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ABSTRACT
Reducing our reliance on carbon-intensive energy sources is vital

for reducing the carbon footprint of the electric grid. Although the

grid is seeing increasing deployments of clean, renewable sources

of energy, a significant portion of the grid demand is still met using

traditional carbon-intensive energy sources. In this paper, we study

the problem of using energy storage deployed in the grid to reduce

the grid’s carbon emissions. While energy storage has previously

been used for grid optimizations such as peak shaving and smooth-

ing intermittent sources, our insight is to use distributed storage

to enable utilities to reduce their reliance on their less efficient

and most carbon-intensive power plants and thereby reduce their

overall emission footprint. We formulate the problem of emission-

aware scheduling of distributed energy storage as an optimization

problem, and use a robust optimization approach that is well-suited

for handling the uncertainty in load predictions, especially in the

presence of intermittent renewables such as solar and wind. We

evaluate our approach using a state of the art neural network load

forecasting technique and real load traces from a distribution grid

with 1,341 homes. Our results show a reduction of >0.5 million kg

in annual carbon emissions — equivalent to a drop of 23.3% in our

electric grid emissions.
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1 INTRODUCTION
A key sustainability goal of the United Nations is to attain a zero car-

bon economy in order to prevent climate change, while maintaining

society’s current standard of living. Doing so, involves addressing

immense challenges, since it requires changing our energy con-

sumption behavior, while also transitioning the electric grid to

carbon-neutral or zero-carbon energy sources. Over the last decade,

there has been an increasing deployment of clean, renewable en-

ergy sources such as solar and wind that are already contributing

positively to reducing the grid’s overall carbon footprint. The lev-

elized cost of energy from these renewable technologies is now on

par or below traditional carbon-intensive generation sources, and

their carbon footprint is near zero.

However, due to their intermittent nature, the increasing pen-

etration of these energy sources has increased the stochasticity

and uncertainty in the grid’s energy supply. Consequently, energy

storage has emerged as a related grid technology to counter this

stochasticity [5]. Energy storage batteries can act as “energy buffers"

that smooth out the intermittent supply from renewable sources.

The cost of energy storage has continued to fall, much like that of

renewables, and their deployments have begun to increase. For in-

stance, GreenMountain Power, a small utility in Vermont, USA, now

leases Tesla Powerwall batteries to residential customers for just

$15/month, while allowing the utility to control the battery during

peak periods [2]. Such a distributed deployment of energy storage

with utility control forms a type of Virtual Power Plant (VPP) that

the utility can leverage for various grid optimizations [23].

Much of the recent work on energy storage-driven grid opti-

mization has focused on demand-side optimizations such as cost

arbitrage [30], peak load shaving, demand response [25], and an-

cillary services [18]. Peak load shaving is a grid optimization of

particular interest to utilities and involves operating batteries dur-

ing peak demand periods in order to reduce grid stress and the

reliance on peaking power plants that are operated solely to meet

peak load. Peak shaving brings economic and cost benefits, since

peaking power plants tend to be less efficient and hence the cost of

supplying electricity during peak periods is much higher than at

other times.

Although energy storage-based peak shaving has been studied

from a cost reduction perspective, it also brings implicit greening

benefits—peaking power plants are not only less efficient and costly

to operate, they comewith a high pollution and carbon cost. Despite

the implicit greening benefit from reducing the use of peaking

power plants, the problem of peak load reduction using energy

storage does not directly translate to the problem of reducing the

https://doi.org/10.1145/3396851.3397755
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grid’s carbon footprint. This is because not all peak demand is met

using “dirty” peaking power plants. In some cases, for instance,

peak demand can be met using pumped hydro storage, which is a

clean energy source, and operating energy storage batteries during

such periods will not yield any emission reductions.

Thus, reducing the grid’s carbon footprint cannot be achieved

by naïvely using prior methods on energy storage-based peak load

reduction. This problem of emission reductions, a supply-side opti-
mization, is not only different, but also more challenging than peak

load reduction. Since grid demand is directly observable, energy

storage can be activated when peak demand occurs. Unlike ob-

servable grid demand, the grid’s carbon emissions are not directly

observable and must be inferred through other means, which is a

pre-requisite for scheduling energy storage whenever the grid’s

emission footprint peaks. Second, the grid is beginning to incorpo-

rate increasing amounts of clean renewable energy sources such as

solar and wind, but these sources are intermittent and uncontrol-

lable from a grid’s perspective and need to be handled differently

from traditional energy sources for supply-side optimizations such

as emission reductions.

The use of energy storage for explicitly optimizing the emission

footprint of the grid has not been considered by prior work, with

the sole exception of [26], where it was considered as part of a

broader multi-objective optimization to reduce cost, emissions, etc.,

and by only considering small residential scale storage. Our work is

more general since it addresses grid-scale storage at various levels

of the grid network, and also more specific since it focuses on

reducing emissions as a primary objective. Our work is motivated

by the observation that a utility typically uses a mix of generation

sources to fulfill its daily demands. Different generation sources

have different cost and emission footprints—for example, while

coal, oil and natural gas have high emission footprints, sources

such as nuclear, hydro and solar have zero emissions. The cost of

generation also varies across these generation sources.

Utilities typically create a dispatch schedule that determines the

order in which different generation sources are utilized to meet

rising demand—more efficient energy sources are used more often

or as base sources, while less efficient ones are often used only

during high demand or peak demand periods. Our insight is that

these dispatch schedules and marginal analysis of energy prices can

be used to infer the carbon cost to produce the next unit of electricity

at various times. Since demand is observable, we can combine this

information with time-varying demand to compute the overall

emission footprint at different points in the demand curve and

then intelligently activate energy storage whenever the emissions

footprint is high; as noted, the emissions footprint depends on the

energy fuel sources used and not on the demand, yielding a different

schedule for operating energy storage than that from peak shaving.

