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ABSTRACT
The impact of human activity on the climate is a major global chal-
lenge that a�ects human well-being. Buildings are a major source of
energy consumption and carbon emissions worldwide, especially in
advanced economies such as the United States. As a result, making
grids and buildings sustainable by reducing their carbon emissions
is emerging as an important step toward societal decarbonization
and improving overall human well-being. While prior work on de-
mand response methods in power grids and buildings has targeted
peak shaving and price arbitrage in response to price signals, it has
not explicitly targeted carbon emission reductions.

In this paper, we analyze the �exibility of building loads to
quantify the upper limit on their potential to reduce carbon emis-
sions, assuming perfect knowledge of future demand and carbon
intensity. Our analysis leverages real-world demand patterns from
1000+ buildings and carbon-intensity traces from multiple regions.
It shows that by manipulating the demand patterns of electric vehi-
cles, heating, ventilation, and cooling (HVAC) systems, and battery
storage, we can reduce carbon emissions by 26.93% on average and
by 54.90% at maximum. Our work advances the understanding of
sustainable infrastructure by highlighting the potential for infras-
tructure design and interventions to signi�cantly reduce carbon
footprints, bene�ting human well-being.

CCS CONCEPTS
• Information systems! Data analytics; • Hardware! Im-
pact on the environment; Energy metering.
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1 INTRODUCTION
Increasing concerns about greenhouse gas (GHG) emissions and
their impact on climate change are motivating an intense focus on
reducing society’s carbon emissions. The residential energy sector
accounts for 16% of energy consumption and 18.9% of GHG emis-
sions in the United States [13]. Further, as the transition towards
electric vehicles (EVs) accelerates, a signi�cant fraction of the trans-
portation sector’s energy consumption (37%) and GHG emissions
(37%) will shift to the residential sector. As a result, reducing the
carbon footprint of electricity usage inside the built environments
will be a key step toward societal decarbonization. Additionally,
climate change is not just an environmental issue; it is increas-
ingly being recognized as a social and health issue and part of the
Environmental Social Governance (ESG) [2, 19, 21].

There are two broad pathways to decarbonization: supply-side
and demand-side. The supply-side approach aims to decrease the
carbon intensity of electricity by increasing the percentage of low-
carbon energy sources, such as solar, wind, hydro, and nuclear. The
demand-side approaches modulate energy demand to reduce en-
ergy consumption when electricity’s carbon intensity is high and
shift consumption to a time when carbon intensity is low. The de-
carbonization potential of demand-side approaches depends on the
�exibility versus e�cacy tradeo� a�orded by electricity’s demand in
buildings. That is, the greater the �exibility to alter electricity’s de-
mand patterns while maintaining e�cacy by producing consumers’
desired outcome, the greater the decarbonization potential.

In the power grid and buildings domain, signi�cant prior work
has focused on leveraging �exible loads and energy storage to op-
timize electric grid operations using demand response programs
or pricing mechanisms [4, 9, 18, 20]. The objective of this work
has been to either shave the peak power consumption or perform
price arbitrage rather than explicitly and directly minimize the
carbon emissions of electricity demand. However, in peak shaving,
the frequency of demand response is around once per day during
peak hours or a few times a season during the peak summer/winter
season. In contrast, the carbon intensity of electricity changes con-
tinuously, and thus, unlike prior DR approaches, carbon-aware
demand-side methods will also need to operate continuously.

There is also recent work in cloud computing and datacenter
scheduling that reduces carbon emissions by exploiting the high
temporal and spatial �exibility of computing workloads by moving
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them to periods or regions, respectively, with low carbon inten-
sity [5]. However, unlike computing, building loads have signi�-
cantly less temporal �exibility and almost no spatial �exibility. For
example, a toaster oven may only be delayed by a few minutes,
and washing machine loads cannot be shifted to another region.
Nevertheless, new types of building loads, such as EV charging
at home, network-connected thermostats and water heaters, and
home battery storage, o�er greater temporal �exibility.

