed the cost and

waiting time behavior of various waiting policies using queu-
ing theory. The work developed analytical models of multiple
waiting policies by extending anM/M/s queuing system to
quantify their tradeoff between cost, waiting time, and fixed
resource provisioning. As we discuss, the waiting policies
that offer the best tradeoff require a priori knowledge of
job running times and waiting times, which the authors as-
sume are available with perfect accuracy. Given such perfect
waiting policies, the authors focus primarily on optimizing
the provisioning of fixed resources s to minimize cost for
a given workload based on the price differential between
fixed and on-demand resources. For example, in Amazon’s
Elastic Compute Cloud (EC2), a 3 year reserved VM utilized
100% of the time costs 60% less than renting an equivalent
on-demand VM over the same period. Thus, purchasing a
3-year reserved VM that is utilized more than 40% of the
time is cheaper than renting an equivalent on-demand VM.

In this paper, we instead assume that the fixed resources s
are given, and focus on optimizing job waiting (and sched-
uling) in practice where a priori knowledge of job running
and waiting times is generally not available. In much of our
evaluation, we provision fixed resources s near the optimal,
assuming a waiting policy with perfect knowledge, which
is simple to empirically determine offline for a given work-
load and scheduling policy. Ambati et al. [13] also provide a
solution for the optimal fixed resources s in the context of
aM/M/s queuing model for multiple waiting policies. Our
primary goal is then to achieve an overall cost and average
job waiting time near that of the optimal waiting policy that
has perfect knowledge of job running and waiting times. We
summarize below the two waiting policies from [13] that
offer the best cost-waiting time tradeoff. Note that, unlike
scheduling policies, these two waiting policies can be applied

concurrently by running a job on on-demand resources if it
does not satisfy the criteria for waiting in either policy.
Long Jobs Wait (LJW). LJW forces an arriving job to wait
for fixed resources if its running time is greater than some
threshold t . LJW is work-conserving, so arriving jobs always
run on fixed resources if available. In LJW, short jobs also
never wait—they run on fixed resources, if available, or on
dynamically acquired on-demand resources, if not. LJW’s
intuition is that longer jobs should be able to wait longer
for fixed resources than shorter jobs, since this waiting is
a smaller fraction of their running time. LJW has a similar
effect as SJF scheduling in prioritizing short jobs, and thus
offers a good cost-waiting time tradeoff. Since, in many batch
workloads, short jobs are a small fraction of the overall com-
putation, the additional cost of running them on on-demand
resources is not high, and, as in SJF, immediately running
short jobs significantly improves average job waiting time.
Short Waits Wait (SWW). SWW forces an arriving job to
wait for fixed resources if its waiting time would be less
than some threshold time b; otherwise, it immediately pro-
visions an on-demand resource to execute the job without
waiting. SWW yields the same cost as an equivalent policy
that requires all jobs to wait for fixed resources, but provi-
sions on-demand resources to execute jobs once they have
waited b time, since the same set of jobs run on on-demand
resources in both cases [13]. However, SWW yields a sig-
nificantly lower waiting time, especially under heavy load,
since jobs that would have waited b time never wait, but run
immediately. Thus, SWW is cost-neutral, but optimizing it
can improve average job waiting time.
While we analyze LJW and SWW in isolation in §3, we

intend them to be used in combination. There is no need to
choose between these two waiting policies. The choice of
parameters is subjective, and based on users’ sensitivity to
cost and waiting time, since waiting policies define a tradeoff
between two. For example, if users have no cost sensitivity,
then they need not wait, i.e., by setting t=∞ and b=0. We
quantify cost-waiting time tradeoff for our waiting policies
and workloads in the next section.

2.2 Scheduling Policy Interaction
Waiting and scheduling are independent, but related, policies
that a cloud-enabled batch scheduler can define. The wait-
ing policy determines whether a job should wait for fixed
resources or run on on-demand resources, while the sched-
uling policy determines which waiting job to execute next
and which server it should execute on. Since waiting policies
are defined independently of the scheduling policy for fixed
resources, they can be used alongside any scheduling policy.
In this paper, we focus specifically on the tradeoff between
cost and job waiting time for a cloud-enabled job scheduler,
where all jobs have the same priority level but may have

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy

different resource requirements and running times. This is
the key tradeoff that waiting policies expose, and we focus
on it in isolation to better understand it. However, in practice,
cloud-enabled schedulers may also incorporate other criteria
in their objective function, such as priority levels, resource
type constraints, deadlines, and flexibility in their resource
amount and degrees of parallelism. While these additional
criteria may also affect the cost-waiting tradeoff, quantifying
their effect is outside the scope of this paper.
The choice of scheduling policy — for a given workload,

waiting policy, and fixed resources s —has little effect on cost,
since cost is largely a function of fixed resource utilization,
and any work-conserving scheduling policy will utilize the
fixed resources at a similar level, albeit by selecting jobs to
run in a different order. For jobs that run on fixed resources,
the scheduling policy for a cloud-enabled scheduler behaves
the same as it would for a conventional scheduler that only
uses fixed resources. For example, SJF still minimizes aver-
age job waiting time among all scheduling policies for jobs
that run on fixed resources. However, waiting policies, such
as LJW, can mitigate some of the waiting time advantage
SJF has over simpler scheduling policies, such as first-come-
first-serve (FCFS), by also prioritizing short jobs at a small
cost. Waiting policies like SWW also address SJF’s primary
drawback of starving long jobs, since under SWW jobs never
wait longer than b. Thus, optimizing waiting policies can
improve the performance of existing scheduling policies.

Of course, in deciding which jobs to schedule next on fixed
resources, conventional schedulers also implicitly decide
which jobs must wait. However, conventional schedulers for
fixed resources cannot control how long these jobs wait for
fixed resources without affecting running jobs, e.g., by pre-
empting them. Cloud-enabled schedulers are different: they
can control how long jobs wait for fixed resources by deciding
when to dynamically acquire on-demand/spot resources to
run them. Thus, our concept of a waiting policy does not exist
for a conventional scheduler that only uses fixed resources.
Beyond [13], we are aware of no prior work that examines
waiting policies for cloud-enabled schedulers.

2.3 Motivating Context and Baselines
This paper’s methodology is empirical, and focuses on op-
timizing the workload of a large production batch cluster
that services roughly 14 million jobs per year. The cluster
currently consists of ∼14.3k cores, uses the LSF job scheduler,
and is not cloud-enabled. Our motivation is to understand
how to operate such a cluster on a cloud platform, and its
impact on cost and job waiting time. We have job traces from
the past few years that include each job’s submission time,
user ID, maximum running time limit, requested number of
cores and memory, completion status (finished, terminated,
or cancelled), and running time. The max running time limit

 0

 10

 20

 30

 40

 50

 0 15 30 45 60 75 90 105 120
 0

 1

 2

 3

 4

%
 O

n
-D

e
m

a
n
d
 C

o
s
t

M
e
a
n
 W

a
it
 T

im
e
 (

h
o
u
rs

)

Short Job Threshold (t)

% On-Demand Cost Mean Wait Time

Figure 1: On-demand cost, as a percentage of fixed re-
source cost, and average waiting time as a function of
LJW’s short job threshold t . As t increases, waiting time
drops steeply, while cost increases modestly.