Such emission-aware scheduling of energy storage can provide

significant benefits in greening the grid.

However, there are many challenges in designing algorithms

for emission-aware scheduling of energy storage. First, the daily

electricity demand is stochastic and time-varying and also depends

on weather conditions. Second, as the penetration of “clean" re-

newables such as solar and wind increases, it naturally lowers the

emission footprint of the grid but also increases uncertainty and

stochasticity in demand due to the net-metering of these intermit-

tent sources. Third, the emission footprint of various sources, repre-

sented by the marginal cost of generation, is itself time-varying due

to changes in prices of inputs and other factors. Finally the energy

storage deployment will be distributed and heterogeneous with

batteries of various sizes and technologies deployed in different

parts of the grid.

In this paper, we leverage robust optimization [3, 4] (RO) to

tackle the uncertainty of the daily electricity demand. Classic sto-

chastic optimization approaches require stochastic modeling of

uncertain parameters, and deviations from the models may degrade

the performance of the proposed solutions substantially. In contrast,

RO does not rely on an underlying probability distribution of the

uncertain input, and only requires limited information of the uncer-

tain data, including mean, and interval predictions, i.e., upper and

lower bounds of the uncertain data. When compared to probability

distributions, mean and interval prediction values are much sim-

pler to estimate. In addition, RO always calculates a solution that

is guaranteed to be feasible within all possible realizations of the

uncertainty sets. Note that RO and competitive algorithm design [6]

are two approaches in the literature that do not rely on any stochas-

tic modeling of the uncertain data. While a competitive approach

is too conservative since it guarantees worst-case performance, the

additional interval prediction data can result in better performance

in RO. In designing and evaluating our emission-aware storage

scheduling approach, our paper makes the following contributions.

Problem formulation.We present a detailed formulation of the

problem of emission-aware storage scheduling as an optimization

problem. Our formulation is sufficiently general to incorporate

a range of possibilities, including heterogeneous storage deploy-

ments, distributed renewable generation, and time-varying mar-

ginal costs.

Emission-aware energy storage scheduling using robust op-
timization. We use robust optimization, a stochastic optimization

approach, to solve the energy-aware storage scheduling problem.

As noted above, the use of robust optimization allows us to find

a solution that is guaranteed to be feasible within all the possible

realizations of the input in a predetermined uncertainty set.

Load forecasting under uncertainty. Since our optimization ap-

proach requires load predictions, we also use a state of the art

autoregressive neural network algorithm for transformer load fore-

casting, which is then utilized by our optimization approach. Our

forecasting method can handle uncertainty in demand from stochas-

tic time of day effects as well as that from net-metered renewables.

Grid-scale evaluation. We present a grid-scale evaluation of our

approach using real traces from a distribution grid comprising 100

transformers and 1,341 homes. Our results show carbon emissions

savings of >0.5 million kg over a period of a year. This reduction

is equivalent to 23.3% of overall emissions from the electric grid.

We also show that even at 50% storage penetration level we can

achieve up to 13.9% reduction in carbon emissions.

2 BACKGROUND
In this section, we provide background on electric grids, generation

sources, and energy storage.
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2.1 Electric grids
As is well known, today’s electric grids comprise three components:

generation, transmission, and distribution (see Figure 1). A key

goal of the grid operator is to ensure that demand and supply are

matched at all times for proper functioning of the grid. Since elec-

tricity demand changes continuously over the course of a day (see

Figure 2(a)), the generation must be matched to changing demand

via a dispatch schedule [33]. The dispatch schedule determines the

order and schedule for activating and deactivating various genera-

tors that are at the disposal of the grid operator and specifies how

the supply should be ramped up or down to match time-varying

demand.

Typically, power plants and generators used for the dispatch

schedule fall into three categories: (i) Base load generators: These
are generators at power plants that operate at all times to support

the base demand; generators at large-scale power plants such as

nuclear, natural gas, coal, and biomass fall into these categories; (ii)

Load following generators: These are generators that are activated
during the high demand periods within each day (such as morning

and evening) to support demand beyond the base load; (iii) Peaking
generators: These are standby generators that are activated when

the overall demand hits seasonal peaks. They may operate for only

a few days of the year when the hot or cold weather causes the

demand to peak for the season. In general, peaking generators tend

to be older, less-efficient generators within the overall mix that

are kept on standby for infrequent use; old coal and oil generators

that are nearing the end of their lifetime are examples of peaking

generators. Note that high or peak demands can also bemet through

other means, such as pumped hydro storage, and hence, the emission
footprint may not always rise with demand.

In contrast to traditional sources of electricity generation, re-

newable sources such as solar, wind and hydro are non-polluting

in nature and have zero carbon emissions. Distributed renewable

energy sources such as solar tend to be part of the distribution

network and often net-meter their power output directly into the

distribution grid. Further, renewable sources such solar and wind

are assumed to be uncontrollable due to their intermittent nature

and thus not dispatchable.

2.2 Emission from Generation Sources
As discussed below, the carbon intensity, and the resulting emis-

sion footprint, of the grid varies continuously over the course of

the day. If the emission footprint from generation were directly

observable, we could simply schedule energy storage whenever

emissions peak during each day. Since the emission footprint is not

directly observable, we need to infer it through other means for

our emission-aware scheduling approach. Two factors need to be

considered for doing so: the average carbon intensity and marginal
carbon intensity.