A key question is determining how much �exibility exists for
these controllable and programmable loads and how much carbon
emissions can be reduced by using carbon-aware time shifting
or modulation of these �exible loads. Existing DR approaches for
buildings have not been applied to reduce carbon emissions, and
thus the e�cacy of applying similar carbon reduction approaches
from computing to building loads is unclear. Thus, there is a need for
new analyses that quantify the degree of �exibility in buildings and
the potential for reducing carbon emissions that can be achieved
by time-shifting and modulating �exible loads.

In conducting our analysis, we make the following contributions.
• We formulate an optimization problem that, assuming accurate
future knowledge of energy demand and carbon intensity, quan-
ti�es the potential to reduce carbon emissions by modulating the
demand for �exible loads in buildings.

• We conduct a large-scale, upper-bound analysis of carbon saving
potential using real-world demand traces from 1000+ buildings in
a small city in the Northeast United States and carbon-intensity
data from 3 di�erent geographical regions. Our results demon-
strate that we can reduce carbon emissions by 26.93% on average
and by 54.90% at maximum.

• We analyze the impact of demand modulation on the electric load
at the home–level. We �nd that the peak load can increase by up
to 60% after carbon-aware modulation.

2 BACKGROUND
In this section, we present background on �exible loads in buildings
and the carbon-intensity signal of the electric grid.

2.1 Flexible Building Loads
A typical building contains dozens of electric loads that can be
broadly classi�ed into two categories: interactive loads and back-
ground loads [4]. Interactive loads include lights, kitchen appliances,
entertainment appliances, and miscellaneous devices like vacuums.
Such loads do not o�er any �exibility, as modulation of their de-
mand impacts their e�cacy. Contrarily, background loads, such as
heating, ventilation, and cooling (HVAC) systems, permit bounded
�exibility to modulate their demand. Additional background loads,
such as electric vehicles (EVs) and battery storage, have also become
available in recent years. While the number of background loads is
small, they often contribute a large fraction of the overall energy
consumption. Prior work has shown that, for a representative home,
background loads may only comprise 7.5% of all loads, so they can
consume as much as 59% of a home’s total energy [4].

Importantly, the ubiquity of low-cost Internet of Things (IoT)
devices means that background loads can increasingly be controlled
remotely and programmatically. This allows for the use of such
�exible loads in demand response programs for grid optimizations

and utility- or consumer-driven energy or carbon-saving initiatives.
This paper focuses on threemajor �exible background loads: electric
vehicles (EVs), battery storage, and HVAC systems.

2.1.1 Electric vehicle (EV) charging at home. The adoption
of EVs has increased recently due to increasing gas prices, carbon
emissions concerns, and their higher performance. EV charging can
be divided into three categories: Levels 1, 2, and 3. Level 1 charging
is the slowest and uses a standard 120V household outlet. Level 2
can be charged at 240V but requires installing dedicated charging
equipment. Finally, Level 3 or “supercharging” charges at a high
voltage of 400-800V and uses direct current, which is usually not
available in residential locations. Therefore, residential EV charging
is generally either Level 1 or Level 2 and typically happens at night.
We analyze the EV charging pattern from a community of 1,006
homes. The charging usually occurs from 6 PM to 8 AM when
the homeowners are home. We use insights from this dataset to
con�gure the demand patterns of EVs in our analysis.

2.1.2 Ba�ery storage. The residential battery energy storage
market has been growing due to the declining cost of batteries [24],
especially at places where solar net-metering incentives are non-
existent or limited [3]. Batteries are often used for price arbi-
trage [20], peak shaving [9, 18], or storing excess solar energy
for nighttime use. This paper uses battery storage as one of the
three loads for explicit and direct decarbonization of buildings.

2.1.3 HVAC.. HVAC accounts for 12% of the home energy con-
sumption in the United States [12]. The energy consumption of an
HVAC system is a function of its setpoint temperature, the ambient
outdoor temperature, and a building’s insulation. An HVAC system
saves energy by deviating from the setpoint or pre-heating/cooling
a building when energy’s low carbon intensity. This paper only
focuses on the �rst approach toward emission reduction.

