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ABSTRACT
The increasing penetration of grid-tied solar is complicating utili-
ties’ ability to balance electricity’s real-time supply and demand.
While advancements in solar forecast modeling are enabling utili-
ties to better predict and react to future variations in solar power,
these models require historical solar generation data for training.
Unfortunately, pure solar generation data is often not available, as
the vast majority of grid-tied solar deployments are “behind the
meter,” such that utilities only have access to net meter data that
represents the sum of each building’s solar generation and its en-
ergy consumption. To address the problem, we design SunDance, a
“black box” technique for disaggregating solar generation from net
meter data that requires only a building’s location and a minimal
amount of historical net meter data, e.g., as few as two datapoints.

SunDance leverages multiple insights into well-known funda-
mental relationships between location, weather, solar irradiance,
and physical deployment characteristics to accurately disaggregate
solar generation from net meter data without access to a building’s
pure solar generation data for training. We also identify and lever-
age a new fundamental relationship, which we call the Universal
Weather-Solar E�ect, that, to the best of our knowledge, has not
been articulated in the past and is broadly applicable to other so-
lar energy analytics. We evaluate SunDance using net meter data
from 100 buildings and show that its black-box approach achieves
similar accuracy without access to any solar training data as a fully
supervised approach with complete access to such training data.
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1 INTRODUCTION
The aggregate solar capacity in the U.S. is growing rapidly, as the
most recent estimates predict the U.S. solar market grew by 119%
in 2016 alone [3]. Importantly, nearly all solar deployments are
“grid-tied,” such that they feed any solar power generated into the
electric grid. Grid-tied deployments impose operational challenges
on utilities in balancing electricity’s real-time supply and demand.
In particular, utilities plan generator “dispatch” schedules based on
predictions of future load. Unfortunately, the increasing penetration
of grid-tied solar is decreasing the accuracy of net load predictions.
Solar power, even when aggregated, is more stochastic and less
predictable than aggregate consumption largely because it depends
on multiple factors that are speci�c to each site and highly localized.

Due to its increasing importance in grid operations, numerous
prior and ongoing work focuses on accurately forecasting the grid’s
solar generation [4, 11–13, 16, 18, 24, 25]. While many of these fore-
cast models o�er coarse grid-level predictions of net load, recent
work increasingly focuses on automatically generating customized
forecast models via machine learning for each solar deployment
based on its unique characteristics [13, 24]. These models can then
be combined to generate a more accurate �ne-grained grid-level
forecast of solar generation and net load. Importantly, these custom
solar forecasting techniques leverage supervised machine learning:
they use a site’s historical solar generation as training data to auto-
matically learn a model that maps weather metrics to solar output
at each time interval. The models then use standard forecasts of
these weather metrics as input, e.g., from the National Weather
Service (NWS), to predict future solar output.

Thus, the key to constructing sophisticated forecast models is
access to historical solar generation data for training. Utilities are
rapidly installing advanced or “smart” meters, which record energy
�ow at �ne-grained intervals ranging from �ve minutes to every
hour, that can provide such historical data. Smart meter installations
are estimated to hit 70M by the start of 2017 and 90M by 2020 [14].
Thus, ample training data from smart meters is typically available
for large residential solar deployments (>10kW) and solar farms, as
these deployments are often required to be independently metered.
As a result, these deployments’ meter data represents pure solar
data. However, nearly all small-scale residential solar deployments
(<10kW) are “behind the meter” (BTM), such that the smart meter
data exposed to utilities represents only the net of a building’s solar
generation and its energy consumption. Thus, constructing the
forecast models above for BTM solar is not possible, as there is no
pure solar data available for model training.

To address the problem, we present a new system, called Sun-
Dance, that accurately separates (or “disaggregates”) a building’s
net meter data into its solar generation and energy consumption.1

1Note that solar disaggregation di�ers from energy disaggregation [5], as it only sepa-
rates out solar generation from energy data and not appliance-speci�c consumption.
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Importantly, SunDance employs a “black box” technique that re-
quires no training data from the building itself, i.e., historical data
separated into solar generation and energy usage, and instead only
requires a minimal amount of net meter data and a location, both
of which are available to utilities. In lieu of training data, SunDance
leverages multiple insights into fundamental relationships between
location, weather, physical characteristics, and solar irradiance. In
particular, SunDance combines two key insights.
• Clear Sky Generation Model. Our �rst insight is that it is

possible to build an accurate customized model of each solar
deployment’s maximum “clear sky” generation potential based
on fundamental relationships between the Sun, the Earth, and
a deployment’s location and custom physical characteristics,
even when using noisy net meter data that combines solar gen-
eration with signi�cant energy consumption.

• UniversalWeather-Solar E�ect. Our second related insight
is that the same weather conditions reduce the maximum
clear sky solar irradiance potential by the same percentage
regardless of the magnitude of this solar irradiance, which is
a well-known weather-independent function of time at each
location. This property, which we call the Universal Weather-
Solar E�ect, enables SunDance to i) build a general model using
supervised machine learning that maps weather metrics to the
expected fraction of the maximum solar irradiance potential
for locations where solar training data is available, and then ii)
apply that model to accurately infer solar generation at other
locations, where solar training data is not available.

SunDance combines the insights above to develop an accurate
customized model of a solar deployment’s maximum solar genera-
tion potential using only its noisy net meter data and location, and
then determines the fraction of this maximum generation the de-
ployment actually produces by using a general model of weather’s
fundamental impact on the maximum solar irradiance potential. In
developing SunDance, we make the following contributions.
Solar Background. We discuss in detail the fundamental physi-
cal relationships that govern solar generation over time based on
location, position of the Sun, physical characteristics, weather, tem-
perature, etc., and provide empirical evidence for SunDance’s key
insights above. These relationships dictate each location’s unique
solar signature, and the impact of weather on solar generation.
SunDance Design. We present SunDance’s solar disaggregation
technique summarized above. To construct a customized model of
a solar deployment’s maximum clear sky generation, SunDance
searches for a valid solar signature that represents the tightest strict
upper bound on the noisy net meter data. SunDance then learns
a general model that captures the Universal Weather-Solar E�ect
at all location(s) where solar training is available. SunDance then
combines these models to disaggregate a location’s net meter data.
Implementation and Evaluation. We implement SunDance and
evaluate it on net meter data from 100 buildings. We show that
SunDance’s accuracy, in terms of its Mean Absolute Percentage
Error (MAPE), when inferring solar generation without access to
any solar training data from the buildings under test is comparable
to the accuracy of a customized machine learning model built with
complete access to a building’s historical solar data for training.