is not indicative of a job’s actual running time, and is typi-
cally many orders of magnitude larger. While the traces do
not record job waiting time, we estimate the average wait-
ing time would be ∼8.1 hours using work-conserving FCFS
scheduling, which schedules the first job near the front of
the queue capable of running on the available resource. Re-
sources are never idle if there is a job near the front of the
queue that can run on them. The waiting time under non-
preemptive, work-conserving SJF would be much lower at
∼0.6 hours given the workload’s large number of short jobs,
but requires accurate predictions of job running time.
We consider executing the workload above with a cloud-

enabled scheduler on EC2 using the SWW and LJW wait-
ing policies combined with either non-preemptive, work-
conserving FCFS or SJF scheduling. For fixed resources, we
assume the use of 3-year reserved m5.16xlarge VMs, which
each have 64 cores and 256GB memory. We choose larger
VMs to mitigate the impact of imperfect packing of variable-
sized jobs onto VMs. Since jobs request multiple cores, we
quantify job length using total core-time rather than absolute
running time. We focus on core-time, since cores are more
constrained than memory. Our scheduler packs jobs onto
fixed resources using a best-fit policy based on cores. When
acquiring on-demand VMs to execute a job, our scheduler
selects the smallest and cheapest VM within the m5 family
that satisfies the job’s resource requirements. We also discuss
using cheaper spot VMs instead of on-demand VMs.

For our baseline, we choose SWW’swaiting time threshold
b to be 24 hours, and LJW’s runtime threshold t to be 15
minutes. Our choice for b is subjective: a higher b decreases
cost, but increases waiting time, and there is no optimal
value. We chose a 24-hour maximum waiting time because
it seems reasonable that no job should wait longer than 1
day to run. Our choice for t=15m is based on Figure 1, which
graphs the additional cost of using on-demand resources (on
the left y-axis), as a percentage of the cost of fixed resources
(discussed below), and average waiting time (on the right
y-axis) as a function of t . The graph shows that LJW’s cost is
mostly flat, while the average waiting time initially decreases

Good Things Come to Those Who Wait SoCC ’21, November 1–4, 2021, Seattle, WA, USA

sharply and then flattens out. After the initial decrease, LJW’s
cost-waiting time tradeoff remains relatively constant.

Assuming the waiting policies above with perfect knowl-
edge of job running and waiting times, we empirically de-
termined that the optimal number of m5.16xlarge reserved
VMs that minimizes cost for our workload was 150 for both
SJF (with perfect knowledge of job running times) and FCFS
scheduling. That is, adding another reserved VM, as a fixed
resource, would not be utilized more than 40% of the time,
and would not justify its cost. Thus, we set our baseline for
fixed resources s=150. For context, a cloud-enabled sched-
uler using LJW and SWW parameterized above with s=150
would cost 5% less overall, when combining the amortized
fixed resource and on-demand cost, than the current fixed
size cluster, which is equivalent to using 225 m5.16xlarge
VMs, and yield an average waiting time of 0.85 hours when
using work-conserving, non-preemptive FCFS scheduling.
This waiting time is a similar order of magnitude as SJF’s
waiting time of 0.6 hours on the current-size cluster; incurs
a lower cost; and, as we show, is achievable without highly
accurate predictions of job runtime. Finally, while we choose
b=24h, t=15m, and s=150 as baselines, our general insights
are applicable at any values of these parameters, and espe-
cially for smaller s , since, as with scheduling, optimizing
job waiting become more important under constraint. Our
evaluation varies b, t , and s from our baselines.

3 DESIGN
Directly implementing SJF, LJW, and SWW in practice is chal-
lenging because it requires predictions of job runtime. Our
primary goal is to come as close to SWW and LJW waiting
policies without a priori knowledge of job waiting or run-
ning times. To better understand the performance of these
policies in practice, we first trained and evaluated multiple
simple ML models, including linear regression, random for-
est, support vector regression (SVR), and a neural net, to
predict each job’s runtime from its characteristics known
at submission, as represented in our LSF batch traces. Our
models’ input features included each job’s submission time,
user ID, maximum running time limit, and requested number
of cores and memory, while the output was the job’s running
time. We trained the models on data from 10 million jobs
over 9 months, and evaluated them on a separate timeframe
of 4 million jobs over 3 months.
Figure 2(a) shows the results for each model, where the

y-axis is the mean absolute percentage error (MAPE) in pre-
dicting a job’s runtime at submission time. As expected, the
error is quite high for all models largely because our batch
traces record only a few features for each job, so the models
have little data with which to distinguish jobs. Also, most
jobs are short, so even relatively small absolute prediction

errors result in large percentage errors. With few data fea-
tures and mostly short jobs, the models predict the runtime
of most jobs as short, and thus the error in predicting long
jobs’ runtime is especially high. Even if more distinguishing
job data existed and was available, such as executable name,
input parameters, etc., the set of users submitting jobs to
the scheduler changes over time, which decreases the accu-
racy of models trained on different users and jobs. While
continuously updating models online is possible, it is not
always effective due to a lack of sufficient new data. These
simple observations are not new, and have been observed in
many other batch workloads. Recent work highlights these
characteristics as being among the reasons ML-based job
runtime prediction models tend to be highly inaccurate and
are not widely used by cluster schedulers [25].

Of course, our LJWwaiting policy only requires classifying
jobs to be above or below some threshold t . Thus, Figure 2(b)
evaluates these models’ binary classification accuracy using
the Matthews Correlation Coefficient (MCC), which is the
best single measure of binary classification performance. The
MCC’s values are in the range −1.0 to 1.0, with 1.0 being
perfect prediction, 0.0 being random prediction, and −1.0
indicating the prediction is always wrong. The results show
that the models are not much better than random predictions,
as the MCCs are all near 0.

To get a sense of how effective (or ineffective) such models
are in practice, we used the best model above to simulate SJF
on our current fixed-size cluster. Recall from §2.3 that the
average job waiting time under SJF with perfect knowledge
of job runtime is 0.6 hours on the current fixed-size cluster
(equivalent to 225 m5.16xlarge VMs). However, simulating
SJF using our ML model to predict job runtimes results in
an average waiting time nearly 3× higher at 1.71 hours. For
context, a random job next policy yields an average waiting
time of 3.1 hours, so our job runtime prediction model yields
an average waiting time for SJF roughly mid-way between
using perfect predictions and random predictions. Interest-
ingly, despite our ML model’s poor prediction accuracy, it
does appear to have better accuracy with respect to ordering
jobs. Note that a random job next policy has a much lower
waiting time than FCFS (at ∼8.1 hours) because it is more
likely to select one of the large number of short jobs to run.
While the ML models above are simple, and may not be

the most accurate, they illustrate long-standing issues with
predicting job runtime in batch workloads. As we discuss,
improving the accuracy of these models is not necessary to
optimize job waiting for cloud-enabled schedulers. This is
due, in part, to LJW and SWW’s use of a threshold to make
decisions. LJW classifies a job as long, if its running time
exceeds a threshold t , and as short otherwise, while SWW
similarly classifies a job’s waiting time as short if it is less
than b. In both cases, the decision depends on whether the

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy

 0

 40

 80

 120

 160

 200

Linear

 Regression

Random

 Forest

Support Vector

 Regression

Neural

 Networks

x10

M
A

P
E

 (
%

)

