
Ecovisor: A Virtual Energy System for Carbon-Efficient
Applications

Abel Souza
University of Massachusetts Amherst

Noman Bashir
University of Massachusetts Amherst

Jorge Murillo
University of Massachusetts Amherst

Walid Hanafy
University of Massachusetts Amherst

Qianlin Liang
University of Massachusetts Amherst

David Irwin
University of Massachusetts Amherst

Prashant Shenoy
University of Massachusetts Amherst

ABSTRACT
Cloud platforms’ rapid growth is raising significant concerns about
their carbon emissions. To reduce carbon emissions, future cloud
platforms will need to increase their reliance on renewable energy
sources, such as solar and wind, which have zero emissions but are
highly unreliable. Unfortunately, today’s energy systems effectively
mask this unreliability in hardware, which prevents applications
from optimizing their carbon-efficiency, or work done per kilogram
of carbon emitted. To address the problem, we design an “ecovisor,”
which virtualizes the energy system and exposes software-defined
control of it to applications. An ecovisor enables each application to
handle clean energy’s unreliability in software based on its own spe-
cific requirements. We implement a small-scale ecovisor prototype
that virtualizes a physical energy system to enable software-based
application-level i) visibility into variable grid carbon-intensity and
local renewable generation and ii) control of server power usage
and battery charging and discharging. We evaluate the ecovisor
approach by showing how multiple applications can concurrently
exercise their virtual energy system in different ways to better
optimize carbon-efficiency based on their specific requirements
compared to general system-wide policies.

CCS CONCEPTS
• Computer systems organization → Cloud computing; Spe-
cial purpose systems.

KEYWORDS
Sustainable computing, operating systems, cloud computing

ACM Reference Format:
Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang,
David Irwin, and Prashant Shenoy. 2023. Ecovisor: A Virtual Energy System
for Carbon-Efficient Applications. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’23), March 25–29, 2023, Vancouver,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575709

BC, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3575693.3575709

1 INTRODUCTION
Cloud platforms are growing exponentially, and have been for some
time, with a recent analysis estimating a 6× increase in their ca-
pacity from 2010-2018, or roughly a 22.4% increase per year [52].
This “hyperscale” growth is being driven by the continual devel-
opment of new and useful, but often computationally-intensive,
applications, particularly in artificial intelligence (AI) and machine
learning (ML) [23]. As they have grown, to mitigate large increases
in their energy consumption and cost, cloud platforms have ag-
gressively optimized their energy-efficiency, e.g., by reducing their
power usage effectiveness (PUE) – the ratio of total datacenter
power to server power – to near the optimal value of 1 [11, 18].

However, further improving energy-efficiency is becoming in-
creasingly challenging, as it is already highly optimized. Thus, con-
tinued growth in cloud capacity will likely result in much larger
increases in energy consumption moving forward. Of course, this
energy growth is also increasing cloud platforms’ carbon and green-
house gas (GHG) emissions, which are causing the Earth’s temper-
ature to rise [41, 53]. The negative environmental effects of cloud
platforms’ hyperscaler growth have begun to receive significant
attention. As a result, all the major cloud providers have announced
aggressive goals for reducing, and ultimately eliminating, their
platforms’ carbon emissions over the next decade, while acknowl-
edging that many of the technologies necessary to achieve these
sustainability goals have yet to be developed [1, 20, 32, 55, 66].

Ultimately, reducing cloud platforms’ carbon emissions will re-
quire them to power their cloud and edge datacenters using cleaner
“lower-carbon” energy sources. A distinguishing characteristic of
clean energy is its unreliability: it is intermittent and not available
in unlimited quantities at any single location all the time. Notably,
clean energy’s unreliability manifests itself in two distinct ways
within our current energy system: i) the unreliability of renewable
power generation and ii) the volatility of grid power’s carbon-
intensity. In the former case, the power generated by zero-carbon
renewable energy sources, primarily solar and wind, at any location
is unreliable because it varies based on changing environmental
conditions. In the latter case, the carbon-intensity of grid power —
in kg·CO2 equivalent per watt (W) — is volatile because it varies
based on the carbon emissions of the different types of generators
the electric grid uses to satisfy its variable demand. As we discuss,

https://doi.org/10.1145/3575693.3575709
https://doi.org/10.1145/3575693.3575709
https://doi.org/10.1145/3575693.3575709

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin, and Prashant Shenoy

both forms of unreliability are important to consider in reducing
cloud platforms’ carbon emissions.

Compared to other industries, computing is uniquely well-
positioned to reduce its carbon emissions by transitioning to cleaner
energy sources, despite their unreliability, for numerous reasons.
Most importantly, computation often has significant spatial, tem-
poral, and performance flexibility, which enables shifting the loca-
tion, time, and intensity of its execution to better align with the
availability of low-carbon grid power and zero-carbon renewable
power [34, 35, 63]. In addition, computation can also leverage nu-
merous software-based fault-tolerance techniques, including check-
pointing, replication, and recomputation, to continue execution
despite unexpected variations in the availability of low-carbon en-
ergy, which may require throttling or shutting down servers [65].

Unfortunately, today’s cloud applications cannot leverage the
unique combination of advantages above to optimize their carbon-
efficiency, or work done per kilogram (kg) of carbon (and other
GHGs) emitted, because current energy systems effectively mask
clean energy’s unreliability from them in hardware. That is, energy
systems have traditionally and implicitly exposed a reliability ab-
straction – the abstraction of a reliable supply of power on demand
up to some maximum – to electrical devices, including servers, via
their electrical socket interface. Of course, in many cases, the energy
system now includes a connection to not only the grid, but also an
increasingly rich local energy system that may include substantial
energy storage, e.g., batteries [57], and co-located renewable energy
sources, e.g., wind and solar [45]. Since energy systems hide their
increasing complexity behind the reliability abstraction, they pro-
vide applications no control of, or visibility into, the characteristics
of their energy supply, i.e., its consumption, generation, or carbon
emissions. Thus, applications cannot optimize carbon-efficiency by
regulating their power usage to respond to changes in grid power’s
carbon-intensity and renewable power’s availability.

To address the problem, this paper presents the design and imple-
mentation of an ecovisor—a software system that exposes software-
defined control of a virtual energy system directly to applications.
An ecovisor is akin to a hypervisor but virtualizes the energy sys-
tem of computing infrastructure instead of virtualizing the comput-
ing resources of a single server. Importantly, an ecovisor enables
applications to handle clean energy’s unreliability within their soft-
ware stack based on their own specific characteristics, performance
requirements, and sustainability goals by leveraging one or more di-
mensions of software flexibility and software-based fault-tolerance.
Ecovisors also enable applications to exercise software-based con-
trol of their virtual energy system to mitigate clean energy’s unreli-
ability. Specifically, instead of temporally or spatially shifting their
computing workload, applications can control their virtual battery
to temporally shift their clean energy usage—by storing renewable
or low-carbon grid energy when it is available for later use.

In some sense, our approach extends the end-to-end princi-
ple [62] to the energy system by i) recognizing that the energy
system’s current reliability abstraction prevents designing carbon-
efficient applications, and ii) addressing the problem by pushing
control of the energy system from hardware into software. Our
approach is also inspired by the exokernel argument from operating
systems that advocates delegating resource management to appli-
cations [31, 43]. Our ecovisor extends this approach by delegating

not only resource management to applications, but also manage-
ment of the energy (and carbon) that powers those resources. Our
hypothesis is that exposing software-defined visibility and control
of a virtualized energy system enables applications to better opti-
mize carbon-efficiency based on their specific characteristics and
requirements compared to general system policies. In evaluating
our hypothesis, this paper makes the following contributions.
Virtualizing the Energy System. We present our ecovisor de-
sign, which virtualizes a physical energy system to enable software-
based control of server power consumption and battery charg-
ing/discharging, as well as visibility into variable grid carbon-
intensity and renewable generation. In particular, our ecovisor
exposes a software API to applications that enables them to control
their use of power to respond to uncontrollable variations in grid
power’s carbon-intensity and renewable power’s availability.
Carbon-Efficiency Optimizations. We present multiple case
studies showing how a range of different applications can use the
ecovisor API to optimize their carbon-efficiency. Our case studies
highlight two important concepts including: i) different applica-
tions use their virtual energy system in different ways to optimize
carbon-efficiency, and ii) application-specific policies can better
optimize carbon-efficiency compared to general one-size-fits-all
system policies. While optimizing energy-efficiency has been well-
studied in computing, there has been little research on optimizing
carbon-efficiency, which is both fundamentally different and the
only metric that really matters for addressing climate change.
Implementation and Evaluation. We implement a small-scale
ecovisor prototype on a cluster of microservers that exposes a vir-
tual grid connection, solar array, and batteries to applications. We
evaluate our prototype’s flexibility by concurrently executing the
case study applications above, and showing that optimizing their
carbon-efficiency on a shared infrastructure requires application-
specific policies. For example, an interactive web service may
use carbon budgeting to maintain a strict latency SLO as carbon-
intensity varies, while a parallel batch job might instead adjust its
degree of parallelism. We release our ecovisor prototype as an open-
source tool that can be used by researchers and practitioners in
developing carbon optimizations: github.com/carbonfirst/ecovisor

2 MOTIVATION AND BACKGROUND
Motivation. In general, sustainable computing focuses on the de-
sign and operation of carbon-efficient computing infrastructure
and applications. This paper focuses on reducing Scope 2 opera-
tional carbon (and other GHG) emissions from using electricity [12],
which represents a significant fraction of cloud platforms’ emissions.
Optimizing Scope 1 direct emissions and Scope 3 embodied emis-
sions are outside our scope. While these other classes of emissions
are also important, cloud platforms have few Scope 1 emissions,
and have no direct control over their Scope 3 emissions.