2 SOLAR BACKGROUND
SunDance assumes access to average power data Pnet (t ) from a
building smart meter, which represents the sum of solar power
generation Ps (t ) and energy consumption Pc (t ), as shown below,
where Ps (t ) ≥ 0 and Pc (t ) ≤ 0.

Pnet (t ) = Ps (t ) + Pc (t ),∀t > 0 (1)
Given only Pnet (t ) and the meter’s location, SunDance’s task

is to infer Ps (t ) and Pc (t ) at each time t .2 Below, we provide a
brief background on the fundamental relationships that determine
i) the maximum amount of solar irradiance that reaches the Earth’s
surface at any time at any location, ii) the physical characteristics of
solar cells that dictate how much of this irradiance is converted to
electrical power under ideal weather conditions, and iii) the impact
of non-ideal weather conditions. We identify insights based on
these fundamental relationships in designing SunDance.

2.1 Computing Clear Sky Irradiance
Solar irradiance is the power transmitted to the Earth by the Sun,
and is measured in units of kilowatts per meter squared (kW/m2).
While the Total Solar Irradiance (TSI) that strikes perpendicular
to the Earth’s atmosphere is relatively constant and estimated at
∼1.361 kW/m2, the irradiance that reaches the ground is much less
due to atmospheric losses (even under clear skies). The magnitude
of these losses is largely a function of the Air Mass (AM) that light
must travel through to reach the Earth, such that that the larger the
AM the lower the fraction of TSI that reaches the ground. The AM
is, in turn, a function of the Sun’s position in the sky. For example,
the fraction of TSI that reaches the ground is less closer to sunrise
or sunset, as the Sun’s light must pass through much more of the
Earth’s atmosphere at those times.

Since the Sun’s position in the sky is a well-known function of
location and time, it is possible to use the AM along with measure-
ments of other atmospheric parameters to estimate the clear sky
irradiance under a cloudless sky at any point on Earth at any time.
There are many clear sky irradiance models that range from sim-
ple geometric formulas involving only the AM, the Sun’s position,
and experimentally-derived constants to highly complex models
that require detailed data on the speci�c location’s atmospheric
conditions [19]. Note that evaluating the accuracy of these models
is outside the scope of this paper, and has been the focus of sig-
ni�cant prior work [19]. While SunDance is compatible with any
of these models, our implementation in this paper uses a simple
model that requires only a location’s latitude and longitude and
the Sun’s position, which is a function of location and time. These
models enable SunDance to directly estimate the clear sky solar
irradiance Itotal (t) at any location at any time t . Importantly, the
actual power a solar module generates at any time must always be
strictly less than a location’s clear sky solar irradiance, as a module
can never generate more power than the Sun provides.

2.2 E�ect of Physical Characteristics
Solar cells harness the photovoltaic e�ect to translate the Sun’s
irradiance into electrical energy. However, the e�ciency of solar
cells depends on a variety of physical characteristics speci�c to

2Note that this time t also includes the day and month of the year.
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(a) Orientation (k=10, tilt=41◦) (b) Size and E�ciency (orientation=180◦, tilt=41◦) (c) Tilt (orientation=180◦, k=10)

Figure 1: Maximum clear sky solar generation potential near NYC on 1/1/2016 for di�erent physical deployment characteris-
tics, including di�erent orientations α (a), sizes and e�ciencies k (b), and tilts ϕ(c).
each solar deployment. For example, the e�ciency of commercial
solar modules varies widely due to di�erent materials and manu-
facturing processes, e.g., mono- versus poly-crystalline modules. In
addition, a number of other physical characteristics further reduce
solar module e�ciency. The most important physical characteristics
that a�ect e�ciency are a solar module’s size, tilt, and orientation.
For example, the clear sky irradiance models above assume a 100%
e�cient solar module lying �at on the ground, such that its direc-
tional orientation and vertical tilt are equal to 0◦. However, if a
solar module is tilted upward and facing away from the Sun, not all
of the available solar irradiance will reach it. As before, the e�ect
of solar module size, tilt, and orientation are well-known and can
be expressed using the closed-form equation below that relate a
module’s solar power generation Ps to the solar irradiance incident
on the module Iincident and the physical characteristics above.

Ps = Iincident ∗ k ∗ [cos(90 − Θ) ∗ sin(β ) ∗ cos(ϕ − α )
+ sin(90 − Θ) ∗ cos(β )] (2)

Here, Θ is the Sun’s zenith angle above (such that 90-Θ is the
Sun’s elevation angle), α is the Sun’s azimuth (or orientation) angle,
β is the solar module’s tilt angle, andϕ is the solar module’s azimuth
(or orientation) angle. The Sun’s zenith angle ranges from 0◦ (when
the Sun is directly overhead) to 90◦ (at sunrise or sunset). Similarly,
a solar module’s tilt angle ranges from 0◦ when lying �at on the
ground to 90◦ when vertical. The orientation angles for both the
Sun and the module range from 0◦ (directly north) to 180◦ (directly
south). Finally, the k parameter represents a combination of a solar
module’s size and its e�ciency, expressed as a percentage of the
incident solar irradiance Iincident it converts to electrical energy.
For example, a solar module that is 2× larger but half as e�cient as
another solar module would have the same value of k .