Machine Learning Model

All Jobs Long Jobs Short Jobs

-0.2

-0.1

 0

 0.1

Linear

 Regression

Random

 Forest

Support Vector

 Regression

Neural

 Networks

B
in

a
ry

 C
la

s
s
if
ic

a
ti
o
n
 M

C
C

Machine Learning Model

(a) (b)
Figure 2:MAPE (a) and MCC (b) of multiple ML models for predicting job runtime from features in our batch trace.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 60 120 180 240 300 360

P
ro

b
a
b
ili

ty
 (

jo
b
 r

u
n
ti
m

e
 ≤

x
)

Job Runtime (hours)

batch

google trace (cell a)

exponential (λ =1.73 hrs)

 0

 0.3

 0.6

 0.9

 0 0.25 0.5 0.75 1 1.25

3
 m

in

1
5
 m

in

1
 h

r

Figure 3: CDF of job runtime for our batch workload,
an exponential distribution with the samemean, and a
widely-used Google job trace [36]. The inset graphmag-
nifies this CDF for job runtimes up to1.25 hrs.

estimated value is above or below a threshold. Thus, even
when job runtimes cannot be estimated (or even ordered)
accurately, the waiting policy is correct as long as the job
(in LJW) or wait time (in SWW) is estimated accurately with
respect to its threshold.

3.1 Optimizing LJW: Speculative Execution
Cloud-enabled schedulers can always acquire on-demand
resources at an additional cost to execute jobs. We leverage
this capability to optimize the LJW waiting policy for a small
additional cost. As with SJF, LJW requires a priori knowl-
edge of job running time to make decisions about which jobs
wait, and which jobs run, on on-demand resources. Instead
of using a job runtime prediction model like those above to
make this decision, our approach is to acquire on-demand
resources to run all jobs immediately if no fixed resources
are available when a job arrives. If a job’s running time is less
than t , then it will simply complete without incurring any
additional cost or waiting time compared to if the scheduler
had perfectly predicted its runtime. However, once a job runs
on on-demand resources for t time, based on LJW, it is classi-
fied as a long job and should wait to run on fixed resources. In
this case, the scheduler kills the job, releases the on-demand
resources, and queues the job to run on fixed resources. We

 0

 25

 50

 75

 100

3 5 10 15 30 60

In
c
re

a
s
e
 i
n
 O

ra
c
le

 C
o
s
t
(%

)

Short Job Threshold (minutes)

LJW (errort=10%)
LJW (ML Model)

Speculative Execution
Speculative Execution (Spot)

Figure 4: Percentage increase in cost compared to using
LJW with a job runtime prediction oracle for multiple
LJW variants (bars) and multiple short job thresholds.

do not assume the scheduler can checkpoint, migrate, and
restore jobs, since most schedulers do not support it.
The benefit of speculative execution for LJW is that it

always handles short jobs correctly, by running them on on-
demand resources to completion (when fixed resources are
unavailable), but it incurs an additional cost of t × p for long
jobs compared to if the scheduler had perfectly predicted job
runtimes. Cloud-enabled schedulers can effectively leverage
speculative execution to buy some information about job
running time. The approach is cost-effective in practice if
most of the jobs are short, but most of the resources are used
by long jobs. This is case for many batch workloads, includ-
ing ours. Figure 3 shows a cumulative distribution function
(CDF) of job runtimes for our cluster’s workload with dotted
vertical lines at runtimes of 3 minutes, 15 minutes, and 1
hour. The lines show that 62% of jobs have a runtime of less
than 3 minutes, 70% have a runtime less than 15 minutes, and
as many as 95% have a runtime less than 1 hour. The graph
also has lines for a widely-used publicly-available Google
trace [36] and an exponential job runtime distribution with
the same mean as our trace. The Google trace exhibits the
same characteristics and general trend as our batch workload.
While this skewed runtime distribution makes it challenging
to identify the few long jobs, it also makes speculative execu-
tion cost-effective. Since both real-world workloads have a
significantly higher fraction of short jobs than the exponen-
tial distribution, speculative execution in practice is likely to
be much more effective than queuing models suggest [13].
To illustrate, Figure 4 plots the LJW threshold t on the x-

axis, and the increase in on-demand VM cost, as a percentage

Good Things Come to Those Who Wait SoCC ’21, November 1–4, 2021, Seattle, WA, USA

 0

 1

 2

 3

 4

 0 15 30 45 60

M
e
a
n
 W

a
it
 T

im
e
 (

h
o
u
rs

)

Short Job Threshold (minutes)

LJW (Oracle)
Speculative Execution

LJW (errort=10%)

Speculative Execution (Spot)
LJW (ML Model)

Figure 5: Average waiting time for multiple LJW vari-
ants (lines) and multiple short job thresholds.
of the same cost when using LJW with an oracle that has per-
fect knowledge of job runtime predictions. This graph uses
non-preemptible, work-conserving FCFS scheduling. The
graph compares the oracle with four different approaches:
LJW using our best ML model from Figure 2, LJW using a
hypothetical ML model with 10% average error in job run-
time predictions, speculative execution on on-demand VMs,
and speculative execution on spot VMs. The graph shows
that LJW using our ML model performs the worst, resulting
in a 50-75% increase in the cost of using on-demand VMs. In
contrast, speculative execution on on-demand VMs incurs
a much lower cost, especially for small thresholds. Specu-
lative execution has a similar cost to using a hypothetical
job runtime prediction model with 10% average error at our
baseline of t=15 minutes (and below). As t increases, specu-
lative execution’s cost also increases, as there are fewer jobs
at these longer durations.

We can further decrease the cost of speculative execution
using spot VMs instead of on-demand VMs. Speculative ex-
ecution is well-suited to using spot (or preemptible) VMs,
which are offered by all of the major cloud platforms [3, 5, 6].
These VMs are ∼70% less than on-demand VMs, but may be
revoked by the cloud platform at any time. Recent work em-
pirically models the revocation characteristics of preemptible
and spot VMs [24], and shows that their mean time to revoca-
tion is usually on the order of hours or days, especially if the
VM is not revoked soon after initialization. We use the same
revocation model as [24] for Figure 4. With spot VMs, the
longer a job runs, the more likely it will be revoked, and have
to restart. However, since speculative execution only runs
jobs for a short period, the probability of a spot revocation is
low, making spot VMs effective at reducing cost for a small
increase in risk. As the graph shows, speculative execution
on spot VMs further lowers its cost.

Figure 5 similarly plots the corresponding average waiting
time for each scenario. The graph shows that the average
waiting time decreases as the LJW threshold t increases in all
cases. LJW using our ML model has a near zero waiting time
because it predicts nearly all jobs are short, and thus always
runs them on on-demand VMswithout waiting, which incurs
a high cost. The other approaches yield an average waiting
time close to, but slightly higher than, LJW using an oracle.

Feature Description
cluster-cpu-util Average CPU utilization of fixed resources
cluster-mem-util Average memory utilization of

fixed resources
runq-size Number of running jobs on fixed resources
waitq-size Number of jobs waiting for fixed resources
runq-mean-cpu Mean CPU resource demand of jobs

running on fixed resources
runq-mean-time Mean time running (up to now) for jobs

running on fixed resources
waitq-mean-cpu Mean CPU resource demand of waiting

jobs
waitq-mean-time Mean time waiting (up to now) for

jobs in queue
num-cores Number of CPU cores requested by

the new job

Table 1:Cluster state features used for training ourML-
based waiting time prediction models.

Speculative execution on spot VMs yields a slightly higher
average waiting time compared to using on-demand VMs
due to the extra waiting time caused by spot revocations,
which require re-starting jobs.