While cloud platforms have long focused on optimizing energy-
efficiency, optimizing carbon-efficiency is fundamentally different.
To illustrate, consider that a highly energy-efficient system can be
highly carbon-inefficient if its grid-supplied power derives from
burning fossil fuels, while a highly energy-inefficient system can be
highly carbon-efficient if its power derives solely from zero-carbon
renewable energy. As this trivial example shows, a cloud platform’s

https://github.com/carbonfirst/ecovisor

Ecovisor: A Virtual Energy System for Carbon-Efficient Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

 0

 70

 140

 210

 280

 350

12am 12pm 12am 12pm 12am 12pm 12am 12pm 12am

(g
C

O
2

/k
W

h
)

C
a

rb
o

n
 I

n
te

n
s

it
y

Ontario, Canada California Uruguay

Figure 1: Grid carbon emissions for three different regions
showing spatial and temporal variations.

carbon-efficiency depends, in part, on the carbon-intensity of its en-
ergy supply, which varies over time based on variations in both grid
power’s carbon-intensity and local renewable power’s availability.

Since modifying a cloud platform’s operations to adapt to varia-
tions in carbon-intensity, e.g., by throttling workloads when carbon-
intensity is high, is challenging, cloud providers have largely fo-
cused on transparently reducing their net carbon emissions using
carbon offsets. Such offsets are an accounting mechanism that en-
ables offsetting the direct use of carbon-intensive energy by pur-
chasing zero-carbon renewable energy generated at another time
and location [44, 59]. Carbon offsets are attractive because they do
not require complex operational changes to reduce net carbon emis-
sions. Many prominent technology companies have eliminated their
net carbon emissions [1, 32, 55, 66], which they often refer to as
running on “100% renewable energy.” Unfortunately, carbon offsets
do not reduce direct carbon emissions, and become increasingly less
effective as carbon emissions decrease, as there is less carbon left to
offset. In contrast, eliminating absolute carbon emissions will ulti-
mately require cloud platforms to change their operations to reduce
their direct carbon emissions by better aligning their computing
load with when and where low-carbon energy is available.

Reducing direct carbon emissions is challenging largely because
it introduces a new constraint that requires users to voluntarily
making difficult tradeoffs between performance/availability, cost,
and carbon emissions. In general, modifying applications’ design
and operation to reduce their direct carbon emissions decreases
their performance/availability, while also increasing cost, as energy
prices do not (yet) incorporate the cost of carbon’s negative external-
ities to the environment. Importantly, the optimal tradeoff between
performance/availability, cost, and carbon emissions differs across
applications and users. As we show in §5, the policies for reducing
the carbon emissions of delay-tolerant batch applications are sig-
nificantly different from those for interactive web services, which
often must adhere to a strict latency Service Level Objective (SLO).
More generally, though, cloud users, i.e., companies, have widely
different goals, strategies, and tolerances for reducing carbon (at
the expense of increased cost and lower performance/availability),
which cloud platforms do not know. As a result, cloud platforms are
not well-positioned to manage carbon emissions at the system-level
on behalf of their users, which motivates our ecovisor’s approach
of exposing energy and carbon management to applications.

The motivation for our ecovisor’s application-level control of car-
bon is analogous to that for cloud auto-scaling: all cloud platforms
support elastic auto-scaling that enables applications to horizon-
tally or vertically scale their resources in response to variations
in their workload’s intensity [3, 14]. These auto-scaling policies
are application-specific for similar reasons as above, i.e., differing

application requirements and user tradeoffs between cost and per-
formance/availability. Our ecovisor’s API, discussed in §3, enables
similar “auto-scaling” but in response to variations in grid power’s
carbon-intensity and local renewable energy’s availability. A simple
evolutionary path to enabling such “carbon-scaling” using an ecov-
isor is to augment existing cloud auto-scaling APIs. For example,
existing APIs, such as Amazon CloudWatch [38] and Azure Moni-
tor [4], already expose visibility into platform resource usage, and
could easily be extended to include power and carbon information.
In this case, cloud platforms would “delegate” carbon-scaling to
applications just as they currently delegate auto-scaling resources.

While the ecovisor approach could apply to existing cloud plat-
forms, especially those hosted at datacenters with substantial co-
located renewables [45] and energy storage [60], there is currently
no financial incentive to reduce carbon. This is a social problem,
not a technical one. In the end, to halt climate change, govern-
ment policies will likely be necessary to create strong incentives for
monitoring and reducing carbon emissions, either directly, e.g., via
carbon caps, or indirectly, e.g., via carbon pricing or other incentives.
Nevertheless, cloud platforms have already begun to expose visi-
bility into their carbon emissions [10], driven by their customers’
increasing desire to measure and report carbon emissions data.
This combination of customer demand and government policy is
likely to incentivize future cloud platforms to adopt ecovisor-like
mechanisms for measuring and controlling carbon emissions.
Background. Our work assumes a datacenter’s physical energy
system connects to up to three distinct power sources: the electric
grid, local batteries (or other forms of energy storage), and local
renewable generation, such as solar or wind. The power supplied to
the servers (and other computing equipment) is a mix of these three
power sources. Not all facilities will have connections to all three
power sources, and the capacity of each source may vary. For exam-
ple, many large cloud datacenters may not have local renewables,
while smaller edge sites might not require a grid connection, i.e., if
they have enough local renewables and battery capacity to be self-
powered [35]. Importantly, an ecovisor requires software-defined
monitoring and control of both server power and the physical en-
ergy system, i.e., power’s supply, demand, and carbon emissions.

Monitoring Power. An ecovisor must be capable of monitoring
each energy source’s power generation and consumption. Energy
system components commonly expose power monitoring via pro-
grammatic APIs. For example, battery charge controllers, such as
Tesla’s Powerwall, support querying a battery’s energy level, and
its charge/discharge rate from the grid and solar [15], while so-
lar inverters support querying current and historical solar power
generation [15]. Our ecovisor builds on these existing APIs. An eco-
visor must also be capable of monitoring server power consumption.
Most servers include power monitoring functions internally, e.g.,
in hardware exposed to the OS, or externally, e.g., via IPMI [13].

Monitoring Carbon. An ecovisor must be capable of monitoring
grid power’s carbon-intensity in real time. Recently, third-party
carbon information services, such as electricityMap [9] and Watt-
Time [19], have begun providing real-time, location-specific esti-
mates of grid power’s carbon-intensity by tracking the output of
each grid generator, and estimating its carbon emissions based on
the type of generator. Cloud platforms are now using these ser-
vices to provide coarse-grained estimates of each region’s average

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin, and Prashant Shenoy

Containerized App

Ecovisor

Eco Interface

Power/Carbon
Monitoring

Power/Carbon
Control Resource Control

Software Defined Control

Grid
Renewables

Energy Storage

Server
Cluster

or
Data

Center

Energy System Computing System

Virtualized
Energy Res.

C
O

P/H
ypervisor

Control Interface

Virtualized
Energy Res.

App Interface

Containerized App
App Interface

LXD

Figure 2: Our ecovisor’s design uses containers (or VMs) for
resource, energy, and carbon management.

carbon-intensity [8]. Instead, our ecovisor uses these APIs to moni-
tor fine-grained grid carbon-intensity, e.g., every 5 minutes. Figure 1
shows how grid power’s carbon-intensity varies over time at differ-
ent locations. As shown, Ontario has the lowest carbon-intensity
due to its use of nuclear power, while Uruguay has a slightly higher
carbon-intensity due to its use of hydroelectricity. California has
the highest carbon-intensity due to the use of fossil fuels, but also
the highest variability due to its high solar penetration.

Controlling Power. Finally, our ecovisor must be capable of con-
trolling power usage in response to changes in grid power’s carbon-
intensity and renewable energy availability, including regulating
server power consumption and battery charging/discharging, i.e.,
by enabling software to cap the maximum power discharged from
batteries and regulate when and how much to charge batteries
from the grid and renewables. In the former case, there has been
significant prior work on power capping servers and containers
by limiting their resource usage [49, 64]. Our ecovisor leverages
these software-based techniques to cap per-container power. Specif-
ically, our prototype takes a similar approach as recent work [49],
which caps container power by limiting the utilization per core.
In the latter case, battery charge controllers often do not expose
control functions to software, since they implement the reliability
abstraction, which never artificially caps power and always charges
grid-connected batteries to full capacity. However, recently, battery
management systems, such as Tesla’s Powerwall, have begun to ex-
pose these functions in software, which our ecovisor leverages [17].

3 ECOVISOR DESIGN
Figure 2 provides an overview of our ecovisor’s general design,
which uses containers or virtual machines (VMs) as the basic unit
of resource allocation and energy management. We chose a con-
tainer/VM instance-level API, in part, because it aligns with, and
could easily extend, existing instance-level cloud APIs. As we dis-
cuss, an instance-level API can also support higher-level cluster or
cloud-level APIs that provide simplified abstractions for specific
types of applications, such as geo-distributed applications.

An ecovisor integrates with and extends an existing orchestra-
tion platform that already provides basic container (or VM) manage-
ment and monitoring functions, including creating and destroying

containers (or VMs), as well as allocating resources to them. Note
that Container Orchestration Platforms (COPs), such as Kuber-
netes and Mesos, and similar VM orchestration platforms, generally
do not provide sophisticated fine-grained energy monitoring and
management functions. As discussed in §4, our implementation
specifically builds on LXD [51], which is a simple COP that exposes
basic container management functions over a REST API, similar to
Kubernetes and Mesos. We chose to extend a COP for our prototype
because these platforms have become the de facto operating sys-
tems for uniformly managing the resources of large server clusters.
However, while we focus our discussion below on COPs, our design
also applies to similar platforms that orchestrate VMs.

COPs provide distributed applications with the abstraction of
their own virtual cluster composed of multiple containers, each
with a specified resource allocation. These virtual clusters are elas-
tic, such that the number of containers and each container’s allo-
cated resources may grow or shrink over time based on application
demand and resource availability. In particular, applications may
horizontally scale their number of allocated containers as demand
changes, or vertically scale the resources allocated to each container.
COPs include a scheduling policy that determines how to allocate
resources to applications under constraint. There are many possible
resource scheduling policies that optimize for different objectives,
such as fairness, e.g., Dominant Resource Fairness [33], or revenue,
e.g., cloud spot markets [2, 5]. These policies may require the sched-
uler to reclaim (or revoke) resources from distributed applications.
As a result, distributed applications that run on COPs are already
designed to be resilient to resource revocations. As we discuss,
this resiliency is also useful for designing carbon-efficient appli-
cations, since the unreliability of low-carbon energy may cause
power shortages that also manifest as resource revocations.