The average carbon intensity of an electric grid is defined as the

weighted average of emission factors of the available fuel types,

in which emission factor of each fuel type is defined as its carbon

emission by generating one unit of electricity. Table 1 lists the

values of emission factor for the available generation types in ISO

New England [14]. The average carbon intensity is the weighted

average of emission factors for the energy mix used by the grid. For

Table 1: Carbon emission by different generation types, data
publicly available from [14]

Generation Type Emission Factor (CO2 kg/MWh)
Coal 962.97

Natural Gas 395.53

Oil 933.94

Nuclear 0

Hydro 0

Solar and Wind 0

example, if an electric grid produces electricity from coal, natural

gas, nuclear, and hydro in equal proportions, then the average

carbon intensity would be 339.49 kg/MWh (962.97× 0.25+ 395.53×

0.25 + 0 × 0.25 + 0 × 0.25), in the above example.

In general, however, the reduction or increase in generation, and

consequently, carbon emissions, due to changes in electric demand

(dictated by the dispatch schedule) is not the same across all power

plants. Most of the changes occur in the load following power plants,

and occasionally in the peaker power plans, which we collectively

refer to as marginal power plants. These are generators that can be

ramped up or down at short notice to respond to changes in de-

mand as determined by the dispatch schedule. Consequently, when

attempting to reduce the emissions from the generation mix, we

must consider themarginal carbon intensity, which is the emissions

from generating the next unit of electricity; in our case, it is related

to the operation of marginal power plants. In the above example,

if the marginal power plant uses natural gas as fuel, the marginal

carbon intensity is 395.5 kg/MWh, which is higher than the average

carbon intensity in our example. Since there are notable differences

in the emissions factors associated with the different fuel types,

there is significant potential for reducing the carbon footprint of

the overall electricity generation by optimizing the marginal carbon

intensity through the use of energy storage.

It should also be noted that the marginal carbon intensity will

vary over time due to several factors. For example, if the generation

from hydro plants has to be decreased during periods of little rain,

generation from other (less green) sources will have to make up the

shortfall, potentially increasing the marginal carbon intensity. Fuel

prices of raw materials such as natural gas and oil may fluctuate

over time, and dispatch schedules may be optimized to use cheaper

sources. The dispatch schedule itself varies over the course of a

season based on seasonal demand. All of these factors cause the

marginal carbon intensity to vary, and any approach that seeks

to optimize marginal emissions must account for such temporal

variations. Figure 2(b) illustrates the variations of the marginal

carbon intensities of different fuel types.

2.3 Renewable Energy Sources
The penetration of renewable sources such as solar and wind in the

grid has grown substantially in recent years. These clean sources

have zero carbon emissions and directly contribute to a reduction

in the grid’s overall carbon footprint. However, the generation from

renewable sources is known to be intermittent and dependent on

the weather. As a result, the grid treats these generation sources
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Wind or Solar: 
Renewable, Intermittent

Hydro: Renewable, 
Semi-Controllable

Nuclear: 
Fixed

Coal: 
Semi-dispatchable

Oil or Gas: 
Dispatchable

Generation Transmission Distribution

Feeder

Transformer

Energy Storage

Figure 1: Electric grid architecture comprising generation, transmission and distribution. Our work assumes a heterogenous
energy storage within the distribution grid.
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Figure 2: (a) Daily transformer load (b) Marginal factor of different fuels for a day.

differently from traditional sources such as natural gas and coal.

In particular, today’s grid operators assume that these sources are

uncontrollable, and hence not dispatchable. That is, their generation
potential at any instant in the future is not entirely predictable, and

they are typically not included into dispatch schedules unlike other

sources of energy generation. Instead, their output is assumed to be

net-metered into the distribution grid, which means that renewable

sources are treated as part of the fluctuating demand, rather than

as an explicit dispatchable supply source. In line with the grid’s

assumptions, our paper also assumes that renewables such as solar

and wind are handled as a portion of stochastic demand, and in-

creasing penetration results in higher stochasticity and uncertainty

in demand.

2.4 Energy Storage
Grid energy storage technologies in the form of batteries have been

gaining traction in recent years. Companies such as Tesla have

deployed both small- and large-scale energy storage within the

grid in many different countries and demonstrated the feasibility

and benefits of using such storage for grid optimizations. This

work assumes a distributed deployment of energy storage batteries

within the distribution grid. The deployment is assumed to be

heterogeneous — the sizes of batteries and the level within the grid

where they are deployed are assumed to be different for different

batteries. Some batteries may be small batteries, akin to the Tesla

Powerwall, deployed adjacent to small neighborhood distribution

transformers. Other batteries may be larger in size and deployed

near larger transformers (potentially at the feeder or substation

levels) that supply electricity to a larger number of homes. The

penetration of energy storage within the distribution grid can differ

from one scenario to another, and our work is designed to handle

different penetration levels.

The distributed network of batteries is assumed to be under

the control of the grid operator. However, rather than using them

for grid optimizations, our work seeks to operate this distributed

set of batteries to minimize the aggregate carbon emissions of the

grid, given the time-varying marginal carbon intensity values—by

operating them to reduce reliance on the dispatchable sources with

high marginal carbon intensities. We formulate this problem of

emission-aware scheduling of energy storage more formally in the

next section.

3 PROBLEM FORMULATION
Consider a distribution grid comprising a network of substations,

feeders and neighborhood transformers. Assume that energy stor-

age is deployed at various points within this grid, i.e., at a subset

of the transformers. In a typical grid, there is significant variation

in the capacity of transformers and the number of customers it

serves. Thus, the energy storage must be sized according to the

transformer capacity to enable grid optimizations at that location.