The results above indicate that, for batch workloads with
job runtime distributions skewed towards short jobs, specu-
lative execution mitigates the need to accurately predict job
runtimes, and that such predictions would need to have less
than 10% error to yield a similar cost and waiting time (for
our baseline parameters). Achieving such low model error
in practice is unlikely. We also examined using a speculative
execution time ts that is less than the LJW threshold t , and
then making a job runtime prediction once a job has run
for ts time (and given that knowledge). However, given the
knowledge that a job has run for ts≤t time did not increase
the accuracy of our runtime prediction models above, and
did not approach the low ∼10% error required to surpass
speculative execution. Thus, we always set our speculative
execution time equal to the LJW threshold t .

3.2 Optimizing SWW: Machine Learning
We next focus on optimizing SWWusing anML-based model
for predicting a job’s waiting time. There is less prior work
on predicting waiting times for conventional schedulers,
since these predictions typically serve only to inform users,
but generally do not improve scheduling for fixed resources.
However, prior work has explored predicting queue wait-
ing times within the context of certain scenarios where it is
more than just informative, such as when users can choose
between multiple queues or clusters [15, 27], or when users
can alter their requested resources post facto to shorten wait-
ing time [34]. This prior work focuses on conventional sched-
uling for fixed resources, and not cloud-enabled scheduling.
A common approach for estimating queue waiting time

is to use predictions of job running time to simulate the
schedule forward [28, 33]. This approach, of course, is de-
pendent on accurate job runtime predictions, which, as we

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy

 0

 0.5

 1

3 6 12 24

B
in

a
ry

 C
la

s
s
if
ic

a
ti
o
n
 M

C
C

Wait Time Threshold (hours)

Random Forest Linear Regression Gradient Boosting

Figure 6:MCC of different MLmodels for predicting job
waiting time for different waiting time thresholds b.

discuss above, are often not available. In addition, for “opti-
mal” scheduling policies, such as SJF, these approaches also
depend on future job arrivals that are not represented when
simulating a schedule. While, in this case, ML-based and
other statistical approaches suffer from the same limitation,
waiting policies can mitigate the difference in waiting time
between SJF and FCFS scheduling, which can motivate the
use of a simpler scheduling policy like FCFS. Below, we focus
on estimating wait times using FCFS scheduling, which are
only dependent on the jobs currently in the system.
Rather than rely on job runtime predictions, we instead

train a ML model to predict job waiting time based on clus-
ter state, including the number of queued and running jobs,
average size of queued and running jobs, average time of
running jobs, etc. Our intuition is simple and derives from
the law of large numbers: an ML model for predicting job
wait time should be more accurate than for predicting job
runtime, especially for large clusters, as the former depends
on the average runtime of a large number of jobs, while the
latter depends on a single job. While any single job’s runtime
represents just one sample from aworkload’s job runtime dis-
tribution, a large number of queued jobs represents a much
larger sample and thus their average job runtime is more
likely to be closer to the mean of the job runtime distribution,
which determines, in part, a job’s wait time.

We use the intuition above to train three different MLmod-
els using the features in Table 1, namely linear regression,
random forest, and gradient boosting. We simulate execution
of the batch trace on our cluster under SWW using our base-
line parameters, i.e., b=24h, s=150 m5.16xlarge VMs, with
work-conserving, non-preemptive FCFS scheduling. For each
job, we then record the features from Table 1 at submission
time, and then record its waiting time once it is scheduled.
Note that runq-mean-time and waitq-mean-time are jobs’
running and waiting times, respectively, up to the present,
and so jobs’ final running and waiting time may be longer.
While our problem is a binary classification, i.e., is the wait-
ing time longer than b, we train multiple regression models
using these features to avoid re-training for new values of b.
Figure 6 plots the MCC of our binary classification on

waiting time for our baseline b=24h under the different re-
gression models for different values of b. The graph shows

 0

 15

 30

 45

 60

 75

6 12 24

%
 O

n
-D

e
m

a
n
d
 C

o
s
t

Wait Time Threshold (hours)

Oracle ML Predictions Naive

Figure 7: On-demand cost, as a percentage of fixed re-
source cost, for different approaches to predicting job
waiting time under SWW with different thresholds b.

 0

 1

 2

 3

 4

6 12 24

M
e
a
n
 W

a
it
 T

im
e
 (

h
o
u
rs

)

Wait Time Threshold (hours)

Oracle ML Predictions Naive

Figure 8: Average job waiting time for different ap-
proaches to predicting job waiting time under SWW
with different thresholds b.

that random forest and gradiant boosting have MCCs 0.25-
0.7 with the MCCs increasing as the threshold b decreases.
By contrast, a naïve approach that forces all jobs to wait
yields an MCC of 0. Note that an approach that estimates job
waiting time by simulating the schedule forward using our
job runtime prediction model from §3 behaves similarly to
such a naïve all-jobs-wait approach, since it tends to under-
predict each job’s waiting time.
We integrated the random forest model above into our

simulator to predict job waiting times, and compared its per-
formance both to using an oracle with perfect knowledge of
job waiting times, and to the naïve approach above. Figure 7
shows the results for different values of the SWW threshold
b along the x-axis, and the additional on-demand cost, as a
percentage of the cost of fixed resources, on the y-axis. Here,
we again use s=150 m5.16xlargeVMs as the number of fixed
resources. The graph shows that our ML-based model yields
a cost within 2% of the oracle at our baseline b=24h. Note
that the naïve approach yields the same cost as the oracle,
by definition, but has a mean waiting time that is 14% higher
than the oracle at our baseline b=24h, as shown in Figure 8.
In contrast, our ML-based waiting time predictions have a
waiting time much closer to oracle, >1% at our 24h baseline,
and essentially equal at b=6h.

Note that, in practice, to maintain high prediction quality,
we would need to periodically re-train our MLmodels, which
is common when deploying ML models in production. In this
paper, we also assume our ML models above are trained for a
particular workload, and not directly generalizable to other

Good Things Come to Those Who Wait SoCC ’21, November 1–4, 2021, Seattle, WA, USA

workloads. Designing a transfer learning approach that can
be applied to any workload is beyond the scope of this paper.

4 IMPLEMENTATION
We wrote a trace-driven cloud-enabled job scheduling sim-
ulator in python. The simulator enables us to specify the
number of fixed resources in the form of VMs with specified
cores and memory. We assume jobs’ core and memory re-
quirements are rigid, and thus our scheduler cannot adjust
them to improve performance. The simulator supports either
work-conserving SJF or FCFS scheduling, and the LJW and
SWW waiting policies. We have made this simulator pub-
licly available to enable reproducibility [7]. As mentioned
earlier, if the waiting policy dictates that a job should run on
on-demand resources, the simulator selects the smallest (and
cheapest) VMs within EC2’s m5 family that satisfies its core
and memory requirements. The simulator includes the cur-
rent per-time price for each of these VMs, which is roughly a
linear function of core/memory size. For SJF, LJW, and SWW
policies, the simulator uses an API to fetch job runtime and
waiting time from a model. We can specify whether this
model is an oracle, or one of the ML models from the pre-
vious section. We can also specify the short job threshold t
(for LJW) and waiting time threshold b (for SWW) at startup.
The simulator tracks statistics including average job waiting
time, on-demand cost, and average fixed resource utilization.

