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ABSTRACT
The electric grid has begun a profound transition from primarily
using carbon-intensive energy to instead using carbon-free renew-
able energy. In parallel, smart meters and other sensors are now
providing us unparalleled visibility into the energy-efficiency of
building and grid operations. Researchers are actively using build-
ing and grid energy data from these sensors to develop analytics
techniques, e.g., using machine learning, that can improve energy-
efficiency and facilitate the energy transition. Unfortunately, much
of this research ignores the impact of these analytics on equity.
That is, while current data analytics techniques may accurately
identify energy-inefficiencies, they generally do not contextualize
the underlying reasons for these inefficiencies. For example, data
analytics that identify the most energy-inefficient homes might
motivate new programs that target these homes for subsidies to
improve energy-efficiency. However, the most energy-inefficient
homes might also correlate with those with the highest income that
have less need for subsidies, and engage in the most energy waste-
ful behavior. In contrast, the most energy-efficient homes might be
the homes that can least afford to waste (or even use) energy. In
this paper, we use an example from recent research to illustrate the
inequity of state-of-the-art energy analytics, and argue that energy
analytics research should elevate equity to a first-class concern.

CCS CONCEPTS
• General and reference → Empirical studies; • Information
systems → Data analytics; • Hardware → Impact on the en-
vironment; Energy metering.
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1 INTRODUCTION
Buildings consume nearly 40% of the total energy consumption and
70% of the total electricity in many countries. They contributed
over 1850 million metric tons of greenhouse gases in 2019 [1]. As
the grid makes a profound energy transition towards a carbon-free
future, improving the energy efficiency and carbon footprint of
the buildings sector will play an important role in meeting our
society’s sustainability goals. Building energy efficiency has been
an active area of research in recent years, and approaches that use
data-driven and machine learning techniques for energy efficiency
are increasingly commonplace [3, 4, 6, 7].

While newly built buildings can be made zero carbon by design,
the bigger challenge lies in making existing, and particularly older,
buildings energy efficient in order to reduce their carbon footprint.
This is typically achieved through retrofits such as installing bet-
ter insulation in the building envelope, or replacing the building’s
HVAC system. In many parts of North America and Europe, build-
ing heating is achieved through the use of fossil fuels such as natural
gas, oil or propane heating. Replacing older HVAC equipment with
energy-efficient heat pumps is a promising approach to not only
enhance efficiency but also substantially lower the building’s car-
bon footprint — assuming that supplied electricity is less carbon
intensive than the carbon-intensive heating fuel it replaces. As the
percentage of green energy (e.g. from renewables) in the grid rises,
it lowers the carbon footprint of the building’s heating systems.

As we move towards decarbonization of the grid and energy sys-
tem, it is imperative to not only consider how buildings can reduce
their energy and carbon footprint using technical approaches, but
to also factor social equity into this process. Consider, for instance,
data driven methods that have been increasingly used to optimize
building energy efficiency and detect inefficiencies in building en-
ergy usage [4, 7, 8, 11]. For example, machine learning has been
used to identify inefficient residential buildings from a cohort of
buildings in a city, and pinpoint the underlying cause of inefficiency
[7].

In this paper, we argue that data driven approaches for building
energy efficiency may have inherent biases that prevent them from
producing equitable results. For example, approaches such as [7]
that choose highest energy consuming buildings from a community
may have a bias towards choosing larger residential homes due to
their higher energy footprint. However, such larger homes may
belong to higher income residents, which inadvertently biases the
technique and may prevent middle and lower income homes from
sharing the benefits of decarbonization schemes (which include
generous subsidies for retrofits).

In this paper, we conduct an experimental study to identify the
degree to which such biases are present in machine learning based
analytic methods. We consider the WattHome approach from [7] as
a representative example of ML-based analytic approaches and use
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Figure 1: Energy model for a building showing breakpoint
temperatures 𝑇ℎ𝑒𝑎𝑡 , 𝑇𝑐𝑜𝑜𝑙 and average energy usage 𝐸𝑏𝑎𝑠𝑒 .

it to conduct our equity analysis. Our results show that purely tech-
nical analyses can cause skewed towards certain demographics by
data bias present in the underlying datasets. Based on these insights,
we argue for design of equitable and fair analytic approaches to
ensure that benefits of energy improvements and decarbonization
schemes are seen equitably across our society.