Figure 1 illustrates the physical e�ects on clear sky generation
potential at a location just north of New York City, at 41◦ latitude
and -74◦ longitude, on January 1st, 2016 for di�erent solar module
orientations (a), sizes and e�ciencies (b), and tilts (c). As the �gure
shows, orienting the solar modules west or east shifts the peak
solar generation later or earlier, respectively. In addition, since the
k parameter from Equation 2 is a constant scaler it simply scales
the curve up and down. The tilt parameter (β) has a similar e�ect as
k , in that it also tends to scale the curve up and down for practical
values, but is not a scaler, and thus also a�ects the orientation shift.

Thus, given k , β , and ϕ, we can compute a solar module’s maxi-
mum power generation potential Psmax in clear skies at any loca-
tion at any time by setting Iincident = Itotal from §2.1, as the other

parameters are a function of location and time. In §3, we show how
SunDance infers k , β , and ϕ from net meter data.
Other E�ects. While module size, e�ciency, tilt, and orientation
have the largest impact on solar module output, other physical
e�ects also exist that are not precisely modeled by the closed-form
equation above. For example, a module’s operating voltage a�ects
its e�ciency based on a solar module’s IV curve. In this paper, we
assume solar modules always operate at their maximum power
point using standard tracking algorithms. In addition, while both
i) multiple solar modules with di�erent placements that are wired
together (either in series or parallel) and ii) modules that track
the Sun by changing their tilt and orientation also permit similar
closed-form models, they are more complex. We focus use simple
models, which apply to the vast majority of solar deployments, and
leave extending them to more complex deployments as future work.

2.3 Weather E�ects
The relationships above model the energy a solar module generates
at any location at any time in ideal weather, e.g., under clear skies
at an optimal temperature. Of course, non-ideal weather conditions
can reduce both solar module e�ciency and the amount of solar
irradiance that reaches the ground. As we discuss below, the ambi-
ent temperature has a signi�cant e�ect on solar module e�ciency,
while other weather conditions, such as clouds and humidity, a�ect
the solar irradiance that reaches the ground.
E�ciency E�ects. While multiple weather metrics may a�ect
solar cell e�ciency, the most signi�cant metric is the ambient tem-
perature. The closed-form equation below estimates the cell tem-
perature based on the temperature of the ambient air [23].

Tcell = Tair + S ∗
NOCT − 20

800
(3)

Here,Tcell is the cell temperature in Celsius,Tair is the ambient
air temperature in Celsius, S is the solar irradiance that is striking
the panel (in W/m2), and NOCT is the Nominal Operating Cell Tem-
perature. The NOCT varies between solar modules, but generally
ranges from 33◦C to 58◦C with 48◦C as a typical value. Importantly,
for every degree increase (or decrease) inTcell , the e�ciency drops
(or rises) by a constant percentage. While the precise temperature-
based e�ciency loss varies between modules, it is typically ∼0.5%
per degree Celsius. Given these relationships, we discuss in the next
section how SunDance adjusts for these temperature e�ects with
only knowledge of the outdoor air temperature at a location, and
without requiring a solar module’s NOCT value or even knowing
the precise e�ect of temperature on e�ciency.
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Figure 2: Percentage ofmaximum clear sky solar generation
(a) and raw solar output (b) for multiple locations (indicated
by 3 colors) and time periods with the same weather.

We do not model the e�ect of other weather metrics on e�ciency,
as these e�ects are typically not signi�cant [20].
Irradiance E�ects. A variety of other weather conditions serve
to block some solar irradiance from reaching the module. Most
importantly, the level of cloud cover, which can be quanti�ed using
satellite imagery, blocks solar irradiance. In addition, humidity, fog,
and various forms of precipitation increase the particulates in the
atmosphere (and on the module) that also block solar irradiance.

A key insight of our work, which we will leverage in the next
section, is that the exact same weather should have the same pro-
portionate a�ect on the maximum solar irradiance potential Itotal
that reaches the ground, regardless of its magnitude, which varies
widely over time time at di�erent locations. That is, if two di�erent
locations A and B experience the exact same weather conditions
at two di�erent times then the solar irradiance that reaches the
ground Iincident will be c ∗ IAtotal at location A and c ∗ IBtotal at
location B, where c is a constant based on the weather and Itotal is
the maximum clear sky solar irradiance at those locations at those
times. We call this the Universal Weather-Solar E�ect, and, as we
show, it is key to SunDance’s approach.

While the Universal Weather-Solar E�ect is intuitive, we pro-
vide some initial empirical evidence for it using solar and weather
data from three solar deployments at di�erent locations and times.
A full evaluation of this e�ect is outside the scope of this paper.
Our insight above implies that the same weather should yield the
same percentage reduction in clear sky solar generation across all
locations, regardless of time. Figure 2 shows results for three di�er-
ent weather conditions—clear, light clouds, and overcast—for three
solar deployments (indicated by color) that >1000km apart. Here,

“clear” corresponds to a dew point less than 6.1C, humidity less than
15%, no precipitation, and a “clear” sky condition; “light clouds” cor-
responds to a dew point of 7.3C-8.7C, a humidity between 40%
and 55%, precipitation between 0 and 0.3cm, and a “mostly cloudy”
sky condition; and “overcast” corresponds to a dew point greater
than 16.7C, a humidity greater than 85%, precipitation greater than
0.3cm, and a “snow/rain/thunderstorm” sky condition.

At each location, we search for hour-long periods over multiple
years that have precise weather conditions in the range above. We
then plot the percentage of maximum solar generation at each hour
under these weather conditions. Note that the sample time periods
on the x-axis are random, non-contiguous, and drawn equally from
the di�erent locations, which each have widely di�erent physical
characteristics. Since we select sample periods based on similarity
in their weather, they naturally cover di�erent days of the year and
times of day, which vary widely in their clear sky solar irradiance.

Despite these di�erences, Figure 2(a) demonstrates that the per-
centage of clear sky solar generation is remarkably constant for
each weather condition across all times and all locations. In partic-
ular, our “clear” condition maps to near 100% clear sky generation,
our “light clouds” condition maps to near 60% generation, and our
“overcast” condition maps to near 0% generation. The slight variance
in (a) occurs because our weather metrics are neither complete, i.e.,
we only use four weather metrics, nor precise, i.e., the sky condition
reported by the NWS is a qualitative text string. In contrast, the
raw solar output from these deployments across the sample periods,
shown in Figure 2(b), is not constant, and varies widely based on
weather, location, and time.