Implementing waiting policies and our techniques, in prac-
tice, is straightforward in batch schedulers, such as Slurm,
which already support auto-scaling. Our simulator above
does not capture various systems overheads that might oc-
cur in a real deployment, such as data staging, resource
interference, and fixed delays to boot up VMs, which may
be important to scheduling performance in certain contexts.
However, these system overheads vary for different configu-
rations of cloud-enabled schedulers, such as cloud bursting
from an on-premises cluster or running a native cloud de-
ployment. Evaluating waiting policy performance in these
different contexts is outside the scope of this paper. Instead,
we focus narrowly on the fundamental cost-waiting time
tradeoff exposed by waiting policies.

Our evaluation focuses on two large-scale traces that are
representative of job scheduling in academia and industry.
Our academic job trace, which we describe in §2.3, is from
a shared cluster from a large university system that covers
multiple campuses, and thus encompasses the full spectrum
of jobs submitted by the medical, science, and engineering re-
search communities. We have batch traces from the cluster’s
LSF scheduler for the past year, which includes 14 million
job submissions; the current cluster’s size is 14.3k cores. As
we discuss earlier, the trace provides limited information on
each job, specifically its submission time, user ID, maximum
running time limit, requested number of cores and memory,

completion status (finished, terminated, or cancelled), and
running time. We have publicly released this job trace at
the UMass Trace Repository [7, 8]. Our industry trace is an
updated release of the widely-used and publicly-available
Google cluster trace, and is an order of magnitude larger [36].
Google uses the Borg scheduler, and we use a portion of the
trace that includes 58 million jobs over one week run on a
single Borg cell. Note that the Borg scheduler manages both
batch and service jobs, where the latter are resource requests
for interactive services which typically cannot be arbitrar-
ily delayed [39]. However, since the Google trace does not
specify the type of job, we treat them all as delay-tolerant.
Both of the traces above exhibit the characteristic that a

large fraction of jobs are “short” and most of the computation
comes from a small set of long jobs. Both characteristics, as
we discuss in §3.1, are beneficial for speculative execution.
The skew towards short jobs is a common attribute in batch
workloads, although the degree of skew varies betweenwork-
loads [14]. For example, recent work analyzes three other
large-scale batch workloads and compares them to an older
Google trace [30]. The analysis shows that all traces had a
significant skew towards short jobs, although it varies. For
example, 65% of Google workload’s jobs were less than 6
minutes, while 29%-40% of the three other traces’ jobs were
less than 6 minutes. Similarly, all traces had a small fraction
of long jobs—1%-10% of jobs were greater than 10 hours in
duration—-which contribute the majority of cycles compared
to the short jobs. Specifically, if we assume jobs have equal
resources, a single 10-hour job consumes the same cycles as
100 6-minute jobs, yet there are not 100×more 6-minute jobs.
Given the similarity in characteristics between these other
batch traces and our industry and academic traces, we expect
the general insights and tradeoffs from our evaluation to also
apply to these traces (and others with similar characteristics).
Of course, the specific thresholds, ML accuracy, costs, and
waiting times will vary with the workload.

We reference a number of ML models in both the pre-
vious and next section, which we have trained using the
traces in conjunction with our simulator. We use python’s
scikit-learn [16] module for training, and focus on basic mod-
els. Our job runtime prediction models are directly trained
from the features known at submission time in the trace data
above. For our waiting time predictions, we use our simula-
tor to generate a new trace that records the cluster state from
Table 1 at each job submission, and then records the job’s
waiting time once it is scheduled. Of course, this waiting
time in the generated dataset is dependent on the number of
fixed resources s we configure for our simulator. To generate
this new dataset, we use a work-conserving, non-preemptive
FCFS scheduling policy with LJW and SWW using our base-
line parameters from §2.3. We use this as training data to
learn our models of job waiting time. For training our job

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy

 0

 25

 50

 75

 100

3 5 10 15 30 60

%
 O

n
-D

e
m

a
n
d
 C

o
s
t

Short Job Threshold (minutes)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

LJW (ML model) and SWW (Naive)

 0

 25

 50

 75

 100

6 12 24

%
 O

n
-D

e
m

a
n
d
 C

o
s
t

Wait Time Threshold (hours)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

LJW (ML model) and SWW (Naive)

(a) (b)
Figure 9: On-demand cost, as a percentage of fixed resource cost, on the y-axis as a function of both LJW’s short job
threshold t (a) and SWW’s waiting time threshold b (b) using our baseline parameters.

 0

 0.5

 1

 1.5

3 5 10 15 30 60

M
e
a
n
 W

a
it
 T

im
e
 (

h
o
u
rs

)

Short Job Threshold (minutes)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

LJW (ML model) and SWW (Naive)

 0

 0.5

 1

6 12 24
M

e
a
n
 W

a
it
 T

im
e
 (

h
o
u
rs

)

Wait Time Threshold (hours)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

LJW (ML model) and SWW (Naive)

(a) (b)
Figure 10: Mean wait time (hours) on the y-axis as a function of both LJW’s short job threshold t (a) and SWW’s
waiting time threshold b (b) using our baseline parameters.

waiting time ML model, we use 70% of the dataset and 30% of
the dataset for testing the models. In addition, we use simple
hyperparameters for tuning our ML models, specifically a
tree depth of 114 and a random seed of 137 for both random
forest and gradient boosting trees.

5 EVALUATION
Our evaluation focuses on i) combining the techniques from
§3 to quantify how close the cost and waiting time come in
practice to that of an oracle; ii) quantifying the effect of the
number of fixed resources s on the magnitude of the results;
and iii) showing that these techniques also generalize to the
Google trace, which has similar job runtime characteristics.

5.1 Combining Techniques
Figure 9 shows the on-demand cost, as a percentage of fixed
resource cost, on the y-axis as a function of both LJW’s short
job threshold t (a) and SWW’s waiting time threshold b (b)
using our baseline parameters. We compare three techniques:
SWW and LJW using an oracle with perfect knowledge of
job waiting and running time; a naïve approach that uses an
ML model for predicting job runtimes for LJW and SWW;
and our techniques from §3 that use speculative execution
and an ML-based waiting time prediction model. In both
graphs, our techniques come much closer to the cost of the
oracle compared to those using predictions of job runtime

across all short job thresholds t and waiting time thresholds
b. Specifically, at our baseline parameters of (t=15m, b=24h)
the combined technique comes within 4% of the oracle’s
on-demand cost. By comparison, using job runtime predic-
tions has a 70% higher cost compared to the oracle. The cost
advantage is similar across all parameter settings.
Figure 10 similarly shows the mean wait time on the y-

axis as a function of both LJW’s short job threshold t (a)
and SWW’s waiting time threshold b (b) using our baseline
parameters. This is the same experiment as in Figure 9. Again,
combining our techniques from §3 of speculative execution
and ML-based waiting time predictions results in a waiting
time near that of the oracle across all short job thresholds t
and waiting time thresholds b. For our baseline parameters
(t=15m, b=24h) combining our techniques comes within 13%
of the oracle’s mean waiting time. In contrast, a policy that
directly uses job runtime predictions for LJW and SWW has
nearly zero waiting time because it tends to under-predict
job running time due to the large number of short jobs. As a
result, it runs most jobs on on-demand resources at a high
cost, but with low waiting time.

