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ABSTRACT
Electricity generation combined with its transmission and distribu-
tion form the majority of an electric utility’s recurring operating
costs. These costs are determined, not only by the aggregate en-
ergy generated, but also by the maximum instantaneous peak power
demand required over time. Prior work proposes using energy stor-
age devices to reduce these costs by periodically releasing energy
to lower the electric grid’s peak demand. However, prior work gen-
erally considers only a single storage technology employed at a
single level of the electric grid’s hierarchy. In this paper, we ex-
amine the efficacy of employing different combinations of storage
technologies at different levels of the grid’s distribution hierarchy.
We present an optimization framework for modeling the primary
characteristics that dictate the lifetime cost of many prominent en-
ergy storage technologies. Our framework captures the important
tradeoffs in placing different technologies at different levels of the
distribution hierarchy with the goal of minimizing a utility’s oper-
ating costs. We evaluate our framework using real smart meter data
from 5000 customers of a local electric utility. We show that by em-
ploying hybrid storage technologies at multiple levels of the distri-
bution hierarchy, utilities can reduce their daily operating costs due
to distributing electricity by up to 12%.
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J.7 [Computer Applications]: Computers in Other Systems—
Command and control
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1. INTRODUCTION
Nearly 40% of energy in the U.S. is consumed in the form of

electricity [28]. Increasing the percentage of electrical energy is an
important part of creating a clean and sustainable energy supply, as
“green” energy, e.g., from solar and wind, is generally consumed
in the form of electricity. In addition, transmitting and distributing
electricity is significantly more efficient than transmitting and dis-
tributing other captive energy sources, e.g., via oil and gas pipelines
or trucks. However, electricity transmission and distribution (T&D)
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costs are non-trivial, and, in some cases, such as New York and
southern California, now dominate generation costs [34]. The cost
and carbon footprint to generate electricity is a complex function of
the electricity demand patterns, mix of generators and fuel sources,
penetration of renewable energy, and T&D efficiency.

A significant fraction of these costs are determined by the elec-
tric grid’s peak power demand. The peak demand influences cap-
ital costs by dictating the capacity (and number) of transmission
lines, substations, transformers, etc., since utilities must size these
to service the peak. In addition, since the “peaking” generators
utilities activate to satisfy demand peaks are significantly less effi-
cient and more expensive to operate than baseload generators that
are continuously active, peak power demands also influence oper-
ational costs. Thus, satisfying even brief peak demand periods has
a disproportionate affect on capital and operational expenses. For
example, recent estimates attribute as much as 20% of the grid’s
generation costs in the U.S. to servicing only the top 100 hours of
peak demand each year [32]. Finally, since energy lost in transmis-
sion and distribution is a function of the square of current, rising
peak demand results in quadratically higher transmission losses.

The importance of reducing peak demand is one of the primary
motivations for Demand Response (DR) programs, which attempt
to coerce consumers into actively shifting their load from peak to
off-peak periods. Since requiring consumers to actively change
their behavior to shift load is often not effective, recent work has
explored the use of energy storage to automatically shift load in the
background, i.e., by storing energy during off-peak periods and us-
ing it during peak periods [22, 29, 30]. Prior work in this area has
generally examined deploying energy storage devices (ESDs) in in-
dividual homes, where the approach can potentially reduce a con-
sumer’s electricity bill if electricity prices vary over time, e.g., such
that peak prices are higher than off-peak prices. In fact, such energy
arbitrage is an explicit use-case cited by Tesla for its new Power-
Wall battery, which is designed for deployment in homes [19].

While prior research, and now commercial products, target en-
ergy storage for homes, such storage can be deployed at any level of
the grid’s hierarchy from the lowest level (at homes) to the medium
level (at distribution transformers) to the top level (at distribution
and bulk power substations). The choice of where to deploy energy
storage presents interesting tradeoffs. For example, using energy
storage in individual homes to reduce the home’s peak demand re-
quires more aggregate storage capacity than employing storage at
a higher level of the grid hierarchy, since each home’s peak de-
mand does not occur at the same time yielding some smoothing
from statistical multiplexing at higher levels. Since prior research
largely focuses on deploying energy storage in homes, it also gen-
erally focuses on only a single type of storage technology: in par-
ticular, batteries [22, 30]. However, while batteries are the only



small-scale energy storage appropriate for homes at current price
points, other ESDs become more feasible at higher levels of the
grid hierarchy. Energy storage technologies differ in their cost, life-
time, energy-efficiency, etc. For example, flywheels exhibit a high
energy-efficiency and lifetime, but have a high self-discharge rates
and cost, while lead-acid batteries exhibit a low self-discharge rate
and cost, but have a shorter lifetime and lower energy-efficiency.

Thus, our hypothesis is that intelligently employing hybrid com-
binations of different energy storage technologies at multiple levels
of the grid’s hierarchy has the potential to reduce costs relative to
deploying only a single storage technology at a single level of the
hierarchy. In evaluating our hypothesis, we make the following
contributions.
• ESD and Grid Modeling. We extensively model important

ESD operational characteristics, including energy density, self-
discharge rate, cycle lifetime, power ramp time, etc., to capture
their tradeoffs. We examine the deployment of different ESDs
using a simple model of the grid’s electricity distribution hier-
archy, which includes the various costs associated with gener-
ating, transmitting, and distributing electricity.
• Optimization Framework. Using our above models, we de-

velop an optimization framework that enables us to examine the
benefit of using different combinations of ESDs at different lev-
els of the hierarchy. The goal of our optimization framework is
to minimize generation costs, including the capital, operational,
and storage costs, for different configurations of ESDs.
• Implementation and Evaluation. We implement our opti-

mization framework and then use it to evaluate in simulation the
cost and benefit of different storage configurations using smart
meter data from 5000 customers of a local utility. In doing so,
we identify key insights into the benefits of different ESD tech-
nologies at different levels of the grid. We find that deploying
hybrid ESDs at an individual level typically improves savings
over any single-technology ESD deployment, while deploying
multi-level hybrid ESDs typically provides the best savings.
Overall, we find that ESDs can reduce distribution-related cap-
ital and operational costs by up to 12%.