Further, our work assumes that this heterogeneous collection of

batteries is under the control of the grid operator and the operator

can control the charging and discharging of a distributed network

of batteries.
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As discussed in the previous section, there are several fuel types

in a typical electric grid, eachwith a different level of emission factor

and different time-varying marginal carbon intensity. The emission

footprint of the grid at any instant depends on the mix of generation

fuels used to satisfy the current demand. Grid operators must match

supply and demand at all times by constructing a dispatch schedule
in advance. The dispatch schedule is typically computed a day in

advance by first estimating the demand curve for the following

day and then determining an order in which different generation

sources are activated (or deactivated) to meet the predicted rise

and fall in demand.
1
This problem becomes a cost minimization

problem since the next unit of rise in demand should be satisfied

using the generation source with the cheapest marginal price [33].

This problem is also referred to as the unit commitment problem

in power system literature [27]; in solving this dispatch schedule

(i.e., unit commitment), time-varying marginal prices are computed

at each step to select the least cost source for each unit change in

demand. Since this problem is solved one day in advance (usually

through day-ahead energy markets), we assume that time-varying

marginal factors can be obtained when the dispatch schedule is

finalized at the start of each day.

The key insight behind our approach is to take the demand

seen within the distribution grid (which is directly observable) and

these computed marginal prices at different times of the day to

infer the emission footprint of the grid over time; the scheduling

problem is then to intelligently schedule the batteries during peak

emissions periods, subject to various demand constraints within

the distribution grid. This leads us to the following problem: Given
the dynamics in the marginal factor of available fuel types and in the
distribution-level demand, what is the optimal scheduling of energy
storage that minimizes grid-wide carbon emissions and respects the
operational constraints of the grid and energy storage systems?

3.1 System Model
In this section, we formulate the offline version of the emission-

aware storage scheduling problem (EASS) assuming that the entire

load data is available in advance, and in the next section, we present

the online formulation that takes into account the uncertainty of

load.

We assume that the time horizon is divided into T real-time

settlement intervals, indexed by t , each with fixed length. Time

slots are set according to the real-time settlement intervals in the

U.S.-based electricity markets, e.g., 5 minutes in CAISO and NYISO,

and 15 minutes in ERCOT [1]. The main notations are summarized

in Table 2. In what follows, we explain the details of the system

model.

Assume there are n transformers in the system, each indexed

by i . Further assume that there is an energy storage battery at

each transformer. In practice, the operator may only deploy energy

storage at a subset of transformers, which can be easily modeled by

setting the sizes of batteries at all other transformers to zero. The

scheduling decisions are assumed to be made at the transformer

level. Let Ci be the capacity of transformer i , and Bi be the storage
capacity deployed at transformer i . Let ρi be the maximum charging

1
As noted earlier, renewable sources such as solar and wind are assumed to net-metered

into the distribution grid and not considered as dispatchable energy resources.

Table 2: Summary of notations

Inputs
T The number of time slots, T ≥ 1

T Set T = {1, 2, . . . ,T }
n The number of transformers

m The number of fuel types

Ci The capacity of transformer i
Bi The capacity of storage system at transformer i
ρi Charge and discharge rate limit of storage system i
wf Emission factor of fuel type f

λf (t) marginal factor of fuel type f at t

li (t)
Mean value of day-ahead forecast load at transformer

i at t

Optimization variables
xi (t) The charge/discharge amount of storage i at t

x(t)
The aggregate charge/discharge at t , i.e.,
x(t) =

∑n
i=1 xi (t)

bi (t)
The storage level (state of charge) of storage i at the
end of t

and discharging rate of storage i . Our formulation could be extended

to the case with different charge and discharge rate constraints.

We assume there are m different fuel types in the grid, each

indexed by f . Let wf be the emission factor in kg/MWh of fuel

type f . Further, let λf (t) be the marginal factor, as the contribution

of fuel type f at time t to the marginal increase or decrease in

energy demand. The values ofwf are fixed and given in advance.

The values of λf (t) change over time based on solving grid dispatch

and unit commitment problems.

Finally, let li (t) be the day-ahead load forecast of transformer i at

time t . In addition, let
ˆli (t) be the actual values of load in real-time.

Note that li (t) and ˆli (t) might be different since there is always

some error between the forecast day-ahead and actual values. The

problem formulation in this section is an offline version that takes

into account the day-ahead load values. In Section 4, we extend the

formulation to include the uncertainty of actual load in real time.

Incorporating renewables: Since renewables such as solar and

wind are assumed to net-metered into the distribution grid, we

assume that the transformer-level demand li (t) is a net-metered

value that represents the difference between the actual demand at

that transformer and the generation from any renewable sources,

such as rooftop solar, that are present at that location. This has two

implications. First, it allows our approach to naturally incorporate

the contribution of renewables for emission reduction (since it

contributes to a direct reduction in demand). Second, it increases the

stochasticity in the demand, making demand more unpredictable,

an issue we must address as part of our optimization.

3.2 Problem Formulation
The Optimization Variables. The charging/discharging amount

of storage i at t is represented as xi (t). Positive values, i.e., xi (t) > 0

indicate the charging of the storage, whereas negative values, i.e.,

xi (t) < 0 indicate discharging. The aggregate change in load due to

charge/discharge of different storages observed at the grid level at
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time t is represented by x(t), i.e., x(t) =
∑n
i=1 xi (t). Finally, let si (t)

be the state of charge of storage i at time t , and we will obtain its

evolution over time in the following by formalizing the constraints.