3.1 Extending COPs with an Ecovisor
Virtual Energy System. An ecovisor extends COPs’ existing API
to provide the abstraction of a virtual energy system, which supplies
power to each application’s virtual cluster. As shown in Figure 2, our
virtual energy system includes a virtual grid connection, a virtual
battery, and a virtual solar array. Applications receive a share of grid
power, the physical solar array’s variable power output, and the
physical battery’s energy and power capacity. While our approach
generally applies to wind power as well, we focus on solar because
it has higher average power density and is more widely available,
Ecovisor Interface. Table 1 shows our ecovisor’s narrow API,
which is composed of three simple and basic types of methods:
getters, setters, and an asynchronous notification.

Getter Methods. The getter and setter methods are synchronous
downcalls. Applications use these methods for simple power and
carbon monitoring, including retrieving their current virtual solar
power output, grid power usage, grid power carbon-intensity, per-
container power caps, and per-container power usage. As discussed
in §2, this information is readily available from the physical energy
system’s components, servers, and carbon information services.
Our ecovisor provides applications a uniform centralized interface
to access this information, and also stores historical data in a time-
series database to support sophisticated queries over historical data.

Setter Methods. Applications use the setter methods to control
their virtual power’s supply and demand. Applications exercise

Ecovisor: A Virtual Energy System for Carbon-Efficient Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 1: Ecovisor’s narrow API that provides application’s visibility and control over their virtual energy system.

Function Name Type Input Return Value Description
set_container_powercap() Setter ContainerID, kW N/A Set a container’s power cap
set_battery_charge_rate() Setter kW N/A Set battery charge rate until full
set_battery_max_discharge() Setter kW N/A Set max battery discharge rate

get_solar_power() Getter N/A kW Get virtual solar power output
get_grid_power() Getter N/A kW Get virtual grid power usage
get_grid_carbon() Getter N/A g·CO2/kW Get current grid carbon-intensity
get_battery_discharge_rate() Getter N/A kW Get current rate of battery discharge
get_battery_charge_level() Getter N/A kWh Get energy stored in virtual battery
get_container_powercap() Getter ContainerID kW Get a container’s power cap
get_container_power() Getter ContainerID kW Get a container’s power usage

tick() Notification N/A N/A Invoked by ecovisor every ∆t

control over their i) power demand by setting their per-container
power caps and ii) power supply by determining when and how
fast to charge their battery, as well as when to discharge the battery
and its maximum rate of discharge. Note that the API does not
include any functions for controlling virtual solar power, since it is
dictated by the environment. Of course, traditional datacenters may
have only grid power with no renewables or batteries. In this case,
applications control their carbon emissions by explicitly setting
per-container power caps to regulate grid power in response to
variations in its carbon-intensity. Datacenters that have batteries
may also perform carbon arbitrage, e.g., by charging their virtual
batteries when carbon-intensity is low and discharging them when
high, in addition to regulating their grid power usage.

When solar power is available, the ecovisor configures an appli-
cation’s virtual energy system to always use virtual solar power first
to satisfy demand. If there is excess solar power after meeting de-
mand, the ecovisor automatically uses it to charge an application’s
virtual battery. If an application has configured its virtual battery to
charge at a higher rate than the excess solar power, then its virtual
energy system supplements the charging up to the specified rate
using grid power, and attributes any carbon emissions from using
grid power to the application. If an application’s virtual battery
fills to capacity, its excess virtual solar power must go somewhere:
while resource schedulers can choose whether or not to be work-
conserving, physics dictates that our virtualized energy system is
energy-conserving. Determining how to handle excess solar power
is a policy decision. For example, an ecovisor may reclaim excess
solar energy and re-distribute it to other applications (if they have
available virtual battery capacity), net meter it back to the grid (if
possible), or rely on the battery charge controller to curtail it.

If there is not enough virtual solar power to meet an application’s
demand, its virtual energy system first uses up to the maximum
specified battery discharge rate to satisfy the deficit. If themaximum
specified battery discharge rate is still not sufficient, then the virtual
energy system finally uses grid power tomake up the difference, and
again attributes any carbon emissions from using grid power to the
application. Importantly, while grid power’s carbon-intensity, solar
power, and container power usage vary continuously, our ecovisor
discretizes and accounts for these values over a small discrete time
(or tick) interval ∆t , e.g., every minute. The virtual energy system

always retains a small amount of virtual battery capacity to store the
maximum solar power output over the tick interval, and accounts
for this solar power output in the next interval. Thus, applications
always know the solar power available in the next tick interval.
Asynchronous Notifications. An ecovisor’s virtual energy sys-
tem abstraction also includes an asynchronous upcall notification
based on the tick interval mentioned above. The tick() method is
akin to an OS timer interrupt and triggers at the same tick interval
over which the virtual energy system discretizes power. Applica-
tions register their tick() method with the ecovisor as a callback
function at startup. Applications can implement sophisticated car-
bon management policies within their tick() method by exam-
ining the the characteristics of their power supply, e.g., current
solar power output, battery charge level, and grid power’s carbon-
intensity, and their application’s characteristics, e.g., container re-
source utilization, power usage, and application-level performance
metrics, and making adjustments to their power supply and demand
to balance potentially competing objectives, such as performance,
energy-efficiency, carbon emissions, and cost. Applications may
also call container and resource management functions within the
tick() method in response to changes in available solar power or
grid carbon-intensity. For example, applications may horizontally
scale their number of containers, or the resources allocated to each
container, as solar power and grid power’s carbon-intensity vary.

There are many other external events that might require an im-
mediate application response, which an ecovisor could also expose
to applications via asynchronous upcalls. For example, a significant
and sudden change in virtual solar power output or grid power’s
carbon emissions, or the virtual battery reaching the full or empty
state. However, since we intend the tick() method to execute at
fine-grained intervals, e.g., every minute, applications are typically
able to recognize and address these external events within their
tick() method. In general, carbon does not change significantly
within a minute, and since our ecovisor always maintains a small
amount of battery capacity to buffer solar, the battery never runs
empty within a tick interval. While a virtual battery may fill up
within a tick interval, it only has the potential to waste a small
amount of excess solar power over the interval.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin, and Prashant Shenoy

Table 2: Example library functions using ecovisor’s API.
Function Name Description
get_container_energy() Energy usage in interval (t1, t2)
get_container_carbon() Carbon usage in interval (t1, t2)
get_app_power() Power usage for an application
get_app_energy() Energy usage in interval (t1, t2)
get_app_carbon() Carbon usage for an application
set_carbon_rate() Set carbon rate for a container
set_carbon_budget() Set application’s carbon budget
notify_solar_change() Called when solar changes
notify_carbon_change() Called when grid carbon changes
notify_battery_full() Called when battery fully charged
notify_battery_empty() Called when battery empty

3.2 Library Interfaces
Our ecovisor’s API from Table 1 is simple and narrow by design,
as it represents the minimal set of functions necessary to control
power’s supply and demand. We chose a container-level API to
enable the widest range of policies. Importantly, developers can
use these functions to implement a range of higher-level interfaces
and abstractions that simplify interactions with the virtual energy
system, or make it entirely transparent to applications. For exam-
ple, developers could use our container-level API to implement
cluster-level carbon management policies. In addition, distributed
applications that control virtual energy systems at multiple sites
could implement geo-distributed policies that shift workload to the
site(s) with the lowest carbon-intensity or most renewable availabil-
ity. As a result, the additional complexity of using a virtual energy
system need not be borne by most applications, but can instead be
encapsulated in third-party software libraries and services, as with
exokernels and similar library operating systems.

An ecovisor promotes innovation by enabling the development
of libraries and services that implement a wide range of application-
specific energy and carbon management policies. Since users and
applications have widely different characteristics, goals, strategies,
and tolerances for reducing carbon, which cloud providers do not
know, cloud providers are not well-positioned to transparently man-
age energy and carbon on behalf of their users at the system-level.
Table 2 depicts some simple library functions we implemented for
§5’s case studies. These functions enable applications to monitor
their energy usage and carbon emissions over various time inter-
vals, both on a per-container and per-application basis, as well as
specify a carbon rate or budget, such that the carbon rate dictates a
threshold rate (per unit time) of carbon emissions, while a budget
sets a total limit on an application’s carbon emissions.

3.3 Multiplexing the Physical Energy System
Each application’s virtual energy system exposes an API that is
functionally equivalent to the underlying physical energy system.
Thus, multiplexing control of the physical energy system among
applications’ virtual energy systems is straightforward, as it simply
requires computing the limit on the maximum battery discharge
rates and charging rates across all applications. The ecovisor has
privileged access to the physical battery charge controller to set
these aggregate limits. The ecovisor also has privileged access to
the container management functions to set per-container power
caps by setting limits on resource utilization, e.g., using cgroups.

Finally, the ecovisor has privileged access to the energy and car-
bon monitoring services of the energy system components, e.g.,
battery charge controller and solar inverter, servers, and carbon
information services, which it uses to perform energy and carbon
monitoring and accounting for each application.

We assume an exogeneous policy determines each application’s
share of grid power, the physical solar array’s variable power output,
and the physical battery’s energy and power capacity. For example,
public cloud platforms might sell solar and battery shares for some
price independently of hardware resources. While there is also a
substantial opportunity for ecovisors to dynamically vary, oversub-
scribe, or share energy resources among applications, similar to
analogous policies for computing resources, such inter-application
policies are out of our scope. Our focus is instead on enabling many
different intra-application policies for optimizing carbon-efficiency.

4 PROTOTYPE IMPLEMENTATION
We first detail our ecovisor software prototype, and then describe
the hardware prototype that it runs on.
Software Prototype.We implemented an ecovisor prototype us-
ing Python3 in ∼2650 LOC. Our ecovisor runs on an external server
and exposes a REST API to applications that includes the methods
from Table 1. Applications register their tick() method as a call-
back function with the ecovisor server. Our ecovisor has privileged
access to the software APIs exposed by the physical energy sys-
tem’s components and the COP API for monitoring and controlling
energy and server resources. While our approach is generally ap-
plicable to any COP, including Kubernetes, our prototype extends
LXD [51], which is a COP that builds on LXC, the Linux container
runtime. We chose LXD due to its flexibility and support for state-
ful applications and vertical resource scaling. LXD provisions full
operating systems within containers (akin to lightweight VMs);
enables vertically scaling each container’s resources using cgroups;
and provides a virtual filesystem (LXCFS) mounted over /proc that
provides accurate resource accounting for each container.