2. BACKGROUND

2.1 Electric Grid
The electric grid is an interconnected network for delivering

electricity from suppliers to consumers. Electricity is generated
at power plants, often far from population centers, using different
types of generators and fuels with different operational character-
istics. Generated electricity exits the power plant and is stepped up
to high voltages for long-distance transmission, since high voltages
reduce transmission losses. At a substation near the final destina-
tion, a step-down transformer reduces the transmission voltage for
distribution to both industrial and residential customers. At this
point, distribution lines deliver electricity from the substation to
end-consumers. In this work, we focus primarily on the large num-
ber of small-scale residential consumers in the grid, since they rep-
resent the vast majority of end-points in the distribution network.

2.1.1 Distribution Network
Figure 1 highlights the basic structure of electricity distribution

in the grid. Electricity is fed into a bulk power substation, or a
subtransmission station, which service a few “load areas” of cus-
tomer demand. The bulk power substation routes the electricity to
distribution substations. A distribution substation may then route
the power to thousands of homes [1, 2]. Before being delivered to

Figure 1: Typical electricity distribution hierarchy.

a building, distribution transformers near the building steps down
the voltage of electricity. The number of consumers fed by a sin-
gle distribution transformer varies: several homes may be fed off a
single transformer in urban areas, or rural distribution may require
one transformer per consumer [9].

In general, multiple distribution transformers may be connected
in parallel. However, due to a lack of access to the distribution
graph of an existing network and, for simplicity, in this paper, we
assume the topology of the distribution network as shown in Fig-
ure 1. We base this simple model on information that is available
in public domain [1, 2, 9], and use it in our experimental evalua-
tion. Here, we assume each distribution transformer supports five
homes, each distribution sub-station serves 500 transformers, and
two distribution sub-stations are served by one bulk power substa-
tion. While our absolute results are specific to this simple model of
a distribution network, we believe that many of our key insights are
applicable to a range of real topologies, since we base our topology
on publicly-available information. Importantly, our methodology
and analyses extends to other types of distribution networks.

2.1.2 T&D Losses in the Grid
A fraction of electricity is lost in transmission and distribution.

In the US, nationally, roughly 6% to 6.5% of the total electricity is
lost each year [25]. Losses are generally divided equally between
transmission and distribution. For example, in New York, transmis-
sion losses accounted for a total of 3.18% loss, while distribution
losses accounted for the loss of 3.3% of the total annual electric-
ity [5]. We use these loss values in our evaluation.

2.2 Electric Utility’s Generation Costs
An electric utility generates, transmits, and distributes electricity

for sale in the electricity market [10]. A consumer’s electric bill is
generally divided into three categories related to electricity’s gen-
eration, transmission, and distribution, as listed below [18, 11, 7].
Energy Charge. Consumers are charged based on the total amount
of energy, in kilowatt-hours (kWh), they consume over a billing
period. This charge incorporates the cost for a utility to generate
the energy or buy the energy on the open market.
Distribution Charge. Consumers are charged a fee to enable utili-
ties to recover the cost of operating and maintaining the distribution
system. This charge typically has two components: an energy com-
ponent, based on the amount of kWh consumed over the billing
period, and a peak power component, based on the highest peak
power demand in kilowatts (kW) over the billing period [18].
Transmission Charge. Consumers are charged a fee to enable util-
ities to recover the costs related to the delivery of electricity over
high-voltage transmission lines. This energy is generally purchased
from a third-party and not generated by the local utility. As with



the distribution charge, this charge has an energy component and a
peak power component [18].

In some cases, consumers are not charged for energy, distribu-
tion, and transmission individually, but rather, the charges are in-
cluded as part of the electricity rate. In addition to these costs,
utilities also have expenditures related to the cost of materials and
supplies and capital (including depreciation).

Expenses that are dependent on the total energy consumption
are dictated by the pattern of end-user consumption, which can-
not be controlled by a utility. However, the generation, transmis-
sion, and distribution costs incurred as a result of demand peaks
can be reduced by curtailing the peaks. In addition, reducing de-
mand peaks enables utilities to gain savings from avoided electric-
ity costs, which include the marginal cost to produce and deliver
one more unit of electrical energy. The avoided cost consists of
two components—avoided energy costs ($/MWh) and avoided ca-
pacity costs ($/kW-month) [4]—which represent lower generation
costs and the need for less peak capacity from lower peak demands.

2.3 Energy Storage to Lower Utility’s Costs
Energy storage devices can be used to store energy during low

demand periods, which can then be used later to satisfy customer
demands during peak demand periods, thereby reducing the net
peak on the higher levels of the grid. As capital and operational
expenses of the grid are largely determined by the peaks, energy
storage can cut these expenses for the grid.

2.3.1 Energy Storage Technologies
We examine the potential for the following energy storage tech-

nologies to reduce an electric utility’s distribution costs.
Compressed Air Energy Storage (CAES): With Compressed Air
Energy Storage, off-peak grid power is used to compress air un-
derground. Later, when the energy is needed, this compressed air
is released to power an electric generation and produce electricity.
These systems are typically large, often requirings significant real-
estate for storing compressed air [23], e.g., underground tanks.
Ultra-capacitors (UC): Ultra-capacitors operate similarly to elec-
trostatic capacitors, except that they can hold significantly more en-
ergy in a size similar to that of conventional capacitors [21]. UCs
are now often being used for large-scale uninterruptible power sup-
plies (UPS) in data centers, hospitals, industrial buildings, etc. [17].
Flywheels (FW): Flywheels store kinetic energy in rotating discs.
These discs are made to turn a generator for producing electricity.
Flywheels can be very efficient in storing energy over short dura-
tions; however, they have high self-discharge rates due to losses
from friction [21, 12]. One example of a flywheel energy storage
plant is the Beacon Power plant in New York [8].
Lead Acid batteries (LA): Lead-acid batteries are one of the most
widely used energy storage devices. They have long been the pri-
mary technology for stationary energy storage at both grid-scales
and in off-grid homes [15].
Lithium-Ion batteries (LI): Lithium Ion batteries are the most
popular type of rechargeable batteries; they are known for their
relatively high efficiency and energy density [16]. Lithium Ion bat-
teries are the primary technology in mobile systems, e.g., electric
vehicles, due to their light weight in comparison with lead acid bat-
teries. However, these batteries are now being deployed in conjunc-
tion with renewable energy to provide energy storage for homes, as
evidenced by Tesla’s recent introduction of the PowerWall home
battery based on lithium-ion technology [19].