3 SUNDANCE DESIGN
Given only a solar-powered building’s net energy meter data and
its location, SunDance disaggregates the data into the two separate
components in Equation 1: the building’s solar generation Ps (t ) and
its energy consumption Pc (t ). SunDance’s design includes three
key steps, which we summarize below, before detailing each.
1. Build a Custom Model of Maximum Solar Generation.
SunDance uses historical net energy meter data to build a custom
model of a solar deployment’s maximum clear sky solar generation
potential at any given time based on its location. This model in-
corporates each deployment’s unique physical characteristics from
the previous section, and its temperature e�ects, but focuses nar-
rowly on modeling maximum generation potential and thus does
not model any other weather-related e�ects, e.g., due to clouds,
humidity, precipitation, etc. SunDance builds this model by �nding
the valid solar curve dictated by the fundamental relationships in
the previous section that best “�ts” the data.
2. Build a General Model of Weather’s E�ect on Irradiance.
Separately, SunDance builds a general model that maps multiple
weather metrics to the expected percentage reduction in clear sky
solar irradiance potential. Due to the Universal Weather-Solar E�ect,
this model is general and can be built using solar training data from
any (or multiple) locations, but then applied to accurately quantify
the e�ect of weather on the clear sky solar irradiance potential at
other locations, where such training data is not available.
3. Apply the TwoModels Above to Disaggregate Solar Power.
Given the two models above, disaggregating net energy meter data
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Figure 3: SunDance’s maximum clear sky generation model when built on pure solar data (a), net meter data (b), and on net
meter data using historical data from only two days (c). In contrast, both (a) and (b) represent the best �t over one year of data.
is trivial. SunDance �rst uses weather data for the location as input
to its general weather model to infer the percentage reduction
in maximum clear sky solar irradiance potential. SunDance then
applies this percentage reduction to the deployment’s maximum
solar generation, which is computed using the custom model in step
one, to infer the absolute amount of solar generation Ps (t ) at each
time t . Finally, to complete the disaggregation, SunDance subtracts
this solar generation Ps (t ) from the net meter data Pnet (t ) to yield
the energy consumption Pc (t ) at the same time t .

3.1 Building a Maximum Generation Model
InferringPhysical Characteristics. The relationships in §2.1 and
§2.2 enable us to de�ne a range of valid solar curves at any location,
which dictate the shape of maximum clear sky solar generation
potential over each day of the year based on a deployment’s physical
characteristics, e.g., ϕ, k , and β from Equation 2.

SunDance builds a maximum clear sky generation model for
a solar deployment by �nding the ϕ, k , and β that de�nes the
valid solar curve that best “�ts” the location’s energy data. We �rst
discuss building this model for pure solar generation data and then
describe how to translate it to net meter data that combines solar
generation and energy consumption. Even pure solar generation
data is stochastic, exhibiting many rapid variations in power due to
changing weather conditions that diverge from its maximum power.
For example, Figure 3(a) depicts solar generation on a partially
cloudy day for a 10kW residential solar deployment, where output
dips in the morning. Since generation deviates from its maximum in
the morning, �nding the valid solar curve that simply minimizes the
Root Mean Squared Error (RMSE) with the data is not appropriate:
the non-ideal weather will always result in �tting a solar curve that
is lower than the maximum clear sky solar generation.

As a result, SunDance instead �nds the best �t valid solar curve
that represents the tightest upper bound on the data, since we
know that the observed solar generation should never exceed the
maximum clear sky generation. That is, among the valid solar
curves that are equal to or greater than all datapoints, we �nd the
one that minimizes the RMSE with the data. As a result, the curve
SunDance �nds will be dictated entirely by the single datapoint
that experiences the highest percentage of its maximum generation
potential. Thus, even if a day is cloudy, if there is even one datapoint
that is near the maximum generation, this datapoint will dictate
the best �t for the entire day (since the best �t must be a strict
upper bound on the data). For example, even on the cloudy day
in Figure 3(a), the best �t curve closely matches the ground truth

maximum solar generation (which we approximate using the next
day’s solar generation under a clear sky), since it is dictated by the
points in the day that are sunny. SunDance can apply this approach
to multi-day time periods where the likelihood of a deployment
experiencing its maximum generation at some point is high.

SunDance must search for the ϕ, k , and β from Equation 2 to
�nd the best �t. This search is challenging since the parameters are
dependent, e.g., modifying the tilt changes the e�ect of orientation,
and conducting a brute force search across the entire parameter
space is too computationally expensive, especially for �ne-grained
data. However, searching the entire parameter space appears neces-
sary, as the tilt β and size and e�ciency k have a similar e�ect on
generation, which can lead to �nding local maxima in isolated areas
of the parameter space. For example, in one part of the parameter
space, we may �nd a best �t curve that has a high tilt and low k ,
whereas the actual deployment has a high k and low tilt.

To address this problem, we observe that, while the physical
characteristics of solar deployments are not always ideal, installers
generally attempt to make them as ideal as possible. As a result,
SunDance is able to accurately estimate a starting condition for its
search based on the ideal physical characteristics to ensure it starts
in the “right” region of the parameter space. In particular, the ideal
orientation angle is south-facing in the northern hemisphere (and
north-facing in the southern hemisphere) with a tilt angle equal to
the latitude. Given these starting conditions, SunDance conducts
an iterative search that �rst �nds the value of k that best �ts the
data using a binary search, while keeping the other values constant.
Given the new value of k , the search process then proceeds itera-
tively by next searching for the orientation that best �ts the data
using a binary search. After �nding this orientation, we adjust the
tilt in the same way. The search continues iteratively by adjusting
each parameter in turn until they do not change signi�cantly.