Constraints. The change in load observed at the grid level is

the sum of all the charging/discharging decisions made at each

transformer, i.e.,

x(t) =
n∑
i=1

xi (t), ∀t , (1)

The evolution of storage is represented as the following constraint

si (t + 1) = si (t) + xi (t), ∀t and ∀i, (2)

The other constraints regarding the physical limits of storage are

presented as follows. The scheduling decisions should be taken

within the operating constraints of the battery. For example, the

maximum charge of the storage unit should not exceed the storage

capacity while it is in operation. For simplicity, we assume the max-

imum charging and discharging rate to be equal. We represent the

constraints regarding the state of the charge of storage as follows

si (t) ≤ Bi , ∀t and ∀i, (3)

si (t) ≥ 0, ∀t and ∀i, (4)

−ρi ≤ xi (t) ≤ ρi , ∀t and ∀i . (5)

In order to maintain the demand and supply relationship, the

discharge from the storage unit should not be greater than the load

observed at the transformer at any time t . Thus, we have

− xi (t) ≤ li (t), ∀t and ∀i . (6)

Note that in reality, it is possible to have peak load beyond the

capacity of transformers. In case of the load at the transformer at

time t is greater than the capacity of the transformer, we do not

want to worsen the situation by charging the storage at that time

leading to transformer overload. Hence, by defining parameter η as

the threshold violation level of transformer capacity, we express

the this constraint as

Ci − x(t) − li (t) ≥ η, ∀i and ∀t . (7)

The value of η is set by the operator of the grid, and in experiments

we set it to 1% of the transformer capacity.

Objective Function. The eventual goal is to minimize the carbon

emission of the grid by managing the charging and discharging

of the energy storage. More specifically, we aim to minimize the

following objective function:

T∑
t=1

m∑
f =1

wf λf (t)x(t), (8)

where x(t) represents the aggregate change in load by scheduling

the storage observed at grid level as described in (1). Recall that

λf (t) represents the marginal factor of fuel type f at time t , and
wf is the emission factor of fuel type f .

Optimization Problem Formulation. Putting together, we formu-

late the emission-aware energy storage scheduling (EASS) problem

as

EASS : min

T∑
t=1

m∑
f =1

wf λf (t)x(t)

subject to: Equations (1) − (7),

variable: xi (t) ∈ R, i ∈ {1, . . . ,n}, t ∈ {1, . . . ,T }.

The EASS problem is linear in nature that could be solved opti-

mally if the entire input to the problem, i.e., load values and emission

parameters, are given in advance. In practice, however, these values

are uncertain, and as we will show in Section 6.1, future predictions

of load are never 100% accurate. Consequently, in the next section,

we introduce the robust optimization formulation to tackle the un-

certainty that arises when solving this problem online in real-world

settings.

4 ROBUST OPTIMIZATION APPROACH
In this section, we present the robust optimization version of EASS

(called EASS-RO) by taking into account the uncertainty due to the

imbalance between the forecast and actual real-time load values.

Robust Optimization (RO) [4] is a well-established framework for

general scenarios of decision making under uncertainty. In this

paper, we leverage the RO framework for emission-aware storage

scheduling under the uncertainty of electricity load. As compared to

the traditional stochastic optimization approaches, problems formu-

lated in an RO framework are typically computationally tractable

and do not require the knowledge of a probability distribution over

the uncertain input.

The first challenge in formulating an RO counterpart of EASS

is to define an uncertainty set which bounds the upper and lower

bounds that the uncertain input, i.e., load, can take. The classic

approach in RO is to optimize for the worst case value in the uncer-

tainty set, but thatmight be too conservative leading to a suboptimal

solution. In this paper, we follow another variant of RO framework,

called the price of robustness, proposed in [4]. More specifically,

Bertsimas, et. al. [4] develop a generic uncertainty set that can be

used to formulate a robust linear counterpart of an uncertain linear

program. In this approach, the level of robustness can be controlled

by parameter Γ known as the budget of uncertainty. Then they

proved that Γ can be chosen based on the level of robustness de-

sired by the operators such that the probability that the constraint is

satisfied is 1−ϵ . In what follows, we present the robust counterpart

of the EASS problem using the robust framework in [4],

Robust Counterparts of Uncertain Linear Constraints. In this sec-

tion, we present the robust counterparts of the constraints that

include load values.

First, we state the robust counterpart of constraint (6). Recall

that constraint (6) is enforced to ensure that discharge from the

battery should be less than the load observed at the transformer. The

detailed steps toward stating constraint (6) in a robust framework

is the following. First, we construct the uncertainty set associated

with the transformer level loads. The uncertainty set for actual load

of transformer i at time t can be represented as

Li (t) = [li (t) − σi (t), li (t) + σi (t)], (9)
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where σi (t) is the deviation from the expected value. The values

σi (t) and accordingly Li (t) should be obtained by using a forecast

model of the transformer level load. In Section 4.1, we present our

forecasting approach based on state-of-the-art neural networks for

predicting the load. The values of σi (t) will be used to construct

the robust constraint.

By defining Γ as the budget of uncertainty [4], we re-express

constraint (6) as

− xi (t) − li (t) + βi (li (t), Γ) ≤ 0 ∀i and ∀t , (10)

where βi (li (t), Γ) represents deviation of li (t) from its expected

value, given Γ as the budget of uncertainty. Note that Γ could be

readily extended to be defined for each transformer separately. In

the following, we explain how to calculate the value of βi (li (t), Γ).
In the original robust optimization framework under the para-

digm of price of robustness [4], the budget of uncertainty is defined

for each uncertain constraint separately, and its goal is to provide a

trade-off between the robustness against the performance of the

solution. More specifically, the value of Γ determines that for each

constraint how many elements should be robust against violation;

the higher the value of Γ, the higher the robustness, the lower the
performance. In other words, the solutions with the higher values

of Γ might be suboptimal since it is too conservative for the sake

of ensuring robustness.