While diesel generators, and other captive sources can also be
considered energy storage devices, we do not consider them sepa-
rately here. Pumped hydroelectric is another widely used storage

ESD CAES UC FW LA LI
Efficiency (%) 68 95 95 80 85
Discharge:Charge Rate 4 1 1 10 5
Self-discharge (%per day) low 20 100 0.2 0.1
Energy Density (Wh/L) 6 30 80 80 150
Power Density (W/L) 0.5 30000 1600 125 450
Ramp Time (sec) 600 0.001 0.001 0.001 0.001
Max DoD (%) 100 100 100 80 80
Energy Cost ($/kWh) 50 500 1000 200 525
Cycle Lifetime 15000 100000 12000 2000 5000
Expected Lifetime (Years) 20 20 15 4 10

Table 1: ESD Parameters [23] [21] [39] [35]

technology in the grid; however, since it requires significant infras-
tructure, it is not readily deployable in the distribution networks.

2.3.2 Energy Storage Characteristics
Below we list key characteristics of the energy storage devices

that are relevant to our optimizations. Table 1 list the default values
of the parameters used in our study, which we derive from var-
ious scientific studies. Note that these parameters are inputs to
our framework and while they vary significantly across technolo-
gies, we do not further consider the impact of varying them for a
particular storage technology We are specifically interested in how
these characteristics yield different trade-offs when placing various
storage technologies at different levels of the distribution hierarchy
to minimize a utility’s distribution costs. We model the following
characteristics:
Energy Storage Capacity: The energy storage capacity represents
the total amount of energy that a device can store. Generally, the
capacity is expressed in kilowatt-hours (kWh).
Maximum Charge and Discharge Rates: Usually expressed as E-
rate, the maximum charge and discharge rates are a measure of the
rate at which a battery can be charged or discharged relative to its
total capacity [3]. For example, a 2E discharge rate is the discharge
rate necessary to fully discharge the battery in half an hour.
Efficiency: Use of energy storage results in energy loss due to en-
ergy conversion. We employ a constant efficiency factor for each
energy storage technology to capture these losses; e.g., typical lead-
acid batteries are 80% efficient.
Self-Discharge Rate: The self-discharge rate is a phenomenon in
energy storage by which the ESD loses stored energy merely with
passage of time. The self-discharge rate can be significant for some
technologies, such as flywheels. For energy storage technology k
we model its self-discharge per unit time as a constant factor µk.
Cycle Lifetime: A ESD’s lifetime is usually expressed in terms of
number of charge-discharge cycles. Typically, ESD lifetime is mea-
sured based on the number of cycles as a function of the depth of
discharge (DoD). For a given energy storage technology, we limit
its DoD and the number of charge-discharge cycles at the given
DoD over a given time horizon; thereby, we control the lifetime of
an energy storage device, and capture its amortized per unit energy
storage cost over its lifetime in our model.
Energy Density: The energy density is the nominal battery energy
per unit volume (Wh/L). The energy density determines the battery
size required to achieve a given energy output [3].
Power Density: Power density is defined as the maximum avail-
able power per unit volume (W/L). The power density determines
the battery size required to achieve a given power output [3].
Power Ramp Time: The Power Ramp Time is the start-up latency
associated with a given energy storage technology before it can



start delivering its maximum power. This ramp-up is similar to
the start-up acceleration in vehicles. Ramp times of most storage
devices are very low, however for compressed air storage the ramp
time may be several minutes.

3. PROBLEM STATEMENT
Although energy storage can reduce peaks and cut costs, the

problem of storage deployment presents several interesting trade-
offs. Peak reduction at a given level of the grid’s hierarchy enables
provisioning the infrastructure at that level, as well as higher lev-
els, for a lower peak. Therefore, storage deployment at lower lev-
els of the hierarchy appears more beneficial than reducing the peak
only at higher levels. However, in general, peaks at higher levels
of the hierarchy are smaller than the sum of individual peaks at
the lower levels, such as at homes; this occurs because individual
homes peak at different times. The statistical multiplexing gains
due to the spreading of individual peaks over time makes aggre-
gate peaks at higher levels smaller. Therefore, deploying energy
storage at the higher levels would require much less energy storage
capacity, and hence lower aggregate energy storage costs.

In addition to deployment choices, the choice of storage tech-
nologies also presents tradeoffs in their cost, lifetime, efficiency,
energy density, etc. For example, compressed air energy storage
has a low energy cost and long expected lifetime, but a low en-
ergy efficiency and requires significant space for deployment. In
contrast, lead-acid batteries have a higher energy-efficiency and a
smaller form-factor, but also much higher energy costs and much
shorter expected lifetime. Furthermore, different storage technolo-
gies are suitable for shaving different types of peaks: compressed
air storage is suitable for wide peaks, lead-acid batteries work well
for less frequent medium-width peaks, and ultra-capacitors are best
for very narrow peaks (up to a minute). Since the nature of the peak
demand depends on the level of the grid hierarchy—medium-width
peaks are more likely at homes, whereas wide peaks are frequent
higher in the hierarchy—the best choice may differ at each level.

In this work, we address the problem of deploying energy stor-
age across a distribution grid hierarchy to cut a utility’s distribu-
tion costs. As there are a number of variables involved, such as
large distribution hierarchies, time varying demand profiles, differ-
ent types of storage technologies, and a range of electricity pricing
plans, it is not easy to formulate a heuristic solution for this prob-
lem. Therefore, we frame it as an optimization problem. We define
the problem as follows: given an electricity distribution network,
an estimate of power demands, and a set of available storage tech-
nologies, the problem is to find an optimal sizing and placement
of energy storage devices across the distribution hierarchy so as to
minimize a utility’s expenses (Section 2.2) for distributing electric-
ity. Our framework is general enough to provide storage provision-
ing solutions for a range of consumption profiles, electricity pricing
plans, storage technologies, and distribution networks.