2 BACKGROUND
Energy analytics for buildings has emerged as an important tool for
decarbonization and the energy transition. In particular, the use of
AI, machine learning and data-driven techniques to identify energy
inefficiencies in buildings and recommend improvement measures
has risen in popularity in recent years. For example, [11] propose
an outlier based technique that detects abnormal day to day energy
consumption in buildings. Other studies using similar techniques
have also been conducted [7, 8].

The goal of our work is to understand whether these analytical
techniques are equitable, and whether they make improvement
recommendations fairly across a population. We study this ques-
tion through the lens of WattHome, a recently proposed analytical
technique for energy efficiency analysis [7].

WattHome is a data-driven approach that uses Bayesian infer-
ence to analyze the energy efficiency of a building and detect pos-
sible faults. It does so in three key steps; (i) Learning a building’s
energy model using energy usage data, (ii) Creating a partial order
of buildings using their parameter distribution from the learned
model, and (iii) Detecting building faults that might be the underly-
ing cause of energy inefficiency.

Figure 1 depicts the energy model learned byWattHome for each
building. During winter months, the outside temperature is colder
than a building’s inside temperature, which results in a net thermal
loss where the inside heat flows outside causing the inside temper-
ature to drop. Each building therefore has a specific temperature
𝑇ℎ𝑒𝑎𝑡 below which there is need for a heater to heat the building.
Conversely, during summer months, the outside temperature is
warmer than the inside temperature. The outside heat flows into
the building causing the temperature to rise, and the building ex-
periences a net heat gain. Similarly, a specific temperature 𝑇𝑐𝑜𝑜𝑙

therefore exists for each building above which there is need for an
air conditioner to cool the building. Finally, a specific temperature
𝑇𝑏 exists, during which there is neither thermal loss nor thermal
gain. During this time, a buildings energy consumption comes from
inside appliances.

Following this model, an analysis of the heating slope i.e. 𝛾ℎ𝑒𝑎𝑡

and cooling slope i.e. 𝛾𝑐𝑜𝑜𝑙 can be used to determine whether a

building is energy efficient or not. Buildings with a high 𝛾ℎ𝑒𝑎𝑡 lose
heat at a higher rate, hence the need for more energy to compensate
for the high heat loss. Similarly, buildings with a high 𝛾𝑐𝑜𝑜𝑙 absorb
outside heat at a higher rate, hence the need for more energy to
cool the inside of the building. WattHome uses Bayesian inference
to learn a parameter distribution of the heating slope and uses
stochastic dominance to identify inefficient buildings. Buildings
whose learned parameters are higher than 75% of the population
are singled out as having energy inefficiency of some sort.

3 EXPERIMENTAL METHODOLOGY
The methodology for our work comprises using WattHome [7] to
evaluate the energy efficiency of a group of residential buildings to
identify the least efficient homes as candidates for energy efficiency
improvements. We then analyze whether the choices made by the
algorithm are fair and equitable. To do so, we use the following
datasets.

Energy usage data. This dataset is collected from smart meters
installed at homes in a city in the New England region during
the year 2019. The data contains electricity usage data recorded
at 5 minute granularity, as well as gas data recorded at hourly
granularity. The data is anonymized, and only includes a mapping
of electric and gas meters by home but not the specific address. In
addition to energy usage data, this dataset also includes building
information such as age, size, and type of home e.g. single family
vs multi-family. Before comparing energy usage across different
homes, energy usage is first normalized with size of the home.

Demographic data. We collected demographic data for this city
including race, median household income and house value from the
Geocodio API 1. The data is provided by the Census Bureau and is
available by census block i.e. the smallest geographical unit that the
U.S. Census Bureau provides statistical data for. We map each home
in our dataset to its specific census block and use the demographic
information for that block to perform our equity analyses.

Weather data. We use weather data for the year 2019 gathered
from the Dark Sky API 2 at hourly granularity.

We apply WattHome to these datasets and use an outlier based
technique to select homes as candidates for improvements. Our
broader goal is to analyze how equitable such an approach is in
making recommendations in such a community.

4 EQUITY ANALYSIS
To analyzewhetherWattHome’s algorithmsmakes equitable choices,
we apply WattHome to our energy usage data and combine the re-
sults with demographic data from the same city to study the extent
of bias present in the approach.