In practice, this approach e�ciently �nds tilt and orientation
angles that are close to the ground truth tilt and orientation angles,
since most solar deployments have physical characteristics near the
ideal. For example, the ground truth tilt and orientation in Figure 3
are 35◦ and 190◦, respectively, while the tilt and orientation angles
SunDance �nds in (a) when using pure solar data are 36◦ and 189◦.
Modeling Temperature E�ects. While the approach above �nds
a model with tilt and orientation angles that are close to the ground
truth tilt and orientation angles, it is not accurate when applied
over the entire year due to the e�ect of temperature on solar cell
e�ciency, which is captured by the k parameter. Since the best �t
curve must be an upper bound on the data, this curve is dictated
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Figure 4: SunDance’s maximum clear sky generation model
both before and after adjusting for temperature e�ects.

by the point that achieves the highest percentage of its maximum
clear sky generation potential at the lowest temperature, which
is the most e�cient operating point for the solar cell. Thus, to
adjust for these temperature e�ects, SunDance �nds the datapoint
that is closest to the initial upper bound solar curve found above
and then �nds the location’s ambient temperature at that time to
use as a baseline Tbaseline . This datapoint represents the coldest
time period that maximizes solar cell e�ciency under clear skies.
SunDance then applies a temperature adjustment to k in the model.

k ′(t ) = k ∗ (1 + c ∗ (Tbaseline −Tair (t ))) (4)

The temperature adjustment function re�ects the constant factor
c increase (or decrease) in e�ciency when the ambient tempera-
ture is below or above the baseline temperature. Here, Tair is the
location’s ambient temperature at time t . While a typical value of c
is 0.5% for solar modules [26], SunDance searches for the precise
value of c for each deployment that represents the tightest upper
bound on the data. While e�ciency is a linear function of cell
temperature, and not ambient temperature, since the temperature
adjustment function subtracts the current temperature from the
baseline it cancels out the constant values in Equation 3.

Figure 4 shows a maximum generation model for a sunny day
in each season both before and after our temperature adjustment.
Before the temperature adjustment, the model is highly accurate
in January, since these cold weather days represent the most e�-
cient operating points that dictate the upper bound, but is highly
inaccurate in July when the temperature is 40C greater than on the
coldest days. This is expected, since with a typical solar module,
a 40C increase in temperature decreases the e�ciency (and maxi-
mum generation potential) by 40∗0.5%=20%. After the temperature
adjustment, the maximum generation model closely matches the
generation on these sunny days. In this case, the factor c we found
was 0.57%, which is near the typical value of 0.5%.
Modeling using Net Meter Data. The discussion above builds
a model of maximum clear sky solar generation using pure solar
generation data. Modeling the maximum solar generation using
net meter data di�ers in two key respects, which require simple
extensions to our methodology above.

First, adding energy consumption introduces additional “con-
sumption noise” to pure solar data that causes it to deviate from its
maximum generation. Of course, this consumption-induced noise
has the same e�ect as variable non-ideal weather conditions in de-
creasing the recorded generation. However, as discussed above, our
modeling approach above is robust to non-ideal weather conditions,
since the best �t must be a strict upper bound on the data, which

Days Tilt Orientation k Area (m2) c

Ground Truth NA 35◦ 190◦ 12.3 48.88 NA
Pure Solar 365 36◦ 189◦ 10.6 48.18 0.57
Net Meter 365 36◦ 188◦ 10.7 48.63 0.58

Net Meter (Temp) 365 34◦ 186◦ 10.9 49.55 0.72
Net Meter (Temp) 2 36◦ 185◦ 11.6 52.73 0.69

Table 1: The model parameters SunDance �nds in the Fig-
ure 3 variants are all similar to the ground truth parameters.

is dictated the datapoint(s) that are closest to the maximum gener-
ation potential. This logic also applies to the non-ideal “weather”
created by adding energy consumption: as long as datapoints exist
where solar generation is near its maximum potential and energy
consumption is low, e.g., when a home is unoccupied on a sunny
day, our best �t upper bound model will be dictated by these few
datapoints. This insight enables us to model a deployment’s max-
imum solar generation even on noisy net meter data, where we
cannot directly model the actual (disaggregated) solar generation.

Second, energy consumption in modern buildings generally
never drops to zero. Thus, SunDance must estimate a building’s
minimum power consumption �oor for the datapoint(s) above that
dictate the model. To do so, SunDance simply uses the minimum
power consumption at night, when solar generation is guaranteed
to be zero. In many climates, the minimum power consumption
occurs at night, while occupants are sleeping. However, in some
cases, such as homes in cold climates that use electric heating, it is
possible the minimum power consumption may not occur at night.
In these cases, SunDance could use another approach to estimate
the power consumption �oor.

SunDance then subtracts the power consumption �oor above
from the data before constructing its model, where the minimum
nightly consumption in the adjusted net meter data is zero. Fig-
ure 3(b) shows our model built using net meter data from the same
deployment and time as in Figure 3(a). Note that, with (negative)
consumption included, the net meter data is strictly less than the
solar model; the �gure also highlights the power �oor SunDance
uses to adjust the net meter data. Recall that the model in (a) �nds
a tilt of 36◦, an orientation of 189◦, a k of 10.6, and a c of 0.57%. Our
model in (b) using the net meter data is similar, �nding a tilt of 34◦,
an orientation of 186◦, a k of 10.9, and a c of 0.72%.
Historical Data Requirements. SunDance requires remarkably
little data to construct an accurate custom model of solar genera-
tion. In the limit, our approach needs only two datapoints during
clear skies with low energy consumption, such that there is a sig-
ni�cant temperature di�erence between the two points. Since the
model �nds the tightest upper bound on the available data, it is
entirely dictated by the single point of maximum net generation (or,
equivalently, the minimum net consumption). An additional point
is needed at a di�erent temperature to model the e�ect of tempera-
ture on e�ciency. To illustrate, the models in Figures 3(a) and (b)
were built by �nding the tightest upper bound across an entire year
of net meter data. In contrast, Figure 3(c) shows our model (with
and without a temperature adjustment) using two sunny days in
January on net meter data. Using only these two days, instead of
an entire year, SunDance �nds similar model parameters, with a
tilt of 36◦, an orientation of 185◦, k = 11.6, and c = 0.69%.