4. ENERGY STORAGE PROVISIONING
AND CONTROL FRAMEWORK

We now present our optimization framework for energy storage
provisioning. We intend the framework to provide storage deploy-
ment solutions for a distribution hierarchy with the goal of opti-
mizing a utility’s cap-ex and op-ex. Inputs to the framework in-
clude power demand, the distribution network topology, and cap-ex
and op-ex costs. The framework solution then outputs the optimal
choice, placement, and size of energy storage devices across the
hierarchy, along with optimal energy storage control patterns.
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Figure 2: Illustrative graph depicting distribution hierarchy

Throughout the formulation we assume the grid distribution net-
work is a directed graph G = (V,E)—as shown in Figure 2—
where V is the set of nodes (i.e., homes, distribution transform-
ers, substations, etc.) and E represents the directed edges between
these nodes. In Figure 2, circles and squares represent the nodes,
and arrows represent the edges. Two types of nodes are shown in
the figure: squares are the leaf nodes and circles are the non-leaf
nodes. In the distribution network, leaf nodes typically represent
homes. In our formulation, all leaf nodes are represented by the set
labeled LeafNodes. Node r (Figure 2) represents the root node. Fi-
nally, across the formulation, k represents the k-th energy storage
technology (out of K) and t is the time interval (between 1 to T ).

4.1 Inputs
Power Consumption (Demand): Broadly, there are two types

of problems associated with energy storage deployments in the
grid’s distribution network. The first problem is determining the
proper energy storage capacity and where in the hierarchy to deploy
it. The second problem is determining how to charge-discharge
the energy storage device to clip the peaks and realize cost sav-
ings. In this paper, we solve the first problem—the energy storage
sizing and deployment problem, i.e., figuring out how much en-
ergy storage should be deployed and where. Therefore, we assume
that historical power consumption traces are available, and we use
these for future provisioning of storage in the distribution network.
We assume that prior work can be employed to derive an accurate
power demand time-series at each home (e.g., [20] [37]). Further,
utilities have extensive power consumption logs over time for their
customers, which can also be used as an input to our optimization
framework. We divide time into T slots, each of length I . For home
u we assume its power demand to be a time series UsrDmndu,t,
where t ∈ [1, T ]. We present results for both real and synthetic
consumption power time series.

Capital Expenditure (Infrastructure Cost): We model two
types of infrastructure costs: first, maintenance and upgrade cost,
second, avoided (or marginal) capacity costs. These costs vary sig-
nificantly between utilities and between locations within utilities:
ranging from $2.51/kW/month to $46.34/kW/month [27, 26, 6].
In our experiments, we consider a cap-ex saving in the range
of $6/kW/month to $30/kW/month resulting from peak reduction.
These savings are obtained by reducing a watt of consumption from
the maximum power draw Peakmax_orig

u . At any time t, power
draw at node u is given by the sum of power draws of all the nodes
in the sub-tree with root at the node u at time t and net energy
drawn by the energy storage devices at its vicinity; the sum is de-
noted byDemandu,t. The corresponding size of the tallest shaved
peak at u is denoted by Peakshvdu .

Operational Expenditure (Tariffs): Electricity tariffs are good
indicators of the operational costs incurred in distribution of elec-
tricity. Most prevalent electricity tariff models charge customers
for their total energy consumption, i.e., customers have to pay a



flat $Cunit
e /kWh of their consumption. Recently, to shave the peak

demand on their grids, utilities have introduced a peak penalty on
the tallest consumption peaks across the billing cycle. Typically,
the peaks are computed as a sliding window of 30 minutes over the
billing period. End users then pay a penalty of $b/kW based on the
tallest peak. For a utility, this peak penalty translates to the energy
charged in generating the peak power and the cost incurred in rout-
ing the electricity to the distribution network (as in [14]). Note that
our model for the value of peak reduction derives directly from the
way electric utility companies charge for the peaks, therefore the
marginal value of peak reduction is constant.

Our model for capital and operational expenditure for the util-
ities is derived from the information available in electricity bills
and reports published by the utility companies, as reported in [4,
6, 7, 11, 18]. As utilities pass on their costs to the customers, we
believe utility bills closely model the actual expenses of electric
utility companies. In addition, several real-world factors, such as
resource availability and market price, affecting utility expenses
are accounted for while computing the avoided costs. For exam-
ple, among other factors, [6] accounts for wholesale electric energy
price, projections of natural gas prices, generation capacity costs,
cost of controlling CO2 emissions, and the effect of implementa-
tion of anticipated federal regulations.

4.2 Optimization Problem Formulation
Decision Variables: All notations used in the framework are

summarized in Table 2. Our decision variables capture both the
sizing and placement of energy storage and how to operate it to
minimize the peak demand. The energy storage capacity of a stor-
age technology of type k deployed at node u is denoted by Ck,u.
The average power fed into and drawn out of an energy storage
device at u during time slot t is denoted by Sk,u,t and Dk,u,t.

Optimization Objective: Our optimization objective is:

Minimize(CapEx + OpEx + StorageCost) (1)

The objective function has three components: capital expenditure
(CapEx), operational expenditure (OpEx), and StorageCost. Each
component is normalized to our experiment’s time horizon.

CapEx includes the capital expenses due to infrastructure de-
ployment for electricity distribution. Assuming αu is the main-
tenance, upgrade, and marginal capacity costs for each watt of in-
frastructure provisioning at node u, CapEx is given by equation (2).

CapEx =
∑
u∈V

Peakshvdu ∗ αu (2)

OpEx is the expected utility operational costs in electricity distri-
bution and can be represented as in (3). The OpEx has three compo-
nents, respectively: peak surcharge paid on the tallest demand peak
served by the utility, electric energy cost paid on the total electricity
served to the customers, and additional avoided costs of electricity
incurred as a result of inefficiencies in energy storage devices.