Since constraint (7) is independent for each transformer load

at each time slot, following the original approach in [4] requires

us to have n × T separate values robust constraints each for one

instance of (6). This approach does not provide any flexibility to

determine the level of robustness and limits us to the case with the

maximum robustness in solution. To provide flexibility for trade-

off between robustness and performance, we slightly change the

original framework by considering a common budget of uncertainty

for the entire time horizon of each transformer, i.e., grouping all

the constraints of each transformer over time.

More specifically, let z⋆ = [z⋆i (t)]t ∈{1,2, ...,T } be the optimal

value of the following optimization problem [4, Section 3, Proposi-

tion 1]:

z⋆ = arg max

zi (t )∈[0,1]

T∑
t=1

σi (t)zi (t), s.t.

T∑
t=1

zi (t) ≤ Γ. (11)

Note that the above problem should be solved for each transformer

i separately. Then, we calculate the values of each βi (li (t), Γ) as
follows:

βi (li (t), Γ) = σi (t)z
⋆
i (t).

Using this formulation one can see that βi (li (t), Γ) ranges be-
tween [0,σi (t)], thus li (t) ranges between [0, li (t) + σi (t)]. We can

safely ignore the set [li (t) − σi (t), li (t)] as we want to make our

solution robust to the worst case scenario. Using the budget of un-

certainty parameter Γ we can control the level of robustness across

time in terms of the following optimization problem.

Intuitively, we can see how the value of Γ controls the deviation

from li (t). In case we set Γ = 0 the EASS-RO problem reduces to

EASS as all the deviations from li (t) will be 0. On the other hand,

increasing Γ increases the deviation of li (t) thereby we have more

robustness in the solution. When Γ = |T | each zi (t) will be set to 1,

thus EASS-RO is the most conservative formulation. Last, in EASS,

constraint (7) is involved with the uncertainty of the load. Hence,

the same procedure as for constraint (6) should be done to have its

robust counterpart.

4.1 Load Forecasting Under Uncertainty
Our approach requires load forecast as input and internally deals

with its uncertainty. While there are have been several research

on forecasting demand [22], most approaches focus on predicting

the aggregate grid demand, which is often smooth and predictable.

However, transformer load sees higher variations depending on the

number of homes the transformers feed electricity [17]. Further,

any net-metered renewable sources such as rooftop solar or wind

will increase the stochasticity in the observed demand. As such, it

is more challenging to provide accurate forecasts and has higher

uncertainty in prediction, which justifies the need for the use of

robust optimization methods that can handle such uncertainty.

Formally, forecasting transformer loads requires learning a function

Fi that predicts future loads based on input parameters stated as

follows

li (t + 1, t + 2, . . . , t + k) = Fi (li (1, 2, . . . , t),τ ) ∀i .
where Fi predicts future load for the next k time steps, and τ is a

vector that represents exogenous feature inputs such as temperature

and day of the week.

Load at the transformer level shows both diurnal and weekly

patterns [17]. For example, load during mid-day will differ from

load seen at night. Similarly, weekday load differs from weekend

load patterns. Although transformer level load data is noisy in na-

ture, historical load data contains daily and weekly seasonality. It is

important to extract the seasonality in the historical data for accu-

rate forecasting. We use this insights to model our load. Specifically,

our approach is based on an Autoregressive Neural Network [9].

In order to forecast load for time t +1we use the past p1 time slot

as the input along with loads on past p2 days at time t + 1 as well as
loads at past p3 weeks at time t + 1. Along with the historical load,

we include one-shot encoded day of the week exogenous variable

as part of feature vector of the neural network. We also use the

temperature τt+1 at time t + 1 as an external regressor. Putting

together all above inputs, the forecast load at time t +1 is as follows

li (t + 1) = βτt+1

+N
(
δ , li (t), li (t − 1), . . . , li (t − p1),

li (t + 1 −Td, t + 1 −Td × 2, . . . , t + 1 −Td × p2),

li (t + 1 −Td × 7, t + 1 −Td × 7 × 2, . . . , t + 1 −Td × 7 × p3)
)
,

whereTd is the number of time slots in one day. In our experiments,

the length of each slot is 5 minutes, hence, Td = 12 × 24 = 288.

5 EVALUATION SETUP
In this section, we discuss our experimental setup and methodology.

5.1 Experimental Datasets
Load Dataset. For evaluating the efficacy of our load forecast-

ing techniques along with the distributed storage schedule, we

use a grid-scale dataset obtained from an utility company in the

Northeastern US containing energy data from 1,341 smart meters
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Table 3: Dataset used for our evaluation

Characteristics Value
Number of homes 1,341

Transformers 100

Transformer size 25 to 750 kVA

Trace Duration 2 years

Table 4: Parameter settings of our approach.

Parameters Value
Charge/Discharge Rate Limit 60 mins

Marginal Fuel Sources Coal, Oil, Gas

Emission Factor (kg/MWh) Refer to Table 1

η in Equation (7) 1% of Ci
Γ in EASS-RO [10,20]

connected to 100 transformer. This data is available at a 5-minute

granularity over a period of 2 years. On an average, each trans-

former is connected to 13.4 smart meters (ranging from 5 to 85).

Likewise, the transformer capacity varies between 25 and 750 kVA.

Table 3 summarizes our dataset.

Marginal Carbon Intensity. Additionally, our scheduling scheme

requires marginal carbon intensity as the input to the problem. This

data is not directly available for the New England region. Hence,

we use the method specified in [28] that estimates the marginal

power plants in operation using the hourly locational marginal

price (LMP) of electricity generation and the monthly fuel prices

available through [10] and [16]. The approach uses a symmetric

Gaussian membership function in (12) that maps the LMP values

to fuel types.

Mf (t) = e

−(p(t )−µf )
2

2ν 2f
(12)

where µf and ν2f is the average cost and variance of fuel type f ,

and p(t) is LMP of the market at time t . Subsequently, we compute

the marginal factor λf (t) of fuel type f as follows.