Our ecovisor wraps the LXD server, such that applications inter-
act with our ecovisor prototype, which then proxies LXD-specific
requests and responses to and from the LXD server. Our prototype
relies on LXD for container management, including horizontal and
vertical scaling. Our prototype uses LXD functions internally to ver-
tically scale each container’s maximum resource allocation using
cgroups to enforce per-container power caps set by the application,
as in recent work [49]. We use PowerAPI [28], a toolkit for building
software-defined power meters, for monitoring power, including
per-container power usage, battery power usage, solar power gen-
eration, grid power usage, and grid carbon-intensity. PowerAPI
stores this historical power data in a time-series database, specifi-
cally InfluxDB, which enables queries over different time intervals.
We use LXD’s default container scheduler, which simply allocates
a container to the server with the fewest container instances.

We use electricityMap’s API to get grid power’s carbon-intensity
in real-time. The implementation of other functions in our ecovisor
API from Table 1 are hardware-specific. Below, we discuss the
details of our hardware prototype and its energy system.
Hardware Prototype. We built a small-scale hardware prototype
of a software-defined physical energy system as a proof-of-concept.

Ecovisor: A Virtual Energy System for Carbon-Efficient Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 3: Overview of our prototype’s physical energy system
(top), and a labeled picture of our prototype (bottom).

Figure 3 provides an overview and picture of our hardware proto-
type, which is composed of a cluster of ARM-based microservers,
some of which have an attached NVIDIA Jetson Nano GPU. In
particular, each microserver includes a quad-core ARM Cortex A53
64-Bit processor and 4GB 1600MHz LPDDR3 memory [16] powered
by a 2A, 5V power supply. The microservers consume 1.35W at idle,
5W at 100% CPU utilization, and 10W at 100% CPU and GPU uti-
lization. The microservers run Ubuntu 18.04 Bionic minimal 64bit
(arm64) with Linux kernel 4.4.2. The smart USB hubs plug into our
power bus, which connects to our three power sources – the grid,
battery, and solar power – discussed below. We also implemented
simulated versions of each power source to enable experimentation
on a more conventional datacenter server cluster composed of 16
Dell PowerEdge R430s with Intel Xeon processors with 16 cores
and 64GB memory. Implementing a real prototype at this scale is in-
feasible due to our lab’s power constraints, component availability,
and cost. For example, the Chroma 62020H-150S, discussed below,
used in our microserver prototype costs nearly $10,000 and is only
capable of emulating a solar array up to 2kW DC.

Grid Power. To validate the efficacy of our software-based power
caps, we connected our system to a programmable power supply
that was capable of accurately monitoring grid power consumption.

We used this capability to verify that our system’s power usage
never exceeded the limit dictated by the container power caps.

Battery Power. Our prototype’s battery bank included multi-
ple 12V, 20Ah deep discharge lithium-ion batteries with a total
of 1440Wh capacity. We configured our battery charge controller to
only discharge them to 70% depth, such that we classify a 30% state-
of-charge as “empty,” since deep discharges significantly reduce a
battery’s cycle life. Our battery can support operating the cluster at
maximum power for one hour. We set the maximum charging rate
for the battery bank to 0.25C, which corresponds to 30 amps (A) at
12V, such that the battery charges to full capacity in 4 hours. We
set the maximum discharge rate to 1C, or the rate required to fully
discharge the battery in 1 hour. This rate corresponds to 1440W,
which is well above the cluster’s maximum power.

The battery above connects to two smart charge controllers,
which expose software APIs: one connected to the grid and the
other to solar. Our ecovisor can use the grid-connected charge
controller to set the battery’s charging rate. The solar-connected
charge controller automatically uses any excess solar power to
charge the battery. Since our prototype does not net meter solar
power, we set the charge controller to curtail any excess solar power
once the physical battery is fully charged.

Solar Power. Our prototype uses a Solar Array Emulator (SAE)
instead of a real solar array to enable repeatable experiments. Our
SAE is capable of replaying solar radiation traces, and acts like a
programmable power supply that mimics the electrical response of
a solar module’s IV curve. Thus, we can replace our SAE with a real
solar array without requiring any changes. As mentioned above,
we use the Chroma 62020H-150S as our SAE, which is widely used
for testing solar modules in industry.

5 OPTIMIZING CARBON-EFFICIENCY
The purpose of our evaluation is to highlight the rich policy space
defined by our ecovisor’s narrow API and show that optimizing
carbon-efficiency on a shared infrastructure requires application-
specific policies. Specifically, we show how our ecovisor can enable
a range of different applications to better optimize their carbon-
efficiency using an application-specific policy compared to a general
one-size-fits-all system policy. Importantly, these applications can
operate concurrently on the same infrastructure. In some cases,
we re-implement and improve upon applications from prior work
implemented on dedicated platforms [71]. Of course, our evaluation
does not cover all possible uses of an ecovisor, as there are many
potential carbon-efficiency optimizations and abstractions for dif-
ferent types of applications that have yet to be developed. A key
goal of ecovisor is to enable the development of new optimizations
and abstractions, while supporting existing policies.

5.1 Reducing Carbon
A simple approach to optimizing carbon-efficiency is to suspend ex-
ecution when grid power’s carbon-intensity increases beyond some
threshold and resume it later when carbon-intensity falls below this
threshold. Recent work, called WaitAWhile, quantifies the tradeoff
between carbon emissions and job completion time using this ap-
proach [71]. WaitAWhile’s suspend-resume policy is an example of
a general system-level policy that applies to all applications on a

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin, and Prashant Shenoy

 0

 4

 8

 12

 16

 20

CO2-agnostic System Policy W&S	(2X) W&S	(3X)
 0

 4

 8

 12

 16

 20

C
O

2
 E

m
is

s
io

n
s

 (
g

C
O

2
e

)

R
u

n
ti

m
e

 (
h

o
u

rs
)

CO2 Emissions Time

(a) PyTorch ML Training

 0

 20

 40

 60

 80

 100

W&S	(2X) W&S	(3X) W&S	(4X)
 0

 15

 30

 45

 60

 75

 90

 105

 120

CO2-agnostic System PolicyC
O

2
 E

m
is

s
io

n
s

 (
g

C
O

2
e

)

R
u

n
ti

m
e

 (
m

in
u

te
s

)

CO2 Emissions Time

(b) BLAST
Figure 4: Carbon emissions and runtime for distributed ML
training and a high performance computing application us-
ing different carbon reduction policies.

shared platform. We compare this suspend-resume policy to a new
Wait&Scale (W&S) policy we developed, which suspends execution
above a threshold and opportunistically scales up resources and
energy when carbon emissions are below the threshold. Wait&Scale
is an application-specific policy, as different applications have dif-
ferent optimal scale-up factors, which the system may not know.
Thus, applications are better positioned to configure their scale-up
factor based on their specific scaling properties.

5.1.1 Applications. Our first experiment runs two applications on
a shared multi-tenant infrastructure that have different scaling
behaviors, which is characterized by each application’s speedup as
its number of workers increases.

Our first application is PyTorch, a machine learning frame-
work that we use to train a Resnet34 model [47] on the CIFAR100
dataset [48] for five epochs. The model training job runs on grid
power with a variable carbon footprint, which we simulate using
data from the carbon emissions of the California Independent Sys-
tem Operation (CAISO) [7] in 2020. Since carbon emissions vary,
we ran the experiment ten times and randomly selected the job
arrival each time. We set the carbon threshold based on the 30th
percentile of carbon-intensity over a 48 hour window in each run.

In this case, our system-level suspend-resume and carbon-
agnostic policies run the job on 4 cores, while we run Wait&Scale
with scale factors of 2× and 3×, which scale up the job to 8 and 12
cores, respectively, when below the carbon threshold.

The second application is NCBI-BLAST (Basic Local Alignment
Search Tool), which is a popular parallel application that searches
for similarities in nucleotide or protein sequences [6]. We use an
elastic version of BLAST-470, which can horizontally scale the
number of containers it uses at runtime [42]. Our system-level and
carbon-agnostic policies run the BLAST job on 8 cores, while we
run Wait&Scale with scale factors of 2×, 3×, and 4×, on 16, 24, and
32 cores, respectively. We set the carbon threshold based on the
33rd percentile of carbon-intensity over the trace duration.

 100

 200

 300

 400

12:00pm 12:30pm 01:00pm 01:30pm 02:00pm

(g
C

O
2

/k
W

h
)

C
a

rb
o

n
 I

n
te

n
s

it
y Carbon Intensity Threshold (BLAST, 33

rd
%ile) Threshold (ML, 30

th
%ile)

(a) Carbon-intensity and resume thresholds

 0
 2
 4
 6
 8

12:00pm 12:30pm 01:00pm 01:30pm 02:00pmC
o

n
ta

in
e

rs

(b) ML Training with W&S (2X)

 0
 10
 20
 30

12:00pm 12:30pm 01:00pm 01:30pm 02:00pmC
o

n
ta

in
e

rs

(c) BLAST with W&S (3X)

 0
 12
 24
 36

12:00pm 12:30pm 01:00pm 01:30pm 02:00pmC
o

n
ta

in
e

rs

(d) Ecovisor cluster
Figure 5:Multi-tenancy of application-specific carbon reduc-
tion policies that use the system resources differently based
on their scaling properties.

5.1.2 Comparing Carbon Reduction Policies. Figure 4 shows the
completion times and carbon emissions under different policies
for the two applications, where the error bars depict the standard
deviation across the ten experiments. In both cases, the carbon-
agnostic policy has the lowest completion time at the cost of higher
carbon emissions. The system-level suspend-resume policy reduces
carbon emissions by 24.5% and 25.01%, but frequent suspensions
increase the running time by 7.4× and 5.1× for the ML training (top)
and BLAST (bottom) applications, respectively. The system-level
policy also exhibits a highly volatile job runtime, since jobs that
happen to start executing during a long high-carbon period are
forced to stop and wait until the carbon-intensity decreases.