OpEx = Peakshvdroot ∗ b+
∑
t

Demandroot,t ∗ I ∗ at

+
∑
k,u,t

(Sk,u,t −Dk,u,t) ∗ I ∗ γ
(3)

In the above, b is the per unit surcharge ($/kW) on the tallest peak
and at is the unit cost of electricity at time t. Peakshvdroot is the tallest
peak seen at the root node, which incurs the peak surcharge. γ is the
avoided electric energy cost (AEEC in $/MWh), as some energy is
lost in the energy storage conversion process, this lost energy incurs
extra avoided costs which is added to the utility operational costs.

Note that Demandroot,t captures the total load including losses in
transmission and storage charge-discharge.

StorageCost is the cost of energy storage deployment across the
grid, given by (4), where βk,u is the amortized cost of the energy
storage device k at node u per unit energy adjusted to its lifetime.

StorageCost =
∑
u,k

Cu,k ∗ βk,u (4)

The lifetime of an energy storage device depends on several fac-
tors such as the depth of discharge (DoD)—a battery lasts longer
for smaller DoD. The value of βk,u is an input and is determined
by the DoD and the set number of charge-discharge cycles over the
time horizon. In this paper, in addition to the storage costs, βk,u
includes the cost of the power conversion system, balance of plant,
operation and maintenance [21].

Constraints: We assume that the state of charge in all storage
devices at the end of the time horizon is same as their state at the
beginning, as stated in (5).

Ek,u,1 = Ek,u,T+1, ∀k, u (5)

At any time, an energy storage device can only store energy be-
tween a lower threshold dictated by its allowed depth of discharge
and a maximum capacity; this is captured by (6).

(1−DoDmax
k ) ∗ Ck,u ≤ Ek,u,t ≤ Ck,u,∀k, u, t (6)

For each storage device, the rate at which energy can be drawn
from and fed into the device is bounded by its discharge (rdischk )
and charge (rchargek ) rates, as determined by the underlying storage
technology. This is captured in equations (7) and (8).

0 ≤ Dk,u,t ≤ Ck,u ∗ rdischk , ∀k, u, t (7)

0 ≤ Sk,u,t ≤ Ck,u ∗ rchargek , ∀k, u, t (8)

Equation (9) is the energy conservation constraint, which states
that the total energy drawn out of the energy storage is never greater
than the energy charged to the battery multiplied by the storage
efficiency (ek).

T∑
t=1

Dk,u,t ≤ ek ∗
T∑

t=1

Sk,u,t,∀k, u (9)

Demandu,t =
1

η

 ∑
v:(u,v)∈E

Demandv,t

+
∑
k

Sk,u,t

−
∑
k

Dk,u,t, ∀u ∈ (V − LeafNodes), t

(10)

Net power consumption at any non-leaf node u at time t, denoted
by Demandu,t, is determined by the sum of net power consump-
tion at all its child nodes and the net power drawn/delivered by
the energy storage devices deployed at the node, equation (10). (η
takes care of the electricity lost due to transmission inefficiencies
between node u and its children.) For example, in Figure 2, if trans-
mission efficiency is 100%, the net power draw at node u1 is given
by the sum of net power drawn at its child nodes v1, v2 and the
storage devices at u1. On the other hand, net power draw at the leaf
nodes, i.e., homes, is given simply by the sum of home’s electricity
demand and net electricity drawn/delivered by energy storage at the
home, as in equation (11).

Demandu,t = UsrDmndu,t +
∑
k

Sk,u,t

−
∑
k

Dk,u,t,∀u ∈ LeafNodes, t
(11)



Symbol Notation
Ck,u Capacity of the k-th energy storage device (ESD) at

node u of the grid hierarchy
Cunit

e Unit cost of energy
at Unit cost of electricity in interval t
Dk,u,t Average power drawn from the k-th energy storage

at node u of the grid hierarchy in time interval t
DoDmax

k Maximum depth of discharge for k-th type of stor-
age

Ek,u,t Energy stored in k-th storage device at node u of
the grid hierarchy in interval t

ek Efficiency of storage type k
I Length of each time interval
Demandu,t Net power demand on grid at node u in interval t
UsrDmndu,t User consumption at home node u in interval t
Peakshvdu Maximum shaved peak seen by the node u
Peakmax_orig

u Maximum original peak seen by the node u
b $/kW penalty on the tallest consumption peak
rchargek Storage charging E-rate for the k-th energy storage
rdischk Storage discharge E-rate for the k-th energy storage
Rramp

k Output power ramp up time of storage k
Sk,u,t Average power fed into the k-th storage at node u

in interval t
T Total number of time intervals
φenergy
k Energy density of k-th storage technology; nominal

energy per unit volume
φpower
k Power density of k-th storage technology; nominal

power per unit volume
V max
u Maximum volume available for energy storage de-

ployment at node u
αu Cost savings for each watt of under-provisioning at

u
βk,u Amortized cost of storage k per unit energy ad-

justed to its lifetime
γ Avoided electric energy cost ($/MWh)
η Electric transmission efficiency in the distribution
µk Self discharge rate of storage technology type k

Table 2: Optimization framework notations

Equation (12) bounds the tallest peak (Peakshvdu ) seen by u.

0 ≤ Demandu,t ≤ Peakshvdu , ∀u, t (12)

We also model the following energy storage characteristics in
our framework, which are presented in the Appendix: the rate at
which output power of a battery can increase, as some energy stor-
ages (such as compressed air) may take up to few minutes before
delivering maximum rated power; battery self-discharge, as batter-
ies lose some energy simply with passage of time; lifetime of the
storage, as it affects the costs in the long term; volume needed for
deploying energy storage, as some form of storages may need sig-
nificant space, e.g., flywheels.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup and Methodology
Configuration and Parameters: Our evaluation uses the grid dis-
tribution hierarchy shown in Figure 1. As explained in Section 2,
we assume each distribution transformer supports five homes, each
distribution substation serves 500 transformers, and two distribu-
tion substations are served by one bulk power substation. Storage
devices can be placed at any of the levels in Figure 1. For simplic-

Avoided Energy Cost (γ) $3.53/MWh [6]
CapEx(Low) $6/kW/month
CapEx(Medium) $15/kW/month
CapEx(High) $30/kW/month
Energy cost (Contract pricing) $ 0.05/kWh
Peak Penalty (Transmission + Energy) $20/kW/month
Volume V max

homes 10L (∼Car Battery)
Volume V max

transformer 25L (∼2.5X Car Battery)

Table 3: Experiment Parameter Values.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

CapEx(Low) CapEx(Medium) CapEx(High)

%
 C

o
m

p
o
s
it
io

n

Capital Costs
Peak Costs

Figure 3: Composition of capex and peak penalty costs for
Long-Term Contract.

ity, we present results at three levels: Homes, Transformers, and
Substations, including distribution and bulk power substations.