Recall from §2.3, that the waiting time on the current fixed-
size cluster (equivalent to 225 m5.16xlarge’s using SJF with
perfect knowledge of job running time is 0.6 hours, but is
1.71 hours in practice, when using our job runtime prediction
model from §3. For this experiment, the average waiting time
across all the parameters are less than 1.71 hours, and many

Good Things Come to Those Who Wait SoCC ’21, November 1–4, 2021, Seattle, WA, USA

 0

 2

 4

 6

100 125 150 175 200 225

T
o
ta

l
C

o
s
t
In

c
re

a
s
e
 (

%
O

ra
c
le

)

Number of m5.16xlarge VMs

Speculative Execution and SWW (ML model)

 0

 1

 2

 3

100 125 150 175 200 225

M
e
a
n
 W

a
it
 T

im
e
 (

h
o
u
rs

)

Number of m5.16xlarge VMs

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

(a) Cost (b) Wait time
Figure 11: Total cost of amortized fixed and on-demand resources (as a percentage of oracle) as a function of fixed
resource capacity (a). Mean wait time as a function of fixed resource capacity for our approach and the oracle (b).

are less than 0.6 hours. Of course, the maximumwaiting time
in our case is bounded by the waiting time threshold b, while
the maximum waiting time is unbounded under SJF. Recall
also that the total cost, including both fixed and on-demand
resources, of using LJW and SWW under an oracle with our
baseline parameters is 5% less than the cost of current fix-
sized cluster, and our practical approach achieves near this
cost. This shows how optimizing waiting policies for cloud-
enabled schedulers can mitigate some of the challenges with
optimizing scheduling policies.
Key Point: Optimizing waiting policies in cloud-enabled
schedulers can offset challenges with using optimal scheduling
policies, such as SJF.

5.2 Varying Fixed Resources
Up to this point, all of our experiments have used the same
number of fixed resources s of 150 m5.16xlarge VMs, which
is optimal number of fixed resources for our workload that
minimizes the total cost of fixed and on-demand resources,
when amortized over the workload’s year-long duration. In
this case, we assume the cost of fixed resources is equivalent
to the price of 3-year reserved m5.16xlarge VM. Figure 11
shows the impact of varying the number of fixed resources
on both the cost and waiting time, where are other baseline
parameters remain the same. In this case, Figure 11(a) in-
cludes the total fixed and on-demand cost for executing the
workload under SWW and LJW, as a percentage of the oracle.
The graph shows that speculative execution and ML-based
waiting time predictions achieves near the same total cost,
regardless of number of fixed resources. Note that our cost
is closer to the oracle at 150 VMs than above because the
previous section only plotted the on-demand cost assuming
that fixed resources were a sunk cost.

Figure 11(a) shows that as we increase the number of fixed
resources, the average waiting time decreases, as expected,
although the percentage difference between our approach
and the oracle increases. However, ultimately, the importance
of waiting policies decreases as fixed resources increase,
since there is less resource constraint and need to wait.

-0.5

 0

 0.5

 1

3 6 12 24

B
in

a
ry

 C
la

s
s
if
ic

a
ti
o
n
 M

C
C

Wait Time Thresold (hours)

Random Forest Linear Regression Gradient Boosting

Figure 12: MCC of ML models for predicting wait time
for various waiting thresholds b in the Google trace.

Key Point: Both the cost (a) and mean waiting time (b) under
LJW and SWW using our techniques is near that of an oracle
across a wide range of fixed resources.

5.3 Generalizing to the Google Workload
Our illustrative examples in §3 and evaluation above are
from a single workload. To demonstrate the generality of
our approach, we performed a similar evaluation using the
Google trace [36]. The trace includes data from 8 Borg cells
over a single month in May 2019. Since the number of jobs is
massive, we focus on a single week from a single cell, which
includes 58 million job submissions. We further randomly
sample this down to 14 million job submissions, or 25%, to re-
duce the overhead of our simulations. Note that our sampled
trace has the same mean core/memory request and job run-
time as the original. The Google trace’s jobs havemuch larger
core/memory requirements than our academic trace, so we
adjust the number and size of our baseline fixed resources for
this evaluation. We set our baseline fixed resources s=4000
VMs, each with 192 cores and 768GB memory.

We use the same per-core pricing as in the previous ex-
periments, which is based on the m5 family, i.e., $0.048 per
core-hour. The N2 family of VMs in Google Compute Engine
(GCE) have a similar price. In this case, for on-demand VMs,
we assume the use of custom VMs from GCE with $0.031611
per core-hour and $0.004237 per GB-hour, as the Google
trace has many jobs with unbalanced core/memory ratios
that waste significant resources when using fixed-size VMs.
These custom prices are equivalent to $0.048 per hour for 1

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy

 0

 25

 50

3 5 10 15 30 60

%
 O

n
-D

e
m

a
n
d
 C

o
s
t

Short Job Threshold (minutes)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

 0

 25

 50

6 12 24

%
 O

n
-D

e
m

a
n
d
 C

o
s
t

Wait Time Threshold (hours)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

(a) (b)
Figure 13: On-demand cost, as a percentage of fixed resource cost, on the y-axis as a function of both LJW’s short job
threshold t (a) and SWW’s waiting time threshold b (b) for our Google trace using the baseline parameters.

 0

 0.5

 1

 1.5

 2

3 5 10 15 30 60

M
e
a
n
 W

a
it
 T

im
e
 (

h
o
u
rs

)

Short Job Threshold (minutes)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

 0

 0.5

 1

 1.5

6 12 24
M

e
a
n
 W

a
it
 T

im
e
 (

h
o
u
rs

)

Wait Time Threshold (hours)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

(a) (b)
Figure 14: Mean wait time (hours) on the y-axis as a function of both LJW’s short job threshold t (a) and SWW’s
waiting time threshold b (b) for Google trace using our baseline parameters.
core and 4GB memory, as above. As before, we assume the
amortized cost of the fixed resources has a 60% lower cost,
equivalent to that of a 3-year reserved VM. We use the same
baseline parameters as in the other analysis (t=15m, b=24h).

Recall from Figure 3 in §3 that the Google workload’s job
runtime distribution is remarkably similar in shape to that
of our academic batch trace, where a significant fraction of
jobs are short, but where much of the computation comes
from a small fraction of long jobs. We also trained waiting
time prediction models using the same approach as in §3.2
by generating a dataset from a simulation run that recorded
the features listed in Table 1. Figure 12 plots the Matthews
Correlation Coefficient (MCC) for these models. The results
for a random forest and gradiant boosting model are similar
to those in our academic workload, from Figure 6, while
linear regression actually exhibits a negative MCC. We use a
random forest model, since it yields the highest MCC.
Figure 13 shows the on-demand cost as a percentage of

fixed resource cost (on the y-axis) as a function of LJW’s
short job threshold t (a) and SWW’s waiting time threshold
b (b) for our Google trace using the baseline parameters.
Figure 13(a) shows the same trends as in Figure 9(a) for
speculative execution as the short job threshold t changes.
For small values of t , the difference in cost between the
oracle and speculative execution is minimal because a large
fraction of jobs are short, and thus should run on on-demand
VMs. Similarly, Figure 13(b) also shows the same trend as
in Figure 9(b) as the wait time threshold b changes, where

slightly shorter thresholds have a cost closer to the oracle.
Again, our observation that the accuracy of waiting time
predictions based on cluster state is aided by the law of large
numbers is general, and also holds for the Google trace.