Wait&Scale overcomes the high completion times of suspend-
resume by opportunistically scaling up resources when carbon is
low. For the ML training application (top), Wait&Scale (2×) achieves
a comparable carbon reduction to suspend-resume, but with a lower
runtime penalty (of 2.58×). However, further scale up does not pro-
vide additional carbon benefits—Wait&Scale (3×) increases carbon
emissions by 14.94% (similar to the system-level policy) while re-
ducing the runtime by only 12.3%. In this case, scaling up requires
more coordination among nodes, which causes synchronization
delays that limit speed-up and decrease energy-efficiency.

Unlike Resnet training, BLAST is embarrassingly parallel, and
thus scales up much more efficiently when carbon-intensity de-
creases. Wait&Scale (2×) achieves a carbon reduction of 30.1%,
while also reducing runtime by 78.15% compared to the system-
level policy. Scaling up even further is also beneficial as Wait&Scale
(3×) decreases the carbon emissions by 50.05% compared to system-
level policy, while further reducing runtime by 83.4%. The benefits
of scaling eventually diminish at 4× where carbon emissions start
increasing, but the job runtime remains the same. For BLAST-470,
this happens because BLAST’s central queue server becomes a
bottleneck when serving tasks to more than 3× workers.

Importantly, our experiments show that our application-specific
Wait&Scale policy outperforms the system-level suspend-resume

Ecovisor: A Virtual Energy System for Carbon-Efficient Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

 0

 0.6

 1.2

 1.8

4pm 12am 8am 4pm 12am 8am 4pm 12am 8am 4pm 12am
 0
 50
 100
 150
 200
 250x10

2

C
a

rb
o

n
(g

C
O

2
e

/k
W

h
)

W
o

rk
lo

a
d

(c
a

ll
s

/s
e

c
o

n
d

)

Carbon Intensity Workload (Web App 1) Workload (Web App 2)

(a) Carbon-intensity and workload

 0

 60

 120

 180

4pm 12am 8am 4pm 12am 8am 4pm 12am 8am 4pm 12am

L
a

te
n

c
y

 (
m

s
)

Web App 1 System Policy Latency SLO (60ms)

(b) 95th%ile latency (Web App 1)

 0

 50

 100

 150

 200

4pm 12am 8am 4pm 12am 8am 4pm 12am 8am 4pm 12am

L
a

te
n

c
y

 (
m

s
)

Web App 2 System Policy Latency SLO (70ms)

(c) 95th%ile latency (Web App 2)

Figure 6: Comparing a static system-level carbon rate-
limiting policy with two application-specific dynamic carbon
budgeting policies for a distributed web application ((b) and
(c)) under varying workloads and carbon-intensity (a).

policy. In this case, our ML training job and BLAST exhibit different
synchronization overheads, which necessitates using different scale-
up factors for optimizing carbon-efficiency.
Key Takeaway. An ecovisor enables applications to optimally config-
ure their scale-up factor to better optimize carbon-efficiency compared
to a system-level suspend-resume policy, which is application-agnostic.

5.1.3 Multi-tenancy. Our experiment above concurrently ran the
ML training job and BLAST on a shared multi-tenant infrastructure
using the same physical energy system. Figure 5 shows the per-
application and system-wide power usage for both applications at
their optimal scale factor. Each application uses different resources
and power based on their scaling behavior to individually optimize
their carbon-efficiency. Note that the system-wide power also shows
a small amount baseline power required to run the ecovisor.

5.2 Budgeting Carbon
A disadvantage of the suspend-resume-style carbon reduction poli-
cies above is that applications cannot make any forward progress
during high carbon periods. Furthermore, the goal of reducing car-
bon emissions may not be suitable for all the applications, which
may instead have a specific carbon emissions budget to operate
within. For such scenarios, we next consider an application-agnostic
system-level policy that enforces a static carbon budget for each
application by rate-limiting (or carbon-capping) it at all times. We
compare this policy to application-specific policies that enforce
a more flexible carbon budget over longer time windows, rather
than at all times, which allows applications to breach the cap for
short periods, if necessary. We show that such dynamic budgeting
policies can provide better performance during periods when both
the carbon-intensity and workload intensity are high.

 0

 15

 30

 45

 60

4pm 12am 8am 4pm 12am 8am 4pm 12am 8am 4pm 12am

x10
-2

C
a

rb
o

n
 R

a
te

(m
g

/s
)

Web App 1 Web App 2 System Policy Target CO2

(a) Carbon rate

 0

 2

 4

 6

 8

4pm 12am 8am 4pm 12am 8am 4pm 12am 8am 4pm 12am

W
o

rk
e

rs

Web App 1 System Policy Web App 2

(b) Workers

Figure 7: Multi-tenancy of application-specific dynamic car-
bon budgeting policies that use their system and energy re-
sources differently based on their workload.

5.2.1 Applications. To illustrate the benefits of application-specific
dynamic carbon budgeting, we deploy two multi-tenant distributed
web applications using our ecovisor prototype. Both applications in-
clude a front-end load balancer that distributes web requests across
a cluster, and serves a copy of Wikipedia. The applications use hori-
zontal scaling to regulate power by adding and removing containers
from the load balancer’s active set. We subject the applications to
two different variable workload demand patterns based on a real-
world trace covering 48 hours, and record the latency to satisfy
requests [68]. We first run the applications using a static carbon rate
limit of 20 mg·CO2 per second, and then under a dynamic carbon
budget equivalent to the product of the same rate and the trace’s
length. Our dynamic carbon budgeting policy horizontally scales
containers up and down to enforce an SLO on the 95th% latency of
60ms and 70ms for the first and second application, respectively.

5.2.2 Comparing Carbon Budgeting Policies. Figure 6(a) shows
the variations over time for the carbon-intensity and workload
patterns, which are not aligned. That is, there are periods of both
high carbon and workload intensity. Figure 6(b) and (c) then shows
the 95th% response time latency for the two web applications over
time. As shown in both (b) and (c), the system-level policy violates
the latency SLO near the end of the trace during a period of both
high carbon and workload intensity, since it does not have the
flexibility to increase its container capacity beyond the static carbon
cap to handle the more intense workload. In contrast, the dynamic
budgeting policy always satisfies the latency SLO over the entire
trace by using fewer resources (and less carbon) during periods
of low workload and carbon-intensity. The policy then uses its
accumulated “carbon credits” to temporarily exceed the carbon cap
to serve more intense demand during high carbon-intensity periods,
while enforcing the overall carbon budget over a longer period.

Note that the system-level rate-limiting policy occasionally pro-
vides much lower latency than the SLO (by over-provisioning when
carbon is low), while the dynamic carbon budgeting policy uses
fewer resources when they are not needed and leverages the carbon
savings to satisfy load spikes. Overall, the dynamic carbon budget-
ing policy has 22.8% and 23.4% lower carbon emissions for both
applications compared to the system-level policy, since it operates

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin, and Prashant Shenoy

 0
 100
 200
 300
 400
 500

12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am 6am 12pm 6pm 12amS
o

la
r

P
o

w
e

r
(W

)

(a) Solar power output

 0
 50

 100
 150
 200
 250

12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am

W
o

rk
lo

a
d

(b) Web app workload

 0

 2

 4

 6

 8

12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am

W
o

rk
e

rs

System Policy Dynamic Spark

(c) Workers for static and dynamic Spark

 0

 2

 4

 6

 8

12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am

W
o

rk
e

rs

System Policy Dynamic Web Server

(d) Workers for static and dynamic web app

 0

 50

 100

 150

 200

12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am

SLO

L
a

te
n

c
y

System Policy Dynamic Web Server

(e) 95th%ile latency

Figure 8:Cluster-level solar power (a) equally divided between
Spark and a web application, and workload for web appli-
cation (b). Number of workers with static system and Spark-
specific dynamic battery usage policies (c). Number of work-
ers (d) and 95th%ile latency (e) with static system and web
application-specific dynamic battery usage policies.

well below the target carbon rate most of the time. This also demon-
strates that the application-specific policy enables the applications
to dynamically manage their emissions in different ways, while
satisfying the overall carbon budget, which is not possible using
the static system-level rate-limiting policy.
Key Takeaway. Applications are much better positioned to manage
a specified carbon budget to meet their performance requirements
compared to a static system-level rate-limiting policy.

5.2.3 Multi-tenancy. Finally, Figures 7(a) and 7(b) show the carbon
rate and the number of containers for the two applications over time.
Both applications, when using dynamic carbon budgeting policy,
consume fewer resources and energy when carbon emissions are
low, i.e., only enough to satisfy their SLO, while the static system-
level rate-limiting policy uses as many resources and energy as
necessary to satisfy its target carbon rate. Although the applications
run on the same cluster at the same time, their carbon emissions
and container capacity differ depending on their workload.

5.3 Leveraging Virtual Batteries
The applications above optimize carbon-efficiency using grid power.
We next examine applications that implement zero-carbon policies

 20

 40

 60

 80

 100

12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am

min soc limit

S
O

C
 [

%
]

Dynamic Web Server Dynamic Spark

(a) State of charge for virtual batteries

-50

 0

 50

12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am

P
o

w
e

r
[W

] Dynamic Web Server Dynamic Spark

(b) Virtual battery charging/discharging rates

Figure 9: Multi-tenancy of application-specific virtual bat-
tery usage policies, where each application uses their virtual
battery differently based on their requirements.

using solar power and batteries. Although solar power has zero
carbon-intensity, its output is volatile due to changing environ-
mental conditions. As we show, our ecovisor’s virtual batteries can
supply applications a minimum guaranteed amount of power when
solar output falls below a threshold, smoothing out the volatility.

5.3.1 Applications. To illustrate our zero-carbon policies, we de-
ploy two applications that share a solar panel and physical battery.
Our first application is a “delay-tolerant” distributed Spark job run-
ning on our ecovisor prototype powered by intermittent solar and
a battery. In this case, the job is an image preprocessing and feature
extraction task written using pyspark running on Spark 3.2.0. Spark
runs on solar power and a battery during the day, with the battery
ensuring a minimum guaranteed power. Although grid power is
available at night, to maintain a zero carbon footprint, we check-
point completed operations to the Hadoop Distributed File System
(HDFS), and wait until the next morning to resume Spark computa-
tions. Incomplete workers are terminated without checkpointing
every evening and their in-memory results are lost.