We begin by selecting only a subset of the whole dataset which
have gas heating. This subset is made up of 6, 368 homes. Since gas
heating is a high emitting source of heating, this subset represents a
good target for decarbonization goals. For each home, we compute
𝛾ℎ𝑒𝑎𝑡 ,𝑇ℎ𝑒𝑎𝑡 , 𝛾𝑐𝑜𝑜𝑙 ,𝑇𝑐𝑜𝑜𝑙 and 𝐸𝑏𝑎𝑠𝑒 . We then determine the median
income for each home by mapping the home to its parent census
block and using the median income of the block as the income in
the home. We do the same for house value and consider the median

1https://www.geocod.io/docs/
2https://darksky.net/dev
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house value for each block as the value for each home in the block.
We then apply an outlier based technique to identify homes with
energy inefficiency – for each parameter, we select the top 10%
homes as an indicator of energy inefficiency i.e. the top 10% of
homes with the highest heating slope are considered as having
heating inefficiency. Finally, for the identified homes, we analyze
the distributions of median income and real-estate house values
to determine whether the results are biased in any way by these
factors.

Figures 2a, 2b and 2c depict learned energy models for sample
homes in our dataset. Figure 2a depicts a home with a high heating
and cooling slopes 𝛾ℎ𝑒𝑎𝑡 and 𝛾𝑐𝑜𝑜𝑙 , indicating a home with high
heating energy usage as well as an AC unit that is in use during
summer months. Figure 2b depicts a home with a high heating slope
but lower cooling slope during summer months indicating an AC
unit which is conservatively kept running hence the lower cooling
energy requirement. Figure 2c depicts a home without an AC unit
as evidenced by the low energy requirement on high temperature
days. Each of these homes present different profiles that must be
taken into consideration while designing equity goals. For instance,
a home with a low cooling slope might be interpreted as being
energy efficient – however, at the same time, it could also mean
that the home lacks funds to purchase a cooling unit, and such
insights are useful while designing energy efficiency improvement
measures.

Figure 3 shows the results of analyzing houses with the lowest
cooling slope against household income. For this analysis, we first
divide household income into deciles. For each decile, we count
the number of homes that fall in the top 10% of homes with the
lowest cooling slope. The figure shows that homes with the lowest
cooling slope are predominantly lower income homes with the first
decile comprising of more that 42% of all homes in the top 10%.
An outlier based technique used on this data would therefore flag
these homes out as being energy efficient. However, since they
fall in the lower income decile, it is also possible that these homes
cannot afford an AC unit, and therefore do not consume cooling
energy during summer months. At the same time, homes in the
lower income deciles tend to have poor insulation and building
envelope, and such an outlier based technique would leave these
homes out when choosing homes that would benefit from a retrofit
program. It is clear that this technique is biased against lower
income neighborhoods, and not equitable in its choices.

Figure 4 shows the results of analyzing homes with the high-
est cooling slope against the value of the house. Here, we begin
by computing house value deciles. For each decile, we count the
number of homes that fall in the top 10% of homes with the highest
cooling slope. A high cooling slope could be indicative of a home
with a poor building envelope. A home with a poor building en-
velope absorbs outside heat at a high rate, hence the high energy
requirement to rapidly cool the house. In a purely technical anal-
ysis, such buildings could be selected as candidates for insulation
retrofits. Figure 4 shows that homes with the highest cooling slope
are predominantly in the higher home value deciles. The 7th decile
accounts for more than 24% of all homes in the top 10%. Conversely,
the lowest three deciles account for 4%, 8% and 4% of homes in
the top 10% respectively. An outlier based technique used on this

data would therefore disproportionately select higher value homes
as candidates for efficiency improvement, leaving out lower value
homes from accessing such benefits. However, lower value homes
are more likely to have poor building envelope, and should be se-
lected first for such improvements. It is therefore clear that this
analysis is biased against lower value homes neighborhoods, and
equity should be a key design goal for such a technique.

Figure 5 shows the results of analyzing homes with the highest
heating slope against the household income. A high heating slope
can be interpreted as a home with a poor building envelope. A home
with a poor building envelope loses heat to the outside at a high rate,
hence the high energy requirement to continue heating the inside
of the house. Such buildings could be selected as candidates for
insulation retrofits reduce the thermal loss. Such homes could also
be selected for replacing gas heating (which is present in all these
homes) with greener sources of heating energy such as electric heat
pumps. Figure 5 shows that homes with the highest heating slope
are predominantly in the higher income deciles. The 7th decile
accounts for more than 25% of all homes in the top 10%, which is
≈5x the number of homes whose income level falls in the 2𝑛𝑑 decile.
These homes in higher income deciles would therefore be selected
as candidates for efficiency improvement (and potential recipients
of subsidies), squeezing out financial incentives that can instead be
offered to lower income households.