2.2 Grid Carbon Intensity
Grid electricity comes from various energy sources with di�erent
carbon emissions. The carbon intensity of the grid’s electricity
is measured in two ways: average carbon intensity and marginal
carbon intensity. Average carbon intensity indicates the CO2 emit-
ted per unit of electricity consumed, spread across total emissions
and energy demand. Marginal carbon intensity measures the CO2
emissions for the next unit of energy consumed. Both values are
expressed in g·CO2eq/kWh. We currently use average carbon in-
tensity and plan to consider marginal emissions in our future work.

Figure 1 shows the average carbon-intensity of the three regions
that we use in our analysis. As shown, the carbon intensity of the
di�erent regions varies signi�cantly depending on their energy mix.
Ontario has a low carbon-intensity with high variability due to its
reliance on renewable energy sources. Both Delhi and Quebec have
almost constant carbon intensity, but have high and low carbon
emissions due to their reliance on coal and nuclear, respectively.

3 DECARBONIZATION PROBLEM
In this section, we present our problem statement, the di�erent mod-
els used in our problem formulation, and the optimization problem
we de�ne to determine an upper-bound on decarbonization.
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Figure 1: Sample carbon intensity across di�erent regions.

3.1 Models
We �rst present analytical models for the three �exible loads in our
problem formulation: home battery storage, EVs, and HVAC.
3.1.1 Ba�ery storage. Let ⇠ (C) denote the amount of charge
in the battery at the beginning of time slot C . The total power
discharged from the battery, %batt

3
(C), during time slot C should be

less than or equal to the initial state of charge of the battery,

%batt3 (C) ⇥ C  ⇠ (C). (1)

The power discharged from the battery and battery charge rate
cannot exceed the maximum allowed discharge rate %batt

3,max and
charge rate %batt2,max, respectively,

%batt3 (C)  %batt3,max , %batt2 (C)  %batt2,max (C). (2)

The rate of discharge from the battery %batt
3

(C), should be less than
or equal to the electricity demand during time slot C , !(C).

%batt3 (C)  !(C) (3)

Let ⇠batt denote the energy capacity of the battery (e.g., 13.5kWh
for Telsa power wall). The total charge in the battery at the end of
time slot C should not exceed the battery capacity.

%batt2 (C) ⇥ C  ⇠batt �⇠ (C) (4)

3.1.2 Electrical vehicle. The model for the battery of an EV is
same as a normal battery storage and is omitted for brevity.

However, EVs have an additional constraint to reach a pre-
de�ned charge level before a deadline g . If the charge level of the
EV at time C is ⇠ev (C) and the desired charge level is ⇠ev

des,
⇠ev (g) � ⇠ev

des . (5)

3.1.3 HVAC.. If the power demand of the HVAC system at time C
is %hvac (C) is a function of desired thermal setpoint )set, ambient
temperature )amb (C), and building insulation parameters [,

%hvac (C) = 5 ()set,)amb,[) . (6)

The savings in carbon emissions are a result of deviating from the
setpoint by �) (C). In each time slot, we either deviate from the
setpoint by �)max or do not deviate at all, such that,

�) (C) 2 {�)max, 0} (7)

As the deviation from the setpoint causes thermal discomfort, we
allow deviating from the setpoint by a maximum of : times. To
avoid wasting energy in switching between setpoints and deviation,
we require the selected time slots for deviation to be contiguous.

�) (C) = �)max ! �) (8) = �)max, 8 8  C + : (8)

3.2 Optimization Problem
We next present the individual optimization problems for each load
and a combined optimization problem for all the loads. Battery
optimization: Our goal is to minimize total carbon emissions by
modulating load over a 24 hour period using battery storage. The
temporal resolution of the optimization problem is hourly. If ⇠� (C)
is the carbon intensity at time C , the optimization becomes,

<8=
24’
C=1

[!(C) + %batt2 (C) � %batt3 (C)] ⇥⇠� (C).

EV optimization: Our goal is to minimize total carbon emissions
from EV charging by scheduling its charging. If %ev2 (C) is the EV
charging rate at time C , the optimization problem can be written as,

<8=
24’
C=1

%ev2 (C) ⇥⇠� (C).