Our second application is a web-based monitoring and logging
application, which monitors and logs the power generation of our
ecovisor’s physical and virtual solar arrays. This application is
similar to publicly-deployed services for monitoring renewable-
powered computing infrastructure [27, 29]. Each web request logs
the current power generation in the web application. Since there is
no solar generation at night, the application sees only a daytime
workload and is dormant during nighttime hours when there is no
data to log. Like Spark, the web application runs on solar power
and batteries during the day and stays suspended during the night.
We set a target latency SLO of 100ms for web request processing.

5.3.2 Comparing Battery Usage Policies. Our system-level policy
for both applications is to use the battery to smooth out the varia-
tions in solar power and provide a minimum guaranteed power. Fig-
ure 8(a) shows that the total solar power is equally divided between
the two applications. Figure 8(c) shows the number of workers for
a static (system-level) and Spark-specific dynamic policies. The
system-level policy is conservative and avoids losing computation
by using a fixed number of workers that are always available. In
contrast, the Spark-specific dynamic policy opportunistically scales
up the number of workers to leverage excess solar when the bat-
tery is fully charged. While any work performed by the additional

Ecovisor: A Virtual Energy System for Carbon-Efficient Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

 0

 20

 40

 60

 80

 100

8am 10pm 12pm 2pm 4pm 6pm

P
o

w
e

r
(W

)

Solar Power

Application Power

(a) Solar power

 0

 0.4

 0.8

 1.2

 1.6

 2

08am 10am 12pm 2pm 4pm 6pm

system policy workers

N
o

rm
.

C
o

n
ta

in
e

r
P

o
w

e
r

worker1

worker2

worker3

worker4

worker5

worker6

worker7

worker8

worker9

worker10

(b) Per-container power caps

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90
 0

 20

 40

 60

 80

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t(

%
)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

1
/j
o

u
le

s
)

Available Renewable Power (%)

Runtime Improvement Energy Efficiency

(c) Runtime and Energy-efficiency
Figure 10: Comparison of a static system-level and dynamic
application-specific policy for setting per-container power
caps (b) for a parallel job running across 10 nodes using the
solar energy in (a). The dynamic policy has a better runtime
and energy-efficiency (c).

workers might be lost if they are terminated before checkpointing
the work, they mostly perform useful computation, which reduces
the application runtime by 39%.

Figure 8(b) shows the workload trace for the web application,
which varies over time as the number of applications running and
monitoring/logging their resources come and go. Figure 8(d) shows
the number of workers for a static (system-level) and application-
specific dynamic policies. Since the static (system-level) policy only
has fixed power available, it runs only 4 workers irrespective of the
workload. In contrast, the dynamic policy can scale up to a higher
number of workers to process a higher request rate. Figure 8(c)
shows the 95th%ile latency for the web application. The static
(system-level) policy safeguards against the server going down,
resulting in a much higher latency under high workload, while the
dynamic policy always able meets the target latency SLO.
Key Takeaway. Our ecovisor enables applications to exercise control
over their virtual batteries to satisfy their application-specific per-
formance requirements, such as a low runtime versus a low latency,
compared to an application-agnostic system-level policy.

5.3.3 Multi-tenancy. Figure 9(a) and 9(b) show the state-of-charge
and actual charging and discharging patterns, respectively, for the
virtual batteries allocated to each application. Both applications con-
currently ran on a shared multi-tenant platform, but their battery
usage patterns differ significantly depending on their requirements.

5.4 Directly Exploiting Solar Power Efficiency
Some parallel applications may more directly exploit solar power
without using any battery capacity, despite its volatility, using ver-
tical scaling. Since our ecovisor enables applications to balance

 0
 4
 8

 12
 16
 20
 24
 28

100 110 120 130 140 150 160 170 180 190 200
 0

 0.2

 0.4

 0.6

 0.8

 1

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t(

%
)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

1
/j
o

u
le

s
)

Available Renewable Power (%)

Runtime Improvement Energy Efficiency

Figure 11:Mitigating stragglers using replica tasks is oneway
to productively consume excess renewable energy.

power’s supply and demand, these applications can explicitly allo-
cate their limited solar power across a set of containers such that
the sum of containers’ power caps does not exceed the supply of
solar power. In this case, applications should allocate their limited
solar power to where it can be used most productively. Since servers
are not energy-proportional, they consume some power even when
idle. Thus, servers’ most energy-efficient operating point is at 100%
of their allocated energy, and any idleness due to operating below
this point wastes energy. However, parallel applications often have
tasks that are idle due to performing I/O, such as due to periodic
task synchronization in the PyTorch training above. Such parallel
applications frequently exhibit straggler tasks that increase run-
ning time by forcing other tasks to wait [24, 25, 40]. Importantly,
executing parallel applications on a limited amount of solar power
can exacerbate the performance issues above.

5.4.1 Applications. To illustrate our policies for directly exploiting
solar power, we deploy two configurations of a synthetic parallel job.
In the first configuration, the job periodically synchronizes across
tasks and performs I/O, and uses vertical scaling on all containers
to match the available solar power. In the second, we configure
the parallel job to perform straggler mitigation by tracking the
progress of each task, and issuing a new replica for any slow task.
For this configuration, we randomly inject straggler tasks into the
workload. We implement two power capping policies for the first
configuration: (i) a system-level policy that sets static caps across
10 nodes, and (ii) an application-specific policy that dynamically
varies caps to ensure each node uses all of its allocated energy, i.e.,
100% resource utilization. Finally, the third policy handles stragglers
by allocating extra resources when excess energy is available.

5.4.2 Comparing Solar Policies. Figure 10(a) shows solar power
availability for a single day. In Figure 10(b), the dynamic power caps
differ across the 10 nodes relative to the static cap (center line) over
the trace. Figure 10(c) then scales the solar output from (a) by the
percentage on the x-axis and plots the runtime improvement from
using the dynamic policy (left y-axis) and its energy-efficiency (right
y-axis). The graph shows that as solar energy decreases, the impor-
tance of dynamically balancing power to reduce runtime increases.
Energy-efficiency increases as available solar power increases, since
each node’s base power is amortized over more productive work,
which again illustrates the inefficiency of solar power.

Finally, Figure 11 shows the the third policy as we scale the
solar output from Figure 10(a) up, which results in an excess of
solar energy. If applications cannot store the excess energy, they
are incentivized to use it immediately, even if that usage is not
entirely efficient. Figure 11 shows that as solar energy increases, our
application’s overall energy-efficiency decreases, since we consume

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin, and Prashant Shenoy

that energy by spawning more task replicas. However, in this case,
the absolute decrease in energy-efficiency is not important, since the
excess solar energy would have otherwise been wasted. In this case,
the application decreases its runtime by using the excess energy
for straggler mitigation, although it sees diminishing returns as it
submits more replicas (since at most one replica task will finish).
Key Takeaway. Our ecovisor enables dynamic application-specific
policies that improve solar efficiency and performance using verti-
cal scaling and straggler mitigation techniques compared to a static
system-level policy.

6 RELATEDWORK
Our work builds on prior work in managing energy, including
integrating renewables and batteries into datacenters, and more
recent work on managing carbon emissions.
EnergyManagement. There has been significant work on improv-
ing energy-efficiency and managing energy in computer systems
over the past three decades. This work has been highly successful
in improving computing’s energy-efficiency and reducing energy
costs. Our work differs in its focus on carbon-efficiency, which is
different from energy-efficiency. Designing energy-efficient sys-
tems requires looking “inward” at various components to optimize
their energy use, while designing carbon-efficient systems instead
requires looking “outward” to the local energy system and grid to
understand energy’s source and characteristics.

Our work is also related to prior work that virtualizes power [30,
54, 64, 70] and exposes power management to applications [30, 50,
70] across a variety of platforms. For example, Nathuji and Schwan
integrate hardware power management mechanisms with hypervi-
sors to enable VM-level power management for servers [54]. Simi-
larly, Shen et al. propose power containers to enable fine-grained
power management on a per-container basis. Our work leverages
similar techniques for attributing and capping power for specific
containers based on their resource usage [49, 61]. However, our
work differs in its focus on using these mechanisms to expose visi-
bility and control of the energy system, including power’s carbon
and availability characteristics, as well as control of a virtual battery.
This visibility and control enables applications to adapt their behav-
ior to optimize carbon-efficiency in addition to energy-efficiency.

Finally, prior work on energy management has also proposed
exposing power management to applications across a variety of
platforms, including cloud platforms [30, 70], individual servers,
and mobile devices [50]. Our work differs in that reducing power
usage is not the same as reducing carbon emissions.
Renewables and Storage Integration. There has also been signif-
icant prior work on integrating renewables and energy storage into
datacenters and optimizing applications for them. Researchers have
long recognized the potential to adapt cloud applications to variable
renewable energy by adjusting their resource usage or migrating
jobs [21, 22]. Thus, prior work has optimized numerous applications
with a wide range of characteristics and performance requirements,
including Hadoop [36], job schedulers [34], key-value stores [46],
distributed storage [63], and load balancers [39], to run on variable
renewable energy. While this prior work must implicitly embed
ecovisor-like APIs that interact with the physical energy system
within their system software, they do not define and expose these

APIs externally, and thus cannot support different application-level
carbon and energy management policies. Importantly, our ecovisor
is capable of concurrently running all of the applications above (and
others) on a shared infrastructure. GreenSwitch is perhaps most
related to our ecovisor approach, as it defines a model-based policy
for dynamically scheduling workload and selecting energy sources,
e.g., grid, battery, solar, to optimize various objectives, e.g., cost,
peak power, and carbon [35]. However, as above, GreenSwitch im-
plements its policy at the system-level and does not expose visibility
or control of the energy system to applications.