5 INCORPORATING EQUITY
In this section, we discuss techniques that can mitigate the bias
that comes from performing purely technical analyses.

In WattHome, homes were collected into peer groups based on
building attributes such as age, type of home and the area covered
by a home. This was done to make the comparison of energy param-
eters more meaningful e.g., newer houses are built while adhering
to new design specifications, and should therefore be compared
to other newer homes. However, building attributes are not the
only cause of inequity in energy analysis. The demographics of
the household, especially income, are an equally important com-
ponent in explaining the home’s heating and cooling intensities.
One technique to mitigate this effect is to create peer groups based
on economic factors such as income, value of the home and other
demographic factors. Comparisons should then be made within
these peer groups to identify inefficient homes and generate rec-
ommendations for energy improvements.

Another technique would be to collect homes based on geo-
graphical census tracts and blocks. Typically, homes in the same
geographical block tend to have similar economic and demographic
profiles. Using this approach, a simple heuristic such as selecting
at least 𝑛 homes from each peer group as candidates for energy
efficiency improvements would ensure that such improvements are
uniformly distributed across the whole geographical region. This
would also ensure that selected homes are equitably distributed
across the multiple demographic profiles associated with each block.

As future work, we will devise a comprehensive approach with
equity as a key design goal. In this approach, household metrics
such as a census block group’s median household income, racial and
ethnic composition, level of energy poverty, etc., will be considered
from the onset of energy efficiency analysis. All recommendations
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Figure 2: (2a) Sample energy model for a home with varying heating and cooling intensities, (2b) Sample energy model for
a particular home with higher heating energy requirements than (2a), and (2c) Sample energy model for a building with no
cooling load which can be interpreted as a house lacking an AC unit.

1 2 3 4 5 6 7 8 9 10
Income decile

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f h
om

es
 (%

)

42.7%

7.4%

11.7%

1.4%

17.9%

7.1% 6.0%
3.4% 2.3%

0.0%

Homes in top 10%

Figure 3: Bias introduced by household income on buildings
with lowest cooling slope.
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Figure 4: Bias introduced by house value on buildings with
highest cooling slope.
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Figure 5: Bias introduced by household income on buildings
with highest heating slope.

will then be weighted by these metrics to ensure that recommenda-
tions for energy efficiency improvements do not accrue to certain
demographics only, but rather span across the whole population.

6 RELATEDWORK
In this section, we discuss prior work in energy efficiency analysis
and equity.

Data driven approaches for energy efficiency analysis in build-
ings have been widely studied. Multiple studies have analyzed
energy usage data to identify inefficiencies and their underlying
causes in buildings [4, 7, 8, 11]. By identifying inefficiency and
detecting possible causes, energy improvement measures can be
recommended. This work analyzes such data driven approaches and
examines whether the recommendations they make are equitably
distributed in the society.

The role of equity in the energy transition has also gained atten-
tion in the recent past. For example, Andor et al [2] demonstrate
that reducing the inequity in cost burden of green energy for the
general population significantly increases household willingness
to pay for greener electricity. Rezec and Scholtens [9] discuss the
role of financial markets and equity indices in the energy transition.
Roberts [10] discusses the inequity that exists in access to energy
in low income households. Carley et al [5] analyze the injustice
that will be perpetuated by the energy transition against specific
communities and socio-economic groups. Our work complements
these studies by reiterating the importance of equity in the energy
transition and showing various biases that affect purely technical
analyses.

7 CONCLUSIONS
In this paper, we conducted a data driven study to identify the
presence and extent of biases in machine learning and analytical
methods in energy efficiency analysis. We analyzed WattHome, a
recently proposed energy efficiency and fault detection technique.
Our results showed that such technical analyses are not equitable
and can be affected by bias introduced by demographic profiles of
households such as level of income and house value. We showed
that equity and fairness should be considered key design goals for
such techniques to ensure that benefits of energy improvements
and decarbonization are distributed equitably across the whole
society. We hope that this work spurs future work that improves
energy equity in the journey towards decarbonization of the entire
grid.
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