HVAC optimization: Our goal is to minimize total carbon emis-
sions from HVAC by deciding : contiguous slots for deviation. If
%hvac (C) is the HVAC power at time C , the optimization problem is,

<8=
24’
C=1

%hvac (C) ⇥⇠� (C) .

Combined optimization: The combined optimization problem is,

<8=
24’
C=1

[!(C) + %batt2 (C) � %batt3 (C) + %hvac (C) + %ev2 (C)] ⇥⇠� (C) .

We solve this problem as Mixed Integer Linear Program (MILP)
assuming perfect knowledge of ⇠� (C), !(C), and )0<1 (C) over the
optimization horizon (24hrs in this case).

4 EVALUATION
Setup. We quantify the decarbonization potential of �exible loads,
individually and in combination, using real-world electric usage
data from 1,000+ homes, provided at 5-minute granularity, from a
small city in an economically-advantaged country. The household’s
average daily electricity consumption is 82kWh.

For the battery, we assume each home has a Tesla Powerwall
battery, with a capacity of 13.5kWh, and maximum charging or
discharging rate of 3.3kW [17]. For the EV, we assume each home
has a Tesla Model 3 Long Range battery capacity of 82kWh [16].
The in-home charger has a level 2 charger. We assume the car owner
uses a max of 44kWh (or 192 miles) in a day, which translates to 192
miles of range for the Tesla Model 3 and represents the round-trip
distance from this town to the nearest major city. EVs can only be
charged directly from the grid.

The heating ventilation and cooling (HVAC) system modeling
requires three con�guration variables: (i) the size of the house from
our dataset, (ii) the estimated value for insulation based on the
year built [22], and (iii) the ambient temperature from the Darksky
API [14]. We feed this data into an HVAC design and calculation
tool called CoolSelector [15], which outputs hourly load values for
the HVAC system. We subtract these values from the household
demand to compute the non-HVAC component of the load. In our
combined scenario, the battery can serve the HVAC demand.

Finally, we collect the carbon-intensity values, measured
in grams of carbon dioxide equivalent per kilowatt-hours
(g·CO2eq/kWh), at an hourly granularity using electricityMap [1].
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Figure 2: Illustration of carbon-aware flexible loads modula-
tion in Ontario on July 21-22, 2022 (le�) and the percentage
savings for each flexible load over the course of a year (right).

4.1 Carbon-aware Load Modulation in Action
Figure 2(left) demonstrates the temporal shifting of �exible loads in
household electricity demand. The carbon intensity (dashed blue)
varies signi�cantly over 24 hrs, from 22 to 110, being higher during
the day than at night. Demand modulation is achieved through
three �exibility types: scaling up, scaling down, and shifting demand.
Carbon-aware EV charging scales up charging, ful�lling demand
in a shorter window, slotted into least carbon-intense slots (7pm-
10pm, 12am-1am) for higher carbon savings. The HVAC system
scales down demand, ensuring discomfort within acceptable bounds,
mainly at high carbon-intensive slots (6am-8am). Batteries shift
demand to low carbon-intensity periods across time.

Figure 2(right) shows the reductions in carbon emissions for
each individual �exible load over a year. The scale up �exibility
of EVs provides the most bene�ts, 30.56%. Home batteries provide
high savings as they shift the loads in the most carbon-intense slots
to the least carbon-intense periods. Since the peak carbon intensity
can be as high as 5⇥ the minimum value, home batteries provide
a signi�cant opportunity for savings. Finally, HVAC optimization
cannot cause signi�cant discomfort and yields smaller savings.
Key takeaways. EV charging leverages dips in carbon intensity
(30.56%), batteries migrate load between carbon-intensity extremes
(16.27%), and HVAC avoids bursts of high carbon intensity, but is
bounded by a thermal discomfort threshold (11.16%).