There has also been significant prior work on leveraging batter-
ies in cloud datacenters to reduce energy costs and provide power
during outages [37, 56, 69]. Our work provides applications the
visibility and control necessary to actually implement these op-
timizations on a shared multi-tenant infrastructure, which prior
work has not previously addressed, and also provides a platform
for developing new optimizations, as we show in §5.
Carbon Management. Recent work has recognized the impor-
tance of reducing carbon emissions, and has attempted to quan-
tify the carbon emissions of running particular applications on
cloud platforms [26, 30, 58, 67]. In addition, recent work has also
attempted to quantify the carbon footprint of cloud datacenters,
including the carbon emissions embedded in hardware, i.e., Scope
3 emissions [55]. While quantifying the scope of the problem for
particular applications and platforms is certainly useful, this prior
work does not provide any actionable solutions for reducing carbon
emissions or enabling carbon-efficiency optimizations. As we show,
carbon-efficiency optimizations are now possible with the emer-
gence of carbon information services, such as electricityMap [9],
which provide real-time estimates of grid power’s carbon-intensity.
Finally, recent work has also proposed nascent carbon-efficiency
optimizations, such as WaitAWhile [71]. A key goal of our ecovisor
is to enable these and other application-specific carbon-efficiency
optimizations concurrently on a shared platform.

7 CONCLUSION
Enabling the design of carbon-efficient applications is an increas-
ingly important research area that is necessary to halt climate
change. To enable the design of carbon-efficient applications, we
propose an ecovisor that virtualizes the physical energy system
and exposes software-defined visibility into, and control of, it to
applications. Our approach pushes visibility and control of the en-
ergy system from hardware into software, enabling applications to
optimize carbon-efficiency based on their own application-specific
requirements by responding to variations in grid power’s carbon-
intensity and renewable power’s availability. We build a small-scale
ecovisor prototype, and demonstrate its ability to support a variety
of carbon-efficiency optimizations for different applications. In the
future, we plan to enable coordination between distributed ecovisor
clusters to enable geo-distributed applications.

ACKNOWLEDGEMENTS
We thank the ASPLOS reviewers for their valuable comments,
which improved the quality of this paper, and electricityMap for
access to their carbon-intensity data. This research is supported by
NSF grants 2213636, 2105494, 2021693, 2020888, as well as VMware.

Ecovisor: A Virtual Energy System for Carbon-Efficient Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

REFERENCES
[1] Reuters, Amazon Vows to be Carbon Neutral by 2040, buying 100,000 Electric

Vans. https://www.reuters.com/article/us-amazon-environment/amazon-
vows-to-be-carbon-neutral-by-2040-buying-100000-electric-vans-
idUSKBN1W41ZV, September 19th 2019.

[2] Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot/, AccessedMarch
2022.

[3] Aws autoscaling. https://aws.amazon.com/autoscaling/, Accessed February 2022.
[4] Azure Monitor. https://azure.microsoft.com/en-us/services/monitor/, Accessed

July 2022.
[5] Azure Spot Virtual Machines. https://azure.microsoft.com/en-us/pricing/spot/,

Accessed March 2022.
[6] Basic Local Alignment Search Tool. https://blast.ncbi.nlm.nih.gov/Blast.cgi,

Accessed March 2022.
[7] California ISO. https://www.caiso.com/Pages/default.aspx, Accessed March

2022.
[8] Carbon Free Energy for Google Cloud Regions. https://cloud.google.com/

sustainability/region-carbon, Accessed March 2022.
[9] Electricity Map. https://www.electricitymap.org/map, Accessed March 2022.
[10] Google cloud carbon footprint: Measure, report and reduce your cloud carbon

emisisons. https://cloud.google.com/carbon-footprint, Accessed July 2022.
[11] Google Data Centers Efficiency. google.com/about/datacenters/efficiency/, Ac-

cessed March 2022.
[12] Greenhouse Gas Protocol. https://ghgprotocol.org/, Accessed March 2022.
[13] IPMI Overview. https://www.ibm.com/docs/en/power9/0009-ESS?topic=ipmi-

overview, Accessed March 2022.
[14] Overview of autoscale in microsoft azure. https://docs.microsoft.com/en-us/

azure/azure-monitor/autoscale/autoscale-overview, Accessed February 2022.
[15] Python Tesla Powerwall API. https://pypi.org/project/tesla-powerwall/, Ac-

cessed March 2022.
[16] ROCK64. https://www.pine64.org/devices/single-board-computers/rock64/, Ac-

cessed March 2022.
[17] Tesla Powerwall Modes of Operation with Solar. https://www.tesla.com/enau/

support/energy/powerwall/mobile-app/modes-of-operationwithsolar, Accessed
March 2022.

[18] Uptime Institute Global Data Center Survey 2021: Growth Stretches an Evolving
Sector. https://uptimeinstitute.com/resources/asset/2021-data-center-industry-
survey, Accessed May 2022.

[19] WattTime. https://www.watttime.org/, Accessed March 2022.
[20] Nicola Acutt. Radius: Stories at the Edge, Achieving Carbon Neutrality. https:

//www.vmware.com/radius/achieving-carbon-neutrality/, November 1st 2018.
[21] Anup Agarwal, Jinghan Sun, Shadi Noghabi, Srinivasan Iyengar, Anirudh Badam,

Ranveer Chandra, Srinivasan Seshan, and Shivkumar Kalyanaraman. Redesigning
Cloud Computing for Renewable Energy. In Proceedings of the Twentieth ACM
Workshop on Hot Topics in Networks (HotNets), November 2021.

[22] Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W. Moore, and Andy
Hopper. Free Lunch: Exploiting Renewable Energy for Computing. In USENIX
Workshop on Hot Topics in Operating Systems (HotOS), May 2011.

[23] Dario Amodei, Danny Hernandez, Girish Sastry, Jack Clark, Greg Brockman, and
Ilya Sutskever. AI and Compute. https://openai.com/blog/ai-and-compute/, May
16th 2018.

[24] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effective
Straggler Mitigation: Attack of the Clones. In USENIX Symposium on Networked
System Design and Implementation (NSDI), April 2013.

[25] Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren, Ion Stoica,
Adam Wierman, and Minlan Yu. GRASS: Trimming Stragglers in Approximation
Analytics. InUSENIX Symposium on Networked SystemDesign and Implementation
(NSDI), April 2014.

[26] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. On the Dangers of Stochastic Parrots: Can Language Models Be
Too Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency (FAccT), March 2021.

[27] T. Brain, A. Nathanson, and B. Piantella. Solar Protocol. http://solarprotocol.net/,
July 26th 2022.

[28] Maxime Colmant, Pascal Felber, Romain Rouvoy, and Lionel Seinturier. WattsKit:
Software-Defined Power Monitoring of Distributed Systems. In 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), April
2017.

[29] K. De Decker. This Website Runs on a Solar Powered Server Located in Barcelona.
https://solar.lowtechmagazine.com/power.html, July 26th 2022.

[30] Nan Deng, Christopher Stewart, Daniel Gmach, and Martin Arlitt. Policy and
Mechanism for Carbon-Aware Cloud Applications. In 2012 IEEE Network Opera-
tions and Management Symposium, 2012.

[31] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. Exokernel: An Oper-
ating System Architecture for Application-Level Resource Management. In ACM
Symposium on Operating System Principles (SOSP), 1995.

[32] Darrell Etherington. TechCrunch, Google Claims Net Zero Carbon Footprint
over its Entire Lifetime, Aims to only use Carbon-Free Energy by 2030.
https://techcrunch.com/2020/09/14/google-claims-net-zero-carbon-footprint-
over-its-entire-lifetime-aims-to-only-use-carbon-free-energy-by-2030/,
September 14th 2020.

[33] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. Dominant Resource Fairness: Fair Allocation of Multiple Resource
Types. In USENIX Symposium on Networked System Design and Implementation
(NSDI), April 2011.

[34] Inigo Goiri, Ryan Beauchea, Kien Le, Thu D. Nguyen, Md. E. Haque, Jordi Guitart,
Jordi Torres, and Ricardo Bianchini. GreenSlot: Scheduling Energy Consumption
in Green Datacenters. In ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), November 2011.

[35] Inigo Goiri, William Katsak, Kien Le, Thu D. Nguyen, and Ricardo Bianchini.
Parasol and GreenSwitch: Managing Datacenters Powered by Renewable Energy.
In ACM Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), March 2013.

[36] Inigo Goiri, Kien Le, Thu D. Nguyen, Jordi Guitart, Jordi Torres, and Ricardo Bian-
chini. GreenHadoop: Leveraging Green Energy in Data-processing Frameworks.
In ACM European Conference on Computer Systems (EuroSys), April 2012.

[37] Sriram Govindan, Anand Sivasubramaniam, and Bhuvan Urgaonkar. Benefits
and Limitations of Tapping into Stored Energy for Datacenters. In Proceedings of
the 38th Annual International Symposium on Computer Architecture (ISCA), June
2011.

[38] Developer Guide. Amazon Cloudwatch. 2009.
[39] Vani Gupta, Prashant Shenoy, and Ramesh K Sitaraman. Combining Renewable

Solar and Open Air Cooling for Greening Internet-Scale Distributed Networks. In
Proceedings of the Tenth ACM International Conference on Future Energy Systems
(e-Energy), June 2019.

[40] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory Ganger, Phillip
Gibbons, Garth Gibson, and Eric Xing. Addressing the Straggler Problem for
Iterative Convergent Parallel ML. In Symposium on Cloud Computing (SoCC),
September 2016.

[41] Fiona Harvey. The Guardian, Major Climate Changes Inevitable and Irreversible
âĂŞ IPCC’s Starkest Warning Yet. https://www.theguardian.com/science/
2021/aug/09/humans-have-caused-unprecedented-and-irreversible-change-to-
climate-scientists-warn, August 9th 2021.

[42] Valerie Hendrix, James Fox, Devarshi Ghoshal, and Lavanya Ramakrishnan.
Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems. In
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), May 2016.

[43] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform for Fine-
grained Resource Sharing in the Data Center. InUSENIX Symposium on Networked
Systems Design and Implementation (NSDI), March 2011.

[44] Umair Irfan. Vox, Can You Really Negate Your Carbon Emissions? Carbon Offsets,
Explained. https://www.vox.com/2020/2/27/20994118/carbon-offset/-climate-
change-net-zero-neutral-emissions, February 27th 2020.

[45] Penny Jones. DataCenterDynamics, Apple Confirms Solar Farm at Maiden Data
Center. https://www.datacenterdynamics.com/en/news/apple-confirms-solar-
farm-at-maiden-data-center/, February 21st 2012.