Figure 14(b) shows the average waiting time for the same
experiment as above. We see similar trends as in Figure 10(b)
using the academic workload, except that the waiting time
for our approach in the Google trace is actually slightly less
than when using an oracle. This occurs because our ML-
based waiting time prediction model performs slightly better
compared to these models for our academic trace. As a result,
there are fewer jobs that actually end up waiting for fixed
resources for time b in the queue, and then also incur the
high price of using on-demand VMs. These waiting time
mis-predictions are the reason our academic batch workload
has both a slightly higher cost and waiting time compared
to the oracle. When using an oracle, cost and waiting time
are a tradeoff: using more on-demand VMs incurs a higher
cost, but should lower waiting time, since there is no reason
to wait for an on-demand VM with an oracle. However, mis-
predictions can causewaiting for on-demandVMs in practice,
which can increase average waiting time. This happens much
less in the Google trace compared to the academic batch
workload, and thus higher cost compared to the oracle is
compensated by a lower average waiting time.
Key Point: The Google workload exhibits similar trends as
our academic workload.

Good Things Come to Those Who Wait SoCC ’21, November 1–4, 2021, Seattle, WA, USA

6 RELATEDWORK
Conventional job scheduling on fixed resources has been
studied for decades, and continues to be an active area of
research [23, 29, 38]. Prior work has examined the problem
in many contexts, e.g., with deadlines, priorities, fairness con-
straints, etc. As more computation shifts to cloud platforms,
conventional job scheduling is becoming less important for
cloud users, since clouds provide the illusion of infinite scal-
ability. While clouds are, of course, not infinitely scalable,
they are sufficiently large now that users generally never
experience any resource constraint. Without any resource
constraint, cloud users no longer have a scheduling problem,
but instead have a cost problem. Of course, cloud platforms
must still address conventional scheduling [39]. However,
there are many more cloud users than cloud platforms.
To lower their cost, cloud users have an incentive to buy

some fixed resources upfront, since they cost less than on-
demand resources as long as they are highly utilized. How-
ever, jobs need not wait for fixed resources when fully uti-
lized, since they can always run on on-demand resources.
This dynamic introduces the waiting problem, as sched-
ulers must now decide which jobs should wait and for how
long. Recent work introduces the waiting problem for cloud-
enabled schedulers, and analyzes it using aM/M/s queuing
model [13]. However, that work focuses on optimizing fixed
resource provisioning to minimize cost assuming that the
waiting policies had perfect knowledge of job running and
waiting times. We show how to realize these waiting poli-
cies in practice without perfect knowledge using speculative
execution and ML-based waiting time predictions.
Despite its importance to cloud scheduling, we have not

seen any other prior work that directly addresses waiting
policies. Our work is related to prior work on scheduling
for hybrid clouds, which include fixed private resources, but
can also burst into the cloud [21, 26]. However, that work
does not define the notion of a waiting policy. In some sense,
cloud schedulers that “auto-scale” by dynamically adding
resources to service jobs implement an implicit waiting pol-
icy, where jobs never wait [4]. Auto-scalers often increase a
cluster’s size when demand increases to maintain some SLO
threshold [4]. However, auto-scaling policies are orthogo-
nal to waiting policies. For example, an auto-scaler might
increase cluster size whenever the mean waiting time from
a waiting policy exceeds a SLO threshold. Thus, auto-scaling
and waiting policies may work in concert with each other.
The focus of our work is to demonstrate that we can re-

alize waiting policies in practice that are close to optimal,
given a priori knowledge of job running and waiting time.
There has been substantial prior work on predicting job run-
ning and waiting time for cluster job schedulers, although
much of it is not used in practice [17, 18, 20, 28, 37]. For

example, [37] uses a clustering approach that groups jobs by
their attributes and then predicts job runtime within each
group, while [18] and [19] provide upper bounds on job and
workload duration based on prior prediction errors. Recent
work details the many reasons why cluster schedulers do
not use job running time predictions [25], including low ac-
curacy due to insufficient data, non-stationarity, and unfair
performance. Our work echoes many of the same points, as
standard ML models cannot even accurately categorize job
running times to be above or below a threshold.
There is much less work on predicting job waiting time

because it does not directly benefit conventional schedul-
ing [15, 33]. Prior work generally builds on job runtime pre-
dictions rather than using cluster state. None of this work
applies their prediction methods to waiting policies, but
instead looks at other scenarios where jobs have a choice
among multiple queues or can modify their request to reduce
waiting time. Our focus is not necessarily on developing the
most accurate waiting time prediction model, but instead to
show that basic models can do well in the context of waiting
policies largely due to the law of large numbers.
Finally, there has also been significant recent work on

leveraging cheap spot/preemptible VMs to lower the cost of
running jobs in the cloud [22, 31, 35, 40, 41]. Much of this
work focuses on data-parallel jobs [31, 40, 41], rather than
batch scheduling. However, prior work has observed that the
longer jobs run on spot/preemptible VMs, the more likely
they are to be revoked [32]. Spot/preemptible VMs are more
well-suited for speculative execution, which only runs jobs
for a short period of time and thus are less susceptible to
revocations. We could also replace on-demand VMs with
spot/preemptible VMs (with checkpointing) to lower costs.
However, while the magnitude of costs might change, our
primary observations and results on waiting policies would
not change.

7 CONCLUSION
This paper focuses on optimizing the cost-waiting time trade-
off for cloud-enabled schedulers, which can run jobs on either
fixed or on-demand resources. This tradeoff is dependent on
the scheduler’s waiting policy, and optimizing the waiting
policy generally requires a priori knowledge of job runtime.
We present two techniques—speculative execution and ML-
based waiting time predictions—that enable implementing
near-optimal waiting policies in practice without accurate
job runtime predictions. We evaluate these techniques on
two large job traces from academia and industry, and show
they yield a cost and waiting time near that of an oracle with
perfect knowledge of job running and waiting time.
Acknowledgements. This work is funded by AWS and NSF
grants CNS-1925464, CNS-1908536, and CNS-2105494.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy

REFERENCES
[1] 2019. Slurm Elastic Computing (Cloud Bursting). https://slurm.

schedmd.com/elastic_computing.html.
[2] 2019. Slurm Workload Manager. https://slurm.schedmd.com/.
[3] 2020. Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot/.
[4] 2020. AWS ParallelCluster Auto Scaling. https://docs.aws.amazon.

com/parallelcluster/latest/ug/autoscaling.html.
[5] 2020. Azure Spot Virtual Machines. https://azure.microsoft.com/en-

us/pricing/spot/.
[6] 2020. Google Preemptible Virtual Machines.

https://cloud.google.com/preemptible-vms.
[7] 2020. UMass Trace Repository. http://traces.cs.umass.edu/.
[8] 2020. Waiting Game Job Trace. https://doi.org/10.5281/zenodo.

3872168.
[9] 2021. AWS Batch - Fully managed batch processing at any scale.

https://aws.amazon.com/batch/.
[10] 2021. Azure Batch - Cloud-scale job scheduling and compute manage-

ment. https://azure.microsoft.com/en-us/services/batch/.
[11] 2021. Load Sharing Facility. https://www.ibm.com/docs/en/spectrum-

lsf/10.1.0?topic=lsf-foundations.
[12] O. Alipourfard, H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang.