4.2 Impact of Regional Carbon Intensity
As shown in Figure 1, carbon intensity can vary signi�cantly across
space and time, depending on the energy generation mix. Figure 3
shows carbon emission reductions for four locations: Ontario (low
average, high variations), California (high average, high variations),
India (high average, low variations), and Quebec (low average,
low variations). Unless you move to a location with low average
carbon intensity, you need temporal variations in carbon intensity
to achieve savings. Furthermore, given temporal variations, low
(ON, 26%) and high average regions (CA, 10%) can reduce emissions
with variations in savings across days and homes. While Quebec is
not an ideal candidate for carbon-aware load modulation, its carbon
emissions are quite low. India has one of the highest average carbon
intensities in the world and provides no opportunity for carbon
arbitrage. Unfortunately, it is also one of themost densely populated
regions in the world and necessitates transitioning to either ultra-
low carbon energy generation like Quebec or a mix of renewables
and fossil fuels like California.

Key takeaways. Both high variations in, and low averages of, carbon
intensity can yield a reduced carbon footprint of buildings. High
variability alone can decrease carbon emissions by up to 55%.

4.3 Impact of Seasonal Variations
Figure 3 shows that savings also vary across di�erent seasons for
various �exible loads. There are two key observations from this
result: �rst, summer gives the most savings as batteries save the
most in summer, and second, savings are the smallest during the
spring. The high summer savings are due to a higher fraction of
power generation from solar power, which leads to signi�cant vari-
ations within a day and across days. A higher di�erence between
the two extreme carbon-intensity values leads to 12% savings from
battery, whereas all the other seasons have 5% or less savings. The
savings during the Spring season are low as most of the demand is
ful�lled by nuclear power, which does not have any variations [8].
Key takeaways. The changes in electricity generation mix over time
leads to variations in savings, 12% in Spring versus 36% in Summer.
However, the order of loads by savings does not change across seasons.

4.4 Impact on Daily Peak Electricity Load
The higher-level goal for optimization is to shift the load from high
carbon-intensity time slots to low carbon-intensity slots. However,
if a signi�cant amount of load is shifted, it can create a new peak
during low carbon-intensity periods. While this may be desirable
from a decarbonization perspective, it could trigger transformer
and cable upgrades in the grid. To investigate the impact of our
carbon-aware load modulation, we look at the increase in peak load
post-modulation in Figure 3(c). The peak load does not increase for
25% of the days across all the homes; it increases by only up to 27%
for 80% of the homes. The impact of such an increase in peak load
depends on the status of the grid. If the grid is over-provisioned, this
increase in peak load would not trigger any updates. In contrast, it
may require immediate upgrades if it is already operating at peak
capacity. Future work should look at con�guring load modulation
parameters such that the peak does not increase.
Key takeaways. Carbon-aware load modulation can increase the
home-level peak load of the grid by up to 60%. Future work should
investigate con�guring load modulation to limit peak load increase.

5 RELATEDWORK
Prior research has explored using energy resources to reduce
peak demand at both home and grid levels. Grid-owned battery
energy storage systems are commonly employed for peak shav-
ing [11, 23]. Household energy resources like batteries [27], electric
vehicles [25], HVACs [10], or a combination of these resources [7]
have shown potential for peak load reduction. However, these ap-
proaches do not explicitly minimize carbon emissions from elec-
tricity demand. Previous work on reducing household carbon emis-
sions considers one load at a time [20], such as aiming to lower
carbon emissions while maintaining thermal comfort [6], and quan-
ti�es carbon savings from home retro�tting [26]. To the best of
our knowledge, no prior research has speci�cally investigated the
upper limit of using �exible loads for explicit carbon reduction.
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(a) Impact of geographical regions (b) Impact of seasons (c) Impact on peak load

Figure 3: Carbon emissions reductions for (a) di�erent geographical regions and (b) di�erent seasons in Ontario. (c) Cumulative
distribution of increase in peak demand when all flexible loads are optimized for carbon emissions in Ontario.

6 CONCLUSIONS
In this paper, we investigate the upper-bound on the potential for re-
ducing carbon emissions by exploiting �exibility present in building
loads such as EVs, storage and HVACs, given the perfect knowledge
of demand pattern and carbon intensity information. Our analysis,
comprising of 1000+ homes shows that by co-optimizing battery
storage, EVs, and HVAC systems, carbon emissions can be reduced
by 26.93% on average and 54.9% at max. In future, we plan to relax
the assumptions on future knowledge and demand behaviors to de-
velop a practical online building �exible load modulation approach.
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