[46] William Katsak, Inigo Goiri, Ricardo Bianchini, and Thu Nguyen. GreenCas-
sandra: Using Renewable Energy in Distributed Structured Storage Systems. In
International Conference on Green and Sustainable Computing (IGSC), June 2015.

[47] Brett Koonce. Resnet 34. In Convolutional Neural Networks with Swift for Tensor-
flow. Springer, 2021.

[48] Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multiple Layers of Features
from Tiny Images. 2009.

[49] Shaohong Li, Xi Wang, Faria Kalim, Xiao Zhang, Sangeetha Abdu Jyothi, Karan
Grover, Vasileios Kontorinis, Nina Narodytska, Owolabi Legunsen, Sreekumar
Kodakara, et al. Thunderbolt: Throughput-Optimized, Quality-of-Service-Aware
Power Capping at Scale. In USENIX Symposium on Operating System Design and
Implementation (OSDI), November 2020.

[50] Xiaotao Liu, Prashant Shenoy, and Mark D Corner. Chameleon: Application-level
Power Management. IEEE Transactions on Mobile Computing, 2008.

[51] Canonical Ltd. LXD. https://linuxcontainers.org/lxd/introduction/.
[52] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey.

Recalibrating Global Data Center Energy-use Estimates. Science, 367(6481):984–
986, February 2020.

[53] Valérie Masson-Delmotte, Panmao Zhai, Anna Pirani, Sarah L Connors, Clotilde
Péan, Sophie Berger, Nada Caud, Yang Chen, Leah Goldfarb, Melissa I Gomis,
et al. Summary for Policymakers. in: Climate Change 2021: The Physical Science
Basis. Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change. Technical report, United Nation
Intergovernmental Panel on Climate Change (IPCC), 2021.

[54] Ripal Nathuji and Karsten Schwan. VirtualPower: Coordinated Power Manage-
ment in Virtualized Enterprise Systems. In ACM Symposium on Operating System

https://www.reuters.com/article/us-amazon-environment/amazon-vows-to-be-carbon-neutral-by-2040-buying-100000-electric-vans-idUSKBN1W41ZV
https://www.reuters.com/article/us-amazon-environment/amazon-vows-to-be-carbon-neutral-by-2040-buying-100000-electric-vans-idUSKBN1W41ZV
https://www.reuters.com/article/us-amazon-environment/amazon-vows-to-be-carbon-neutral-by-2040-buying-100000-electric-vans-idUSKBN1W41ZV
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/autoscaling/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/pricing/spot/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.caiso.com/Pages/default.aspx
https://cloud.google.com/sustainability/region-carbon
https://cloud.google.com/sustainability/region-carbon
https://www.electricitymap.org/map
https://cloud.google.com/carbon-footprint
google.com/about/datacenters/efficiency/
https://ghgprotocol.org/
https://www.ibm.com/docs/en/power9/0009-ESS?topic=ipmi-overview
https://www.ibm.com/docs/en/power9/0009-ESS?topic=ipmi-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://pypi.org/project/tesla-powerwall/
https://www.pine64.org/devices/single-board-computers/rock64/
https://www.tesla.com/en_au/support/energy/powerwall/mobile-app/modes-of-operationwithsolar
https://www.tesla.com/en_au/support/energy/powerwall/mobile-app/modes-of-operationwithsolar
https://uptimeinstitute.com/resources/asset/2021-data-center-industry-survey
https://uptimeinstitute.com/resources/asset/2021-data-center-industry-survey
https://www.watttime.org/
https://www.vmware.com/radius/achieving-carbon-neutrality/
https://www.vmware.com/radius/achieving-carbon-neutrality/
https://openai.com/blog/ai-and-compute/
http://solarprotocol.net/
https://solar.lowtechmagazine.com/power.html
https://techcrunch.com/2020/09/14/google-claims-net-zero-carbon-footprint-over-its-entire-lifetime-aims-to-only-use-carbon-free-energy-by-2030/
https://techcrunch.com/2020/09/14/google-claims-net-zero-carbon-footprint-over-its-entire-lifetime-aims-to-only-use-carbon-free-energy-by-2030/
https://www.theguardian.com/science/2021/aug/09/humans-have-caused-unprecedented-and-irreversible-change-to-climate-scientists-warn
https://www.theguardian.com/science/2021/aug/09/humans-have-caused-unprecedented-and-irreversible-change-to-climate-scientists-warn
https://www.theguardian.com/science/2021/aug/09/humans-have-caused-unprecedented-and-irreversible-change-to-climate-scientists-warn
https://www.vox.com/2020/2/27/20994118/carbon-offset/-climate-change-net-zero-neutral-emissions
https://www.vox.com/2020/2/27/20994118/carbon-offset/-climate-change-net-zero-neutral-emissions
https://www.datacenterdynamics.com/en/news/apple-confirms-solar-farm-at-maiden-data-center/
https://www.datacenterdynamics.com/en/news/apple-confirms-solar-farm-at-maiden-data-center/
https://linuxcontainers.org/lxd/introduction/

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin, and Prashant Shenoy

Principles (SOSP), October 2007.
[55] Kevin O’Sullivan. The Irish Times, Facebook Commits to Net-Zero Carbon

Emissions by 2030. https://www.irishtimes.com/news/environment/facebook-
commits-to-net-zero-carbon-emissions-by-2030-1.4354701, September 15th
2020.

[56] Darshan S. Palasamudram, Ramesh K. Sitaraman, Bhuvan Urgaonkar, and Rahul
Urgaonkar. Using Batteries to Reduce Power Costs of Internet-Scale Distributed
Networks. In ACM Symposium on Cloud Computing (SoCC), October 2012.

[57] Andy Patrizio. Data Center Dynamics, The Quest to Run Data Centers on Battery
Power. https://www.datacenterdynamics.com/en/analysis/the-quest-to-run-
data-centers-on-battery-power/, April 5th 2021.

[58] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. Carbon Emissions and
Large Neural Network Training. Technical report, arXiv, April 2021.

[59] Sundar Pichai. Google Blog, New progress toward our 24/7 carbon-free en-
ergy goal. https://blog.google/outreach-initiatives/sustainability/new-progress-
toward-our-247-carbon-free-energy-goal, April 20th 2021.

[60] John Roach. Microsoft datacenter batteries to support growth of renewables on
the power grid. https://news.microsoft.com/innovation-stories/ireland-wind-
farm-datacenter-ups/, July 7th 2022.

[61] Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li, Darren
De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy, Christopher
Malone, Jimmy Clidaras, et al. Data Center Power Oversubscription with a
Medium Voltage Power Plane and Priority-Aware Capping. In ACM Symposium
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), March 2020.

[62] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-To-End Arguments in
System Design. ACM Transactions on Computer Systems, November 1984.

[63] Navin Sharma, Sean Barker, David Irwin, and Prashant Shenoy. Blink: Managing
Server Clusters on Intermittent Power. In ACM Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), March
2011.

[64] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan
Chen. Power Containers: An OS Facility for Fine-grained Power and Energy
Management on Multicore Servers. In ACM Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), March 2013.

[65] Rahul Singh, David Irwin, Prashant Shenoy, and K.K. Ramakrishnan. Yank: En-
abling Green Data Centers to Pull the Plug. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), April 2013.

[66] Brad Smith. Official Microsoft Blog, Microsoft will be Carbon Negative by
2030. https://blogs.microsoft.com/blog/2020/01/16/microsoft-will-be-carbon-
negative-by-2030/, January 16th 2020.

[67] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy
Considerations for Modern Deep Learning Research. In AAAI Conference on
Artificial Intelligence (AAAI), February 2020.

[68] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. Wikipedia workload
analysis for decentralized hosting. Elsevier Computer Networks, July 2009. http:
//www.globule.org/publi/WWADHcomnet2009.html.

[69] Rahul Urgaonkar, Bhuvan Urgaonkar, Michael J Neely, and Anand Sivasubrama-
niam. Optimal Power Cost Management Using Stored Energy in Data Centers.
In Proceedings of the ACM Conference on Measurement and Analysis of Computing
Systems (SIGMETRICS), March 2011.

[70] Cheng Wang, Bhuvan Urgaonkar, George Kesidis, Uday V Shanbhag, and Qian
Wang. A Case for Virtualizing the Electric Utility in Cloud Data Centers. In
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), July 2014.

[71] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz
Thamsen. Let’s Wait Awhile: How Temporal Workload Shifting Can Reduce Car-
bon Emissions in the Cloud. In Proceedings of the 22nd International Middleware
Conference (Middleware), December 2021.

https://www.irishtimes.com/news/environment/facebook-commits-to-net-zero-carbon-emissions-by-2030-1.4354701
https://www.irishtimes.com/news/environment/facebook-commits-to-net-zero-carbon-emissions-by-2030-1.4354701
https://www.datacenterdynamics.com/en/analysis/the-quest-to-run-data-centers-on-battery-power/
https://www.datacenterdynamics.com/en/analysis/the-quest-to-run-data-centers-on-battery-power/
https://blog.google/outreach-initiatives/sustainability/new-progress-toward-our-247-carbon-free-energy-goal
https://blog.google/outreach-initiatives/sustainability/new-progress-toward-our-247-carbon-free-energy-goal
https://news.microsoft.com/innovation-stories/ireland-wind-farm-datacenter-ups/
https://news.microsoft.com/innovation-stories/ireland-wind-farm-datacenter-ups/
https://blogs.microsoft.com/blog/2020/01/16/microsoft-will-be-carbon-negative-by-2030/
https://blogs.microsoft.com/blog/2020/01/16/microsoft-will-be-carbon-negative-by-2030/
http://www.globule.org/publi/WWADH_comnet2009.html
http://www.globule.org/publi/WWADH_comnet2009.html

	Abstract
	1 Introduction
	2 Motivation and Background
	3 Ecovisor Design
	3.1 Extending COPs with an Ecovisor
	3.2 Library Interfaces
	3.3 Multiplexing the Physical Energy System

	4 Prototype Implementation
	5 Optimizing Carbon-Efficiency
	5.1 Reducing Carbon
	5.2 Budgeting Carbon
	5.3 Leveraging Virtual Batteries
	5.4 Directly Exploiting Solar Power Efficiency

	6 Related Work
	7 Conclusion
	References