λf (t) =
Mf (t)∑
f Mf (t)

(13)

5.2 Experimental Settings and Baseline
Parameter Settings. We set the time horizon to one day, and the

length of each slot is 5 minutes, hence T = 12 × 24 = 288. We

initialize the storage level at half its total capacity to allow both

charging and discharging startingwith time t = 0.We also constrain

the storage capacity at the end of the day to half its capacity so as

to have the same state of charge for the next day, i.e.,

si (t) =
Bi
2

; if t = 1 and t = T = 288,∀i .
While evaluating our robust approach, we use load values and

fuel type parameters directly read from the dataset described above.

The additional parameters are described in Table 4.

5.2.1 Baseline Algorithms. We compare the performance of EASS-

RO with the following approaches.

(1) Optimal Offline Solution: The optimal offline approach as-

sumes complete knowledge of future load and provides the

best achievable schedule to minimize carbon emissions. Al-

though not practical, it serves as a best theoretical upper

bound to compare with.

(2) Online Linear Programming: In this approach, we use the

day-ahead forecast load as input to solve the linear program

EASS and determine the schedule. However, the day-ahead

charge/discharge schedule may violate real-time grid con-

straints as the actual load at time t may differ from predicted

load at time t . To ensure that all grid constraints are satisfied,

the day-ahead schedule is adjusted as follows. Let
ˆli (t) be

the actual load observed at time t , and x̂i (t) be the modified

storage charge/discharge value at t to ensure feasibility.

Transformer Constraints

x̂i (t) = 0, if Ci − xi (t) − ˆli (t) ≤ η (14)

x̂i (t) = Ci − ˆli (t), if xi (t) ≥ Ci − ˆli (t) (15)

Storage Constraints

x̂i (t) = Bi − si (t), if xi (t) + si (t) ≥ Bi (16)

x̂i (t) = −si (t), if xi (t) + si (t) ≤ 0 (17)

As indicated earlier, we would like to avoid excessive stor-

age discharging during low energy demand periods. This

constraints is represented as:

x̂i (t) = −ˆli (t), if ˆli (t) ≤ −xi (t). (18)

(3) The PreDay Algorithm: This approach uses the previous day’s
load and emissions factor as input to the linear program to

determine the emission-aware schedule. We use a similar

approach and modify the schedule as above to ensure that

constraints are not violated.

6 EXPERIMENTAL RESULTS
In this section, we evaluate our approach and compare it to the

optimal approach and other heuristic approaches.

6.1 Load Forecasting Uncertainty
First, we evaluate the efficacy and accuracy of our proposed load

forecasting method in Section 4.1. We compare our forecasting

method based on state-of-the-art neural network approach with

two popular statistical time series techniques — ARIMA [7] and

TBATS [8]. Figure 3 compares the performance of the proposed

regression technique with the two baseline approaches. The results

show the distribution of mean absolute percentage error (MAPE)

values for load forecast at all transformers evaluated over a period

of one year. Based on our analysis, TBATS has the highest aver-

age MAPE of 34.17%, while the MAPE of ARIMA was 21.5%. The

performance of the autoregressive neural network with exogenous

variables outperformed all other techniques and has the lowest

average MAPE value of 20.14%. In our experiments, we observed

that including exogenous variables improves the accuracy of our

forecast significantly. Despite its higher accuracy, we observe that



Emission-aware Energy Storage Scheduling for a Greener Grid e-Energy’20, June 22–26, 2020, Virtual Event, Australia

TBATS ARIMA Autoregressi
ve NN w/ Ex

Regression Techniques

0

10

20

30

40

50

60

M
A

P
E

(%
)

Figure 3: Efficacy of load forecasting methods. The figure
shows there can be significant uncertainty in forecasts.
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Figure 4: Battery charge and discharge based on our
emission-aware energy schedule. Our emission-aware algo-
rithm discharges battery when marginal carbon intensity
(MCI) is high.

the forecast still contains error — indicating uncertainty in predic-

tion. The presence of such error is a motivation for leveraging robust
optimization for emission-aware storage scheduling.

6.2 Emission-aware Storage Schedule
Figure 4 depicts our emission-aware storage scheduling approach

in action. The figure shows the impact of the storage schedule on

the load observed at a transformer for a sample day overlayed with

the local demand. As shown, discharging action occurs when the

marginal emissions are high, e.g., between 6 am to 9 am, which

represents the high polluting hours of the day. Conversely, charging

occurs when the marginal emissions are low, usually between 1 to 4

pm. Based on the overall energy usage and the mix of fuels used at

different times of the day, the alternating charging and discharging

actions at this transformer mitigates 17.5 kg of carbon emissions.

Result: Emissions-aware distributed energy storage has significant
potential to reduce carbon emissions at the grid-scale.

6.3 Benefits of Emission-aware Scheduling
We analyze the change in carbon savings

2
by varying the size of

the energy storage. We size the battery as the number of hours it

can support the annual maximum load of the transformer. Thus,

one hour of battery capacity indicates that it can support the max-

imum load of the transformer for an hour. Figure 5 shows the

reduction in carbon emissions with increasing battery size for dif-

ferent algorithms. We observe that the carbon emissions reduces

2
We use marginal carbon intensity and change in battery state compared to the

previous day to calculate the daily carbon savings.
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Figure 5: Carbon emissions reduction for different battery
sizes. The battery size is computed as the number of hours
it can sustain the maximum load of the transformer.
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Figure 6: Carbon emissions reduction for different
charge/discharge rate and a battery size of one hour.

with increasing battery size. This is because a larger battery has

more flexibility in shifting transformer load, where batteries can

charge during lower emissions and discharge during high carbon

emissions period. Even with a battery size of 0.5 hours, we observe

that our emissions-aware algorithm achieves 10.16% reduction in

carbon emissions. Further, a battery size of 1.5 hours can annually

save >0.5 million kg of carbon emissions — equivalent to 23.3%

reduction in electric grid emissions.