2017. CherryPick: Adaptively Unearthing the Best Cloud Configura-
tions for Big Data Analytics. In NSDI.

[13] P. Ambati, N. Bashir, D. Irwin, and P. Shenoy. 2020. Waiting Game:
Optimally Provisioning Fixed Resources for Cloud-Enabled Schedulers.
In SC.

[14] G. Amvrosiadis, J.W. Park, G. Ganger, G. Gibson, E. Baseman, and N.
DeBardeleben. 2017. Bigger, Longer, Fewer: What Do Cluster Jobs Look
Like Outside Google? Technical Report CMU-PDL-17-104.

[15] J. Brevik, D. Nurmi, and R.Wolski. 2006. Predicting Bounds on Queuing
Delay for Batch-Scheduled Parallel Machines. In PPoPP.

[16] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, An-
dreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexan-
dre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud
Joly, Brian Holt, and Gaël Varoquaux. 2013. API Design for Machine
Learning Software: Experiences from the cikit-learn Project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning.
108–122.

[17] S. Di, D. Kondo, and C. Wang. 2013. Optimization and Stabilization of
Composite Service Processing in a Cloud System. In 2013 IEEE/ACM
21st International Symposium on Quality of Service (IWQoS).

[18] S. Di, C. Wang, and F. Cappello. 2014. Adaptive Algorithm for Mini-
mizing Cloud Task Length with Prediction Errors. IEEE Transactions
on Cloud Computing 2, 2 (2014), 194–207. https://doi.org/10.1109/TCC.
2013.16

[19] S. Di, C. Wang, D. Kondo, and G. Han. 2013. Towards Payment-Bound
Analysis in Cloud Systems with Task-Prediction Errors. In 2013 IEEE
Sixth International Conference on Cloud Computing.

[20] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh
Ananthanarayanan. 2016. Altruistic Scheduling in Multi-Resource
Clusters. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (Savannah, GA, USA) (OSDI’16).

[21] T. Guo, U. Sharma, S. Sahu, T. Wood, and P. Shenoy. 2012. Seagull:
Intelligent Cloud Bursting for Enterprise Applications. In USENIX
ATC.

[22] A. Harlap, A. Tumanov, A. Chung, G. Ganger, and P. Gibbons. 2017.
Proteus: Agile ML Elasticity through Tiered Reliability in Dynamic
Resource Markets. In European Conference on Computer Systems (Eu-
roSys).

[23] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg. 2009. Quincy: Fair Scheduling for Distributed Computing Clus-
ters. In SOSP.

[24] J. Kadupitige, V. Jadhao, and P. Sharma. 2020. Modeling the Temporally
Constrained Preemptions of Transient Cloud VMs. In HPDC.

[25] Michael Kuchnik, J. Park, C. Cranor, Elisabeth Moore, Nathan De-
Bardeleben, and George Amvrosiadis. 2019. This is Why ML-driven
Cluster Scheduling Remains Widely Impractical. Technical Report CMU-
PDL-19-103.

[26] S. Niu, J. Zhai, X. Ma, X. Tang, andW. Chen. 2013. Cost-effective Cloud
HPC Resource Provisioning by Building Semi-Elastic Virtual Clusters.
In SC.

[27] D. Nurmi, J. Brevik, and R. Wolski. 2007. QBETS: Queue Bounds
Estimation from Time Series. In JSSPP.

[28] S. Omer, N.Yigitbasi, A. Iosup, and D. Epema. 2009. Trace-based Evalu-
ation of Job Runtime and Queue Wait Time Predictions in Grids. In
HPDC.

[29] Jun Woo Park, Alexey Tumanov, Angela Jiang, Michael A. Kozuch,
and Gregory R. Ganger. 2018. 3Sigma: Distribution-Based Cluster
Scheduling for Runtime Uncertainty. In Proceedings of the Thirteenth
EuroSys Conference. https://doi.org/10.1145/3190508.3190515

[30] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google
cluster-usage traces: format + schema. Technical Report. Google Inc.,
Mountain View, CA, USA. Revised 2014-11-17 for version 2.1. Posted
at https://github.com/google/cluster-data.

[31] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy. 2016. Flint: Batch-
Interactive Data-Intensive Processing on Transient Servers. In Euro-
pean Conference on Computer Systems (EuroSys).

[32] S. Shastri, A. Rizk, and D. Irwin. 2016. Transient Guarantees: Maxi-
mizing the Value of Idle Cloud Capacity. In SC.

[33] W. Smith, V. Taylor, and I. Foster. 1999. Using Run-Time Predictions
to Estimate Queue Wait Times and Improve Scheduler Performance.
In JSSPP.

[34] Abel Souza, Kristiaan Pelckmans, Devarshi Ghoshal, Lavanya Ramakr-
ishnan, and Johan Tordsson. 2020. ASA - The Adaptive Scheduling
Architecture. In HPDC.

[35] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy. 2015.
SpotOn: A Batch Computing Service for the SpotMarket. In Symposium
on Cloud Computing (SoCC).

[36] M. Tirmazi, A. Barker, N. Deng, M. Haque, Z. Qin, S. Hand, M. Harchol-
Balter, and J. Wilkes. 2020. Borg: The Next Generation. In EuroSys.

[37] A. Tumanov, A. Jiang, J. Park, M. Kozuch, and G. Ganger. 2016. Ja-
maisVu: Robust Scheduling with Auto-Estimated Job Runtimes.

[38] A. Tumanov, T. Zhu, J. Park, M. Kozuch, M. Harchol-Balter, and G.
Ganger. 2016. TetriSched: Global Rescheduling with Adaptive Plan-
Ahead in Dynamic Heterogeneous Clusters. In EuroSys.

[39] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J.
Wilkes. 2015. Large-scale Cluster Management at Google with Borg.
In European Conference on Computer Systems (EuroSys).

[40] Y. Yan, Y. Gao, Z. Guo, B. Chen, and T. Moscibroda. 2016. TR-Spark:
Transient Computing for Big Data Analytics. In Symposium on Cloud
Computing (SoCC).

[41] Y. Yang, G. Kim, W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho, and B.
Chun. 2017. Pado: A Data Processing Engine for Harnessing Transient
Resources in Datacenters. In European Conference on Computer Systems
(EuroSys).

https://slurm.schedmd.com/elastic_computing.html
https://slurm.schedmd.com/elastic_computing.html
https://docs.aws.amazon.com/parallelcluster/latest/ug/autoscaling.html
https://docs.aws.amazon.com/parallelcluster/latest/ug/autoscaling.html
http://traces.cs.umass.edu/
https://doi.org/10.5281/zenodo.3872168
https://doi.org/10.5281/zenodo.3872168
https://aws.amazon.com/batch/
https://azure.microsoft.com/en-us/services/batch/
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-foundations
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-foundations
https://doi.org/10.1109/TCC.2013.16
https://doi.org/10.1109/TCC.2013.16
https://doi.org/10.1145/3190508.3190515
https://github.com/google/cluster-data

	Abstract
	1 Introduction
	2 Background
	2.1 Waiting Policy Overview
	2.2 Scheduling Policy Interaction
	2.3 Motivating Context and Baselines

	3 Design
	3.1 Optimizing LJW: Speculative Execution
	3.2 Optimizing SWW: Machine Learning

	4 Implementation
	5 Evaluation
	5.1 Combining Techniques
	5.2 Varying Fixed Resources
	5.3 Generalizing to the Google Workload

	6 Related Work
	7 Conclusion
	References

