
AN OPERATING SYSTEM ARCHITECTURE FOR

NETWORKED SERVER INFRASTRUCTURE

by

David E. Irwin

Department of Computer Science
Duke University

Date:
Approved:

Dr. Jeffrey S. Chase, Supervisor

Dr. Landon P. Cox

Dr. Carla S. Ellis

Dr. Parthasarathy Ranganathan

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Computer Science
in the Graduate School of

Duke University

2008

ABSTRACT

AN OPERATING SYSTEM ARCHITECTURE FOR

NETWORKED SERVER INFRASTRUCTURE

by

David E. Irwin

Department of Computer Science
Duke University

Date:
Approved:

Dr. Jeffrey S. Chase, Supervisor

Dr. Landon P. Cox

Dr. Carla S. Ellis

Dr. Parthasarathy Ranganathan

An abstract of a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Computer Science
in the Graduate School of

Duke University

2008

Copyright c© 2008 by David E. Irwin

All rights reserved

Abstract

Collections of hardware components are the foundation of computation and consist of interconnec-

tions of different types of the same core elements: processors, disks, memory cards, I/O devices,

and network links. Designing a system for managing collections of hardware is challenging because

modern infrastructures (i) distribute resource control across multiple autonomous sites, (ii) operate

diverse sets of hardware, and (iii) support a variety of programming models for developing and

executing software services.

An operating system is a software layer that manages hardware by coordinating its interaction

with software. This thesis defines and evaluates an architecture for a networked operating system

that manages collections of hardware in infrastructures spread across networks, such as the Internet.

The foundation of a networked operating system determines how software services share a common

hardware platform. A fundamental property common to all forms of resource sharing is that software

services, by definition, share hardware components and do not use them forever. A lease is a natural

construct for restricting the use of a shared resource to a well-defined length of time.

Our architecture employs a general neutrality principle, which states that a networked operating

system should be policy-neutral, since only users and site administrators, and not operating system

developers, know how to manage their software and hardware. Experience building, deploying, and

using a prototype has led us to view neutrality as a guiding design principle. Our hypothesis is that

an operating system architecture for infrastructure resource management that focuses narrowly on

leasing control of hardware provides a foundation for multi-lateral resource negotiation, arbitration,

and fault tolerance. In evaluating our hypothesis we make the following contributions:

• Introduce a set of design principles for networked operating systems. The principles adapt

and extend principles from node operating system design to a networked environment. We

evaluate existing systems with respect to these principles, describe how they deviate from

them, and explore how these deviations limit the capabilities of higher level software.

• Combine the idea of a reconfigurable data center with the Sharp framework for secure re-

source peering to demonstrate a prototype networked operating system capable of sharing

aggregations of resources in infrastructures.

iv

• Design, implement, and deploy the architecture using a single programming abstraction—

the lease—and show how the lease abstraction embodies the design principles of a networked

operating system.

• Show that leases are a foundational primitive for addressing arbitration in a networked op-

erating system. Leasing currency defines a configurable tradeoff between proportional-share

scheduling and a market economy, and also serves as a basis for implementing other forms of

arbitration.

• Show how combining the use of leases for long-term resource management with state recovery

mechanisms provides robustness to transient faults and failures in a loosely coupled distributed

system that coordinates resource allocation.

• Evaluate the flexibility and performance of a prototype by managing aggregations of physical

and virtual hardware present in modern data centers, and showing that the architecture could

scale to manage thousands of machines.

• Present case studies of integrating multiple software services including the PlanetLab network

testbed, the Plush distributed application manager, and the GridEngine batch scheduler, and

leverage the architecture to prototype and evaluate Jaws, a new light-weight batch scheduler

that instantiates one or more virtual machines per task.

v

Acknowledgements

First, I would like to thank my adviser Jeff Chase for his guidance throughout my graduate career. It

is impossible to accurately convey how much I have learned from Jeff over the past six years. I would

also like to thank my committee members Landon Cox, Carla Ellis, and Partha Ranganathan. I

have enjoyed hearing Landon’s thoughts, criticisms, and ideas at the various seminars and colloquia

at Duke over the past two years. Carla has always been supportive and encouraging of my research

efforts since the beginning of my graduate career. I interned for Partha at HP Labs during my third

year of graduate school, where his enthusiasm and drive in developing and implementing new ideas

serves as a model example for any graduate student.

I would like to thank all of my collaborators over the past six years including David Becker, Laura

Grit, Anda Iamnitchi, Varun Marupadi, Lavanya Ramakrishnan, Matthew Sayler, Piyush Shivam,

Sara Sprenkle, Ken Yocum, and Aydan Yumerefendi. I would especially like to thank Aydan and

Laura for their collective contributions to Shirako, and David Becker for his help in answering my

numerous questions. I would also like to acknowledge my officemates and/or roommates during my

graduate school tenure, including Allister Bernard, Andrew Danner, and Jaidev Patwardhan, and

my friends in San Diego, especially Chip Killian, Dejan Kost́ıc, Priya Mahadevan, Barath Raghavan,

Patrick