We also compare our robust optimizationwith baseline approaches

described in Section 5.2.1. The optimal approach provides the max-

imum carbon savings that can be achieved. However, the optimal

needs the full information in advance that is not practical. We ob-

serve the gap between the optimal and our robust optimization

approach is less than 1.2% having battery size less than or equal to

one hour.

Result: Robust optimization consistently performs better than the
other baseline approaches; with a 1.5hr battery, it can save >0.5 mil-
lion kg of carbon emissions annually, a 23.3% reduction in emissions.

6.4 Impact of Storage Parameters
Next, we study the effects of different storage parameters—charge

and discharge rates—on carbon emission reduction. We fix the en-

ergy storage size such that it can sustain the maximum load at the

transformer for one hour and vary the charge/discharge rate. The
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Figure 7: Carbon emissions reduction for different levels of
storage penetration across transformers. A 50% penetration
indicate half the transformers have storage units installed.

charge/discharge rate is set such that the fraction indicates the per-

centage of the maximum load at the transformer the energy storage

can charge or discharge. Thus, a 0.25 hour charge/discharge rate can

discharge at one-fourth the maximum load at the transformer. As

seen in the Figure 6, with a charge/discharge rate of 0.25 hour, our

robust optimization approach achieves a carbon emission reduction

of 13.9%. However, an increase in charge/discharge rate further

reduces carbon emissions. This is because a higher discharge rate

is able to reduce demands thereby minimizing the need to utilize

generation sources with high emission footprints. In particular, we

observe that the reduction in carbon emissions increases by 37.2%

(from 13.93% to 19.12%) when the rate is increased from 0.25 to 1

hour.

Result: Our RO approach yields 13.9% emission reductions even at
modest battery discharge rates.

6.5 Impact of Storage Penetration
We study the benefit that comes from installing energy storage at

only a fraction of the transformers in the grid. Like before, in this

experiment, we fix the energy storage size such that it can sustain

the transformer load at its maximum for one hour and select trans-

formers at random, where batteries are installed. Figure 7 shows

the reduction in carbon emissions for different storage penetration

levels. An energy storage penetration of 25% can achieve 8.5% car-

bon emission reduction. However, if 50% of the transformers install

energy storage, the carbon emission reductions improves to 13.9%,

a 63.5% improvement in emissions reduction. This is because higher

energy storage penetration can offset more loads that have high

emissions footprint. Further, if all the transformers have energy

storage, the reduction in carbon emission is 19.12%.

Result: Even a modest 1-hr battery can yield up to 19% reduction in
carbon emissions. Larger batteries and higher penetration levels will
provide much higher reductions.

7 RELATEDWORK
Energy Storage Systems in the Electric Grid. There has been signif-

icant work on using energy storage in the electric grid [13, 15].

However, the majority of work has focused on improving grid sta-

bility or cost arbitrage. Our work focuses on using energy storage

to reduce grid carbon emissions.

Additionally, shifting the energy demand has been suggested in

the literature by introducing flexibility in loads through a mech-

anism called demand response [11, 29]. Monetary incentives are

set aside to compensate for the customers participating in demand

response. However, demand response involves customer buy-in and

often include installing specialized hardware on the electric loads,

which may not always be feasible. On the contrary, grid operators

around the world can readily employ our approach by utilizing

carbon intensity values from the set of power plants they control.

Load Forecasting. In smart grids research, load forecasting is a

widely studied problem. The regression techniques used to solve

this problem range from traditional time series approaches such as

ARIMA [24] to neural network [20]. Traditionally, grid-level load

forecasting was used to assess power systems security, schedule

maintenance services, etc. Our regression model produces forecasts

at the transformer-level and improves over the state-of-the-art

technique [20].

Robust Optimization for Scheduling in Smart Grid. Robust opti-
mization has been extensively used to solve different problems in

different application domains that deal with uncertainty, including

smart grid. Some examples are generator placement [31, 32], EV

charging scheduling [21], storage sizing [19]. As compared to the

other stochastic approaches it has several advantages: (1) it does

not require stochastic modeling of uncertain parameters in terms

of probability distribution functions; (2) by defining the notion of

budget of uncertainty [4], its provides a design space to trade-off

between the robustness and performance of the decision making.

Note that the notion of uncertainty set has been used in other the-

oretical approaches such as competitive analysis [12], however, the

algorithm approach used in [12] is problem-specific and cannot be

applied to our emission-aware scheduling scenario.

8 CONCLUSION
The benefits of distributed energy storage have been previously

studied for grid optimizations such as peak shaving, price arbi-

trage, and demand-response. However, in this work, we focus on

using distributed energy storage to reduce the emission footprint

of electricity generation. Our main insight is that energy storage

can help utility companies reduce the reliance on less efficient and

most carbon-intensive power plants, shifting electric demand from

high polluting periods to low polluting periods. We formulated the

problem of emission-aware scheduling as an optimization prob-

lem with the objective of minimizing the carbon emission, subject

to transformer and storage operational constraints. Given the dy-

namics in transformer-level load, we leveraged robust optimization

to handle the uncertainty in load predictions. We evaluated our

emission-aware energy storage scheduling approach on a dataset

containing 100 transformers connected to over 1,340 electric meters

in a city in the Northeastern part of the US. Our analysis showed

that our approach can offset >0.5 million kg in annual carbon emis-

sions, which is equivalent to a 23.3% reduction in the electric grid

emissions.
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