We evaluate our framework with two op-ex cost models: a long-
term contract and day-ahead model. Long-term contract represents
the scenario where the utility either owns most of its generation
or buys its energy from third parties under contracts. We adapt
a real utility contract, available at [14], for evaluation. Since we
include distribution costs as part of the distribution cap-ex costs,
we subtract the distribution costs from the peak penalty and use
the final values in Table 3. Day-ahead represents the case where
a utility buys all of its electricity in day-ahead markets. How-
ever, the utility still incurs the peak penalty due to transmission.
We use the day-ahead prices for March, 2014 from ISO New Eng-
land [13]. We consider the cap-ex costs ranging from low to high,
where low = $6/kW/month, medium = $15/kW/month, and high =
$30/kW/month ( [27, 6, 26]).

The exact distribution of cap-ex, i.e., infrastructure cost (α), for
the grid’s distribution hierarchy is not available. Thus, in this paper,
we assume these costs are equally split across all the levels. As the
space available at homes and distribution transformers is limited,
we use a conservative value of 0.01m3 (or roughly the size of a car
battery) for the energy storage volume at homes; for transformers
we set the volume to 0.025m3. Substations are built on large ar-
eas, so we do not constrain the available volume at substations. All
results have been amortized to daily costs and savings, which in-
cludes the amortized cost of storage over its lifetime. We present
results for the five ESDs, i.e., K = 5, discussed earlier.

We use the terms hybrid or multi-level energy storage to imply a
combination of different storage technologies at a given node. Note
that by using real-world day-ahead market prices and real utility
consumption traces, we experiment with fine-grained time-varying
prices and power consumption. Also, as we are solving an opti-
mization problem, the computed storage values can be fractional.
Although the computed numbers could differ from the actual stor-
age capacity deployed in practice, we do not expect significant de-
viations from the computed values.
Workloads: For empirical evaluations, we use power consump-
tion traces obtained from a local electric utility collected over one
month (March 2014). Our traces are representative of consumption
in a real electric grid. The traces contain power consumption data
from 5000 homes at five minute granularity. In aggregate, we have
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Figure 4: Electricity demand on a representative weekday.

more than 1.4 million unique power measurements. The average
daily energy consumption of individual homes in our traces range
from 15 kWh to 73 kWh.

Figure 4 shows the aggregate grid demand on a representative
weekday. The figure shows that the homes peak between 6AM to
9AM (breakfast peak) and 6PM to 9PM, i.e., at dinner time. The
pattern is expected based on typical work patterns, where home’s
electrical activity is concentrated after office hours. Throughout
this paper, unless specified otherwise, we compute the peaks at a
30 minute granularity. To gain insights into the results, we present
a detailed analysis of our results on a randomly picked weekday.
Later, we present the results on traces for March, 2014.

5.2 Potential Savings from Storage
Can Energy Storage Reduce Distribution Costs? We first eval-
uate the savings from deploying only lead-acid batteries at a single
level, i.e., either at homes, or transformers, or substations. Fig-
ure 5(a) shows the percentage distribution cost savings correspond-
ing to a low, medium, and high capital expenditure for the long-
term contract pricing plan. Figure 5(a) depicts the daily percentage
cost savings for long-term contract, which shows that even a lead-
acid deployment only at homes under a low cap-ex can cut costs by
3.75%. Savings increase as cap-ex increases. Also, note that for
all single-level deployments, deployment at homes shows the max-
imum savings. This happens because peak shaving at the lowest
level (homes) provisions the infrastructure at all levels for a lower
peak, thereby saving significantly in cap-ex. In contrast, savings
from deployments at the transformer-level are the lowest because
of the limited volume availability, which is much smaller than at
homes and substations.
Result: Deploying energy storage, in this case lead-acid batteries,
at a single level of the hierarchy modestly reduces costs. Deploying
at the lowest level, i.e., in homes, shows the greatest savings, since
it also affects peak demands at higher levels.
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Figure 5: Savings from deploying lead-acid battery storage at
(a) single level and (b) multiple levels under the long-term con-
tract pricing plan.

Is Multi-Level Energy Storage Deployment Beneficial? Since
related work suggests deploying lead-acid batteries only at homes,
we next evaluate the impact of deploying lead-acid batteries across
multiple levels of the hierarchy on savings. Figure 5(b) compares
the savings from multi-level lead-acid deployment with its deploy-
ment only at homes (single-level). Savings are shown correspond-

ing to low, medium, and high capital expenditures under the long-
term contract pricing plan.

For all cap-ex values, savings from a multi-level deployment sur-
passes that of a single-level deployment at homes. In addition, for
high cap-ex, the daily cost savings from multi-level lead-acid en-
ergy storage deployment shows an increase of more than 60% com-
pared to single-level deployment at homes.
Result: Deploying one ESD type, in this case lead-acid batteries,
at multiple levels of the grid’s hierarchy further increases the cost
savings up to an additional 60%.

Is Hybrid Energy Storage Deployment Beneficial? We next
evaluate the additional savings possible from deploying multiple,
i.e., hybrid, storage technologies at any given (single) level over a
corresponding lead-acid storage deployment.

Figure 6 compares the percentage cost savings from hybrid en-
ergy storage deployment at single levels with the corresponding
lead-acid deployment. Savings are shown for storage deployment
at homes, transformers, and substations. Figure 6(a) and (b) shows
results for the long-term contract, 6(a) is with low capex and 6(b)
is with high capex.