Table 1 summarizes the model parameters found on the di�er-
ent datasets and model variants in Figure 3. In all cases, the tilt,
orientation, and c SunDance �nds are close to the ground truth.
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Figure 5: SunDance �nds accurate tilt (top) and orientation
(bottom) angles using as little as two days of net meter data.
In addition, the k value, which is the product of a module’s size
and e�ciency at the baseline temperature, is also accurate. In this
case, the module is 48.88m2. While we cannot separate a module’s
size and e�ciency, if we assume a typical commercial module with
∼22% e�ciency at 25C, SunDance can estimate the module size. As
the table shows, SunDance �nds sizes close to the ground truth for
this module. While we evaluated SunDance across 100 buildings,
we were only able to verify ground truth tilt and orientation angles
of buildings that were clearly visible from Google street view data.
Figure 5 shows that using noisy net meter data from 10 buildings
where we could manually verify the ground truth tilt and orienta-
tion angles, SunDance consistently �nds angles that are near the
ground truth even when using only two days of data.

3.2 Building a General Weather Model
The models described above are highly customized to each deploy-
ment, incorporating its unique orientation, tilt, size, e�ciency, and
temperature e�ects. In contrast, our weather model, which lever-
ages the Universal Weather-Solar E�ect from §2.3, is general and
thus applies to any solar deployment. As a result, our weather mod-
eling is a one-time exercise that can use any solar irradiance (or
solar power data) from any location. We construct our weather
models similar to prior work on solar power forecasting models
that use supervised machine learning [13, 24]. These approaches
train a model based on labeled data that associates standard weather
metrics, such as sky condition, temperature, humidity, dew point,
precipitation, etc., with a deployment’s solar generation.

Thus, the output of these existing models is a deployment’s ab-
solute solar generation, which is not general, but instead custom
to each deployment’s unique physical characteristics, particular its
size. In contrast, SunDance generalizes these models by changing
the output to be the fraction of maximum solar irradiance poten-
tial that reaches the ground. Based on the Universal Weather-Solar
E�ect, this approach can include solar irradiance data from many lo-
cations (and many times) to use for training a single general model.
In addition, since pyranometer deployments, which record solar

irradiance, are rare, SunDance can equivalently use any pure solar
generation data (adjusted for temperature e�ects) that is available
to build these models. Based on Equation 2, when dividing a deploy-
ment’s solar output by its maximum solar generation potential, the
factors based on the physical deployment characteristics cancel out,
such that the resulting ratio is equivalent to the ratio of observed
solar irradiance to maximum solar irradiance potential.

Importantly, our insight above means that we can build a general
weather model using pure solar power data from one (or many) de-
ployments where it is available, and then use that model to accurately
infer the reduction in solar power from its maximum potential at other
solar deployments, where pure solar power data is not available. This
is a signi�cant insight not only for our work on solar disaggrega-
tion, but also for work on solar forecasting based on pure solar data.
For example, recent work highlights the importance of reducing the
amount of training data necessary to build custom solar forecast
models, especially for new solar deployments coming online [13].
However, based on the insight above, our general weather model
requires zero training data from a new solar deployment under test.
In addition, as discussed above, we can build an accurate maximum
generation model using as few as two datapoints. In contrast, prior
work requires from months [13] to years [24] of historical data to
construct an accurate model.

Prior work has evaluated a wide range of supervised machine
learning techniques for modeling the e�ect of weather on solar out-
put, including least squares regression, Support Vector Machines
(SVMs) using di�erent kernel functions, and deep neural nets. While
we evaluate di�erent modeling techniques in §5, SunDance is or-
thogonal to the speci�c machine learning technique. SunDance’s
contribution instead lies in identifying the Universal Weather-Solar
E�ect and designing input and output features to leverage it to build
a general weather model. We use the weather metrics from Weather
Underground as input features to our model, including temperature,
humidity, dew point, barometric pressure, precipitation, and sky
condition. We map the qualitative descriptions for sky condition,
e.g., scattered clouds, sunny, etc. to a numerical percentage of cloud
cover using the mapping suggested by the NWS. More precise nu-
merical percentages, which would improve model accuracy, can be
derived from satellite imagery.

3.3 Disaggregating Net Meter Data
Given the two models above, solar disaggregation is trivial. For
each datapoint in the net meter data, we use the weather metrics at
that time as input to our general weather model above to infer the
fraction of its maximum generation a solar deployment will output.
To infer a building’s actual solar generation Ps (t ), we then multiply
this fraction by the maximum solar generation we infer based on
our customized model in §3.1 at that time. We then simply subtract
our inferred solar generation from the building’s net meter data
Pnet (t ) to compute the corresponding energy consumption Pc (t ).

4 IMPLEMENTATION
We implement SunDance using a mixture of python and C++. We
use simple well-known geometric formulas to compute a location’s
clear sky solar irradiance based on its latitude, longitude, elevation,
time, and the Sun’s position in the sky. To derive the Sun’s position
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in the sky, we use the PSA algorithm, which takes as input the
UTC time (to the second) and a location’s latitude and longitude
and outputs the Sun’s precise azimuth and zenith angles [7]. High
performance implementations of the PSA algorithm are publicly
available that are accurate to within 0.0083◦ of the Sun’s true po-
sition. We then compute the AM relative to an AM of 1 when the
Sun is 90◦ overhead based on the well-known formula below.

AM =
1

cos(Θ) + 0.50572(96.07995 − Θ)−1.6364
(5)

Given the AM above, we estimate the direct solar irradiance
Idirect that reaches the ground using the Laue Model [17] as follows,
where h is the location’s elevation above sea level and 1.361 kW/m2

represents the solar constant.

Idirect = 1.361 ∗ [(1 − 0.14 ∗ h)0.7AM
0.678
+ 0.14 ∗ h] (6)

In addition, while variable, the amount of di�use irradiance that
is scattered by the atmosphere is generally estimated at ∼10% of
the direct irradiance on a clear day. Thus, we compute the total
solar irradiance Itotal from §2.1 at any location as follows.