We find that deploying hybrid energy storage boosts savings
compared to lead-acid deployments, e.g., in Figure 6(a) hybrid en-
ergy storage at substations increases savings by 103%. Note that as
opposed to our observation in Figure 5(a), in Figure 6(a), savings
for hybrid deployment at substations is higher than that of homes.
This occurs because under low cap-ex, substations can save more
from greater peak shaving with hybrid energy storage, in large part,
because there is no volume constraint at substations. However, as
cap-ex increases, it becomes a greater component of the cost (as
shown in Figure 3); as a result, the savings from deployment at
homes is more than the substation’s savings for high cap-ex.
Result: Employing multiple ESD technologies in hybrid further
increases savings relative to only using lead-acid batteries at
any single level to as much as ∼10%. Hybrid deployments are
able to best match the usage pattern at any given level with the
characteristics of the energy storage device.
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Figure 6: Savings from deploying hybrid storage technologies
at a single-level for low and high cap-ex costs under long-term
contract.

Is Multi-Level Hybrid Energy Storage Deployment worth it?
Figure 7 shows how a multi-level multi-technology storage deploy-
ment can further increase savings over, first, any single level multi-
technology deployment ( 7(a)), and second, any multi-level lead-
acid (single storage technology) deployment ( 7(b)). Savings are
shown for low, medium, and high values of cap-ex. Figure 7(a)
shows that multi-level hybrid solution outperforms all the single-
level hybrid solutions under all cap-ex values. For instance, 52%
improvement over best single level solution under high cap-ex. We
further find that a multi-level multi-technology storage deployment
saves more than multi-level lead-acid deployment, as shown in Fig-
ure 7(b): for example, 83% increase in savings under low cap-ex.
This increase in savings results from stringent volume constraints at
lower levels, where multi-technology solutions gain an advantage



by including storage technologies with higher power and/or energy
density, as opposed to lead-acid storage.
Result: A hybrid, multi-level deployment results in the greatest
savings, by as much as 12%, since it is able to exploit different
energy storage device characteristics at each level of the grid
hierarchy, which exhibits different usage patterns.
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Figure 7: Multi-Level Hybrid ESDs v/s: (a) Single-level Hybrid
ESDs and (b) Multi-level lead-acid batteries under long-term
contract.

How do the savings change under other pricing plans? While
the above results depict savings for the long-term contract pricing
plan, we have repeated all of the above experiments for the day-
ahead pricing plan. In each case, we find similar cost savings for the
day-ahead pricing when compared to the long-term contract plan.
For example, Figure 8(a) and (b) depicts savings from a multi-level
LA deployment and a multi-level hybrid deployment, respectively.
As can be seen, the corresponding savings under long-term con-
tract pricing, depicted in Figure 5(b) and 7(a), are similar to that
depicted in Figure 8(a) and (b) under day ahead pricing. Since all
experiments show similar results, we omit the remaining graphs for
brevity (see [31] for detailed results). Result: Overall our experi-
ments show that the savings due to energy storage are not specific to
a pricing plan and hold for both long-term contract and day ahead
pricing.
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Figure 8: Savings under day-ahead pricing for multi-level lead
acid batteries and multi-level hybrid storage.

Peak Reduction: Figure 9 shows the aggregate percentage peak
reduction across the grid with lead-acid only, and multi-technology
storage deployments. For each of the cases, we present results for
both single-level deployments at homes, transformers, substations,
and multi-level deployment across the hierarchy. Results are pre-
sented for long-term contract ( 9(a)) and day-ahead pricing ( 9(b)).
Only medium cap-ex numbers are shown, as the numbers for other
cap-ex are similar. Figure 9(a) shows even a lead-acid deployment
at homes achieve a peak reduction of 11.6%, which is further in-
creased to 16.7% by a hybrid energy storage deployment.

As we have seen, hybrid solutions have the advantage of choos-
ing storage technologies with greater power/energy density and dis-
charge rates. In addition, note that peak reductions achieved by
substation and multi-level deployments (both hybrid and lead-acid)
are very close; however, the savings achieved by them are much
different (e.g., 32% difference in Figure 7(a)). Although they get
similar aggregate peak reductions, the multi-level approach saves
more in cap-ex by deploying energy storage devices at the lower
levels. Figure 9(b) shows equivalent results for day-ahead pricing.
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Figure 9: Aggregate Peak Reduction from Lead-Acid only and
Hybrid ESDs for CapEx(Medium).

Result: Hybrid ESD deployments at multiple levels results in
the greatest reduction in peak demand (by as much as 25%)
compared to deploying hybrid ESD at individual levels or using
only lead-acid batteries as the ESD.

Optimal Energy Storage Placement and Configuration: To give
insight about the different types and configurations of storage tech-
nologies selected by our framework, Table 4 presents the energy
storage configuration under the contract pricing for medium cap-
ex. Configuration for the other cap-ex values and pricing are sim-
ilar. To give an idea about absolute numbers, we include dollar
savings and cost values. First, we see that if we are to use a single-
level solution—just lead-acid batteries—deployment at homes does
provide the best savings, because of the cap-ex gains at all lev-
els. Second, volume constraints play an important role in limiting
the benefits of lead-acid batteries in the lower level of the hier-
archy; therefore, a single-level hybrid storage solution is able to
increase savings by deploying a higher energy and power dense
storage device, such as lithium-ion batteries, e.g., 42.5% increase
at the homes. In addition, at substations where there is no volume
constraint hybrid solutions employ a combination of lithium-ion,
ultra-capacitors, and compressed air energy storage and further in-
creases the savings by 15%.

Compressed air is the cheapest form of storage, however, it has
a long start-up delay; ultra-capacitor and lithium-ion can be used
to bridge this delay; ultra-capacitors have a very high power den-
sity, which helps in shaving tall narrow peaks, and their low energy
density is complemented by lithium-ion energy storage. Finally,
with the freedom of hybrid storage for multi-level deployment, we
get maximum savings by deploying lithium-ion at lower levels and
compressed air storage at the top level of the hierarchy.
Result: Using different ESDs at different levels of the grid’s hier-
archy result in significant differences in costs and savings.