Itotal = 1.1 ∗ Idirect (7)
Note that there are also packages available that implement other

clear sky solar irradiance models, including PySolar [2] and NREL’s
library that implements the Bird model [1]. We leave evaluating
SunDance’s accuracy across these di�erent models as future work.

Given a location’s latitude and longitude, our implementation
fetches historical weather data at one-hour granularity using Weather
Underground’s API. Since Weather Underground only has one-hour
weather data, we can only disaggregate net meter data at the gran-
ularity of an hour. However, SunDance’s approach is general and
can be applied to weather and energy data at any granularity. We
use the scikit-learn machine learning library in python to build our
general weather model. The library supports multiple techniques
including Support Vector Machines with di�erent kernel functions
and multiple linear regression models. We also use NumPy and
Pandas for weather and energy data processing.

5 EVALUATION
We �rst evaluate SunDance’s accuracy across 100 solar-powered
buildings using one year of hour-level interval energy data. We
then focus on a representative “net zero” building to understand
the e�ect of energy consumption patterns, weather, and time on
SunDance’s accuracy. To quantify accuracy, we compute the Mean
Absolute Percentage Error (MAPE), as follows, between the ground
truth solar energy and the solar energy that SunDance infers over
all time intervals t . A lower MAPE indicates higher accuracy with
a 0% MAPE being perfectly accurate solar disaggregation.

MAPE =
100
n

n∑
t=0
|
St − Pt

St
| (8)

Here, St and Pt are the actual and inferred average solar power
generation, respectively, over time t . We also compute the MAPE
between the actual and inferred energy consumption using the
same approach. We restrict all time periods to between sunrise and
sunset, since SunDance is always perfectly accurate at night, as
solar generation is always zero. Even so, MAPE is highly sensitive
to periods of low absolute solar generation. For example, if sunrise
falls near the end of an hour, the absolute generation of a 10kW

solar deployment over the hour may only be 50W. If SunDance
infers a generation of 100W, its MAPE for that period will be 100%.
In contrast, the absolute generation during a cloudy mid-day period
may be 5kW, such that if SunDance infers a generation of 6kW, its
MAPE is only 20%. Thus, the absolute error of 50W contributes
much more to the average MAPE than the absolute error of 1kW. To
put our results in better context, we report overall MAPEs, as well
as MAPEs for separate time periods and under di�erent weather
conditions. In particular, as in solar forecasting, we prioritize accu-
racy during cloudy periods in the middle parts of the day, where a
signi�cant amount of solar generation may �uctuate.

5.1 Comparing with a Supervised Approach
We compare SunDance’s black-box approach to a fully supervised
machine learning approach that has access to an entire year of
historical solar generation and energy consumption data that has
already been separated. In this case, the supervised approach works
exactly like SunDance, except that, instead of our general weather
model, we build a supervised model using the custom solar train-
ing data from each speci�c solar site. Thus, unlike other machine
learning approaches [6, 13, 21, 24], our supervised approach in-
corporates the same physical solar models as SunDance. In recent
work, we have show that this supervised approach is signi�cantly
more accurate than existing supervised approaches that do not
incorporate physical solar models [9]. Our supervised approach
represents a lower bound on the MAPE (and an upper bound on
the accuracy) that SunDance can expect. As in prior work, we use a
Support Vector Machine (SVM) with a Radial Basis Function (RBF)
kernel for our supervised approach [6, 21, 24]. SVM-RBF is common
in solar modeling, since it attempts to �t a Gaussian curve to solar
data and solar pro�les are similar to Gaussian curves.

Figure 6 compares SunDance’s accuracy with that of the super-
vised approach for each of the 100 buildings. In the graph, each
stacked bar represents a building, such that the lower bar is the
MAPE of a supervised approach, and the upper bar represents the
increase in MAPE when using SunDance. The graph shows that
across all buildings, the increase for SunDance in MAPE is generally
small relative to the supervised approach. This result suggests the
accuracy of Universal Weather-Solar E�ect, as the only di�erence
between the two approaches is data used for training.

In addition, the buildings are sorted by their ratio of solar energy
generation to energy consumption, which is listed at the top of
each bar. As the graph shows, the MAPE is partially a function of
this ratio, such that a higher ratio generally yields more accurate
results. This is intuitive, as increased energy consumption repre-
sents additional “noise” that SunDance must �lter out. Note that a
ratio of 100% represents a “net zero” building that has equal solar
generation and energy consumption. Here, we see average MAPEs
of ∼22% for SunDance on net zero buildings. Much of the impreci-
sion derives from the absolute error in estimating each building’s
energy �oor, which essentially requires an informed guess.

We also plot the same graph but only for the middle hours of the
day (11am-3pm) to reduce the e�ect of small absolute errors that
yield large percentage errors at the start and end of each day. This
graph shows that MAPEs reduce by ∼22% during these important
periods to an average of ∼17% for a net zero building. In addition, in
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Figure 6: Daytime (top) and mid-day (bottom) MAPE for solar disaggregation using a supervised approach and SunDance for
100 buildings over a year. Buildings sorted by their ratio of solar generation to energy consumption (listed atop each bar).
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Figure 7: One month of net meter data (top) and ground truth and inferred solar generation (bottom) from a net zero building.
many cases for the mid-day results, SunDance performs as well as
the supervised approach, in large part, because any small absolute
error in the energy consumption �oor has less e�ect on the MAPE
as the absolute solar generation increases.
Result: SunDance’s black-box approach achieves similar accuracy
without access to any solar training data from a site as a fully super-
vised approach with complete access to such training data.