Energy Storage Costs: As the numbers in Table 4 show, the cost
of energy storage is a small fraction of the total daily costs without
storage devices. For example, a hybrid storage solution at the sub-
stations is only 1.83% of the total daily cost. A hybrid storage
deployment at lower levels costs more than deploying lead-acid



LA Single Hybrid Single Hybrid MultiLevel
($ save, $ cost) ($ save, $ cost) ($ save, $ cost)

Substations LA LI + UC + CAES CAES
(880.25,416.74) (1544.73,394.27)

Transformer LA LI LI
(558.87,125.0) (841.70,236.25)

Homes LA LI LI
(940.06,249.77) (1340.36,472.20) (2039.53,766.21)

Table 4: Storage Configuration and Placement (Long-term
Contract, Medium capex): (Savings($/day), Storage costs
($/day)). Total cost without storage is $21.5k/day.
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Figure 10: Average daily savings for March (Day-Ahead).

batteries because lithium-ion batteries are more expensive. How-
ever, due to their higher energy and power density they also save
more. Even the most expensive energy storage deployment, i.e.,
multi-level hybrid, incurs less than 3.6% of the total costs; most of
its costs are from the lithium-ion deployment at the lower levels.
Result: The cost of energy storage is a small fraction of the total
daily distribution costs without any energy storage capacity.

5.3 Longer-term Savings
For computational tractability, so far, we have presented results

on a single day. However, to show that the savings hold over longer
periods, we conducted experiments oven an entire month. Fig-
ure 10 shows the average daily cost savings for the month of March,
2014 from our traces. Due to space constraints, savings are shown
only for low and high cap-ex for day-ahead pricing; three types
of deployments are shown: lead-acid at homes, multi-level lead-
acid, and multi-level hybrid. Here, hybrid multi-level can save up
to 11.7% for high cap-ex, and up to 9.8% for low cap-ex, which
outperforms the multi-level lead-acid (low cap-ex) by 190%. The
general trends in the figure are similar to what we have already
seen. As peaks become taller, there is a greater opportunity for
savings.

6. RELATED WORK
Much of the work on DR in the grid using ESDs has focused

on cutting costs for customers with storage in presence of vari-
able electricity pricing. For example, [24] presents an optimization
approach to cut costs using ESDs in presence of spot electricity
prices. Similarly, in [29] authors propose the use of energy storage
in homes to cut their electricity bills under a variable prices [38],
which they model as a Markov Decision Process. However, none of
these approaches specifically look at cutting the costs for the util-
ity. In fact, as noted in [22], such approaches can increase the peak
demand on the grid and thereby increase its op-ex and cap-ex.

In contrast to the work above, the authors in [30] propose the
use of ESDs for cutting peak demand on the grid and reducing
its generation costs. Prior work has also proposed renewable en-
ergy integration to reduce consumption from the grid, e.g., [40, 36].

However, all of these consider ESD/renewable deployment only at
customer premises (homes), and they evaluate their solutions only
for a specific ESD technology. Finally, there has been consider-
able work in cost-aware provisioning and DR for datacenters, e.g.,
[33, 39]. The closest to our work is that done by Wang et al. [39];
here, the authors present a framework for modeling different ESDs,
and the tradeoffs of placing them at different levels of datacenter
power hierarchy. The authors evaluated the proposed framework
using traces from real datacenters. As opposed to this, we have
formulated and evaluated the solution for an electricity distribution
network. We model several distribution network features which are
absent in a datacenter, e.g., power losses in distribution.

7. CONCLUSIONS
In this paper, we study the novel problem of ESD deployment

across distribution grid hierarchy for enabling automated Demand
Response (DR). We present a generalized optimization framework
for ESD deployment and control across the distribution grid hierar-
chy. Our framework can provide ESD provisioning solutions for a
range of consumption profiles, electricity pricing plans, ESD tech-
nologies, and distribution networks. We showed that ESD provi-
sioning can save up to 12% daily costs in distribution for the utility
companies. In addition, we also present several key insights regard-
ing ESD deployment in the distribution network.

Our work has some limitations, which we plan to address as
part of future work. For example, our current model assumes the
marginal value of reducing peak usage is constant, whereas in prac-
tice the marginal value varies with the magnitude of the peak. We
also do not consider the impact of renewable generation, which
may alter the cost of reducing peak demand. Our models assume
linearity to keep the problem tractable, although there are many
characteristics of ESDs, and particularly batteries, that are non-
linear, e.g., capacity as a function of discharge rate due to Peuk-
ert’s law. Finally, while our capital and operational cost estimates
are based on publicly available sources, and we evaluate our sys-
tem over a wide range of possible costs, e.g., high, medium, and
low cap-ex, these estimates may vary widely across utilities, which
would effect the possible savings in the real world. However, our
methodology is general and can be applied to utilities with different
costs and distribution hierarchies.
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APPENDIX
Below are the additional constraints of the framework presented in
section 4. Table-2 defines the notations. Constraint (13) limits the
rate at which an energy storage’s output power can increase, this is

similar to acceleration of vehicles. Here constantk =
rdischk ∗I
R

ramp
k

,

and Rramp
k is the power ramp-up time. As batteries lose some

energy simply with passage of time, we model this battery self-
discharge in constraint (14). constraint (15) bounds the lifetime of
the storage. As the lifetime is primarily determined by the number
of charge-discharge cycles and the depth of discharge, (15) bounds
the number of times an energy storage can be discharged to its al-
lowed depth of discharge in the given time horizon. Finally, we
restrict the maximum volume for storage deployment that might be
available at node u in (16) and (17).

Dk,u,t −Dk,u,t−1 ≤ Ck,u ∗ Constantk, ∀k, u, t ≥ 2 (13)

Ek,u,t = (1− µk) ∗ Ek,u,t−1 + ek ∗ Sk,u,t−1 ∗ I −Dk,u,t−1 ∗ I,
∀k, u, t ≥ 2

(14)

I ∗
∑T

t=1Dk,u,t

DoDmax
k ∗ Ck,u

≤ NumChDischCyclesk, ∀k, u (15)

K∑
k=1

Ck,u

φenergy
k

≤ V max
u , ∀u (16)

K∑
k=1

Ck,u ∗ rdischk

φpower
k

≤ V max
u , ∀u (17)