5.2 Quantifying SunDance’s Accuracy
We next evaluate the di�erent conditions that a�ect SunDance’s
accuracy on a representative net zero building (labeled in Figure 6).
To provide a qualitative sense of SunDance’s accuracy, Figure 7
shows the raw net meter data (top), as well as the ground truth
and disaggregated solar generation (bottom). The �gure shows that
SunDance’s inferred solar generation closely matches the ground
truth solar generation, despite the stochasticity in the net meter
data. In this case, the MAPE for solar generation is ∼26%, while
the MAPE for energy consumption is ∼22%. The inferred energy
consumption MAPE is typically lower because it is less a�ected by
low absolute values, e.g., in the morning and evening.

We also examine the e�ect of changing both the ratio of solar
generation to energy consumption and altering the variance of the

energy consumption. In this case, to change the ratio, we alter the
building’s energy consumption at each time by a constant factor
to increase and decrease the ratio. Similarly, we alter the variance
by scaling the di�erence in energy consumption between two time
periods by a constant factor, such that a value of 0 results in a
completely �at consumption that never changes from the initial
value. In both cases, the alterations produce a new set of net meter
data, which we feed to SunDance for disaggregation. Figure 8 shows
the results. As expected, as the ratio increases (a), and there is more
solar generation to consumption, we see a linear decrease in MAPE
(and corresponding increase in accuracy). Similarly, a low variance
in consumption enables SunDance to more accurately model the
solar generation and energy consumption �oor (even if the ratio
is large). Thus, in (b) we see a linear decrease in accuracy (and
increase in MAPE) as the energy consumption variance increases.

We also break down our results based on weather conditions
and time. Figure 9 breaks down accuracy based on weather con-
ditions. In this case, we capture weather based on the percentage
of the maximum generation a solar deployment is producing at
any given time. Thus, if a solar deployment is only generating be-
tween 0% and 25% of its maximum clear sky potential, we assume
that the weather is not good. Figure 9 shows that, as expected, our



e-Energy ’17, May 16-19, 2017, Shatin, Hong Kong Dong Chen and David Irwin

 0

 10

 20

 30

 40

 50  60  70  80  90  100  110  120  130  140  150

M
A

P
E

Ratio Percentage (%)

Solar Generation
Energy Consumption

(a) Generation:Consumption Ratio

 0

 10

 20

 30

 40

 0.6  0.7  0.8  0.9  1  1.1  1.2

M
A

P
E

Consumption Variance

Solar Generation
Energy Consumption

(b) Energy Consumption Variance
Figure 8: Higher ratios of generation to consumption result
in higher disaggregation accuracy (a). Lower variances in
consumption result in higher disaggregation accuracy (b).

MAPE improves as the weather conditions improve. Importantly,
for weather conditions that result in a ratio greater than 25%, Sun-
Dance yields near the same accuracy, indicating it performs well
even under highly adverse weather conditions. While the MAPE is
quite high during the worst weather conditions, this is largely due
to small absolute errors from low generation that result in large
percentage errors. To quantify this e�ect, we also plot the MAPE
of energy consumption. Since this is a net zero building, we see
that the small absolute errors in inferred solar generation during
the worst weather conditions have little on e�ect on the energy
consumption MAPE, which has similar accuracy across all weather.
Result: SunDance accuracy is a linear function of the ratio of solar
generation to energy usage and the variance in the energy usage.
SunDance has the highest accuracy during the most critical period:
adverse weather where solar generation is di�cult to infer.

6 RELATEDWORK
The most similar work to SunDance is a recent approach for solar
disaggregation (and product) from Bidgely, Inc. [21, 22]. Similar
to SunDance, Bidgely trains a machine learning model (also using
an SVM-RBF kernel) that maps weather metrics to normalized
solar output on data from a set instrumented deployments, and
then applies that model to estimate solar generation on a separate
set of deployments. However, while SunDance normalizes solar
output by constructing a maximum generation model based on
the underlying physical characteristics of the deployment, Bidgely
normalizes using a static value representing the maximum capacity
of each deployment. As a result, Bidgely’s model is signi�cantly less
accurate than SunDance’s model, as we show in recent work [9].
Prior work also performs solar disaggregation by using data from
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Figure 9: Solar generation and energy consumption MAPE
during di�erent weather conditions.

microsynchrophasors at the feeder-level [15]. This approach di�ers
in that it requires data from grid-level sensors.

SunDance has many commonalities with existing solar forecast
models based on machine learning [8, 13, 24]. However, these tech-
niques use pure solar data to train their models, while SunDance
focuses on disaggregating solar data from net meter data. Sun-
Dance’s weather model uses a similar machine learning approach
as prior forecasting techniques, except that its output is a fraction of
the maximum clear sky generation, which varies over time at each
location. This model is general due to the Universal Weather-Solar
E�ect. As a result, unlike prior forecasting approaches, SunDance
requires no training data from the location under test to accurately
model weather’s e�ect on solar output.

Prior work on solar forecasting in SolarCast also performs feature
engineering to reduce the amount training data necessary to build
an accurate model that maps weather to solar output [13]. Similar to
SunDance, SolarCast leverages the relationship between clear sky
solar irradiance and solar output to build a single model of weather-
to-solar output by normalizing its training data across time, e.g., by
multiplying weather metrics by the clear sky irradiance. However,
unlike SunDance, SolarCast’s models are custom for each site, and
not general, as their output is expressed in terms of raw solar power.

Finally, recent work shows how to extract the location where
“anonymous” solar energy data was generated [10]. SunDance sug-
gests the same approach can extract the location of anonymous net
meter data that includes solar generation by �rst disaggregating
the solar energy data. The potential to extract location from net
meter data has serious privacy implications.

7 CONCLUSION
In this paper, we design SunDance, a new black-box technique
for disaggregating BTM solar generation from net meter data. Im-
portantly, SunDance requires only a deployment’s location and a
minimal amount of historical net meter data, e.g., as few as two data-
points. SunDance then leverages multiple insights into well-known
fundamental relationships between location, weather, physical char-
acteristics, and solar generation to build an accurate model of a
deployment’s solar generation. We implement SunDance and eval-
uate it on 100 buildings. Our evaluation shows that SunDance’s
black-box approach achieves similar accuracy without access to
any solar training data from a deployment, as a fully supervised
approach that has complete access to historical solar training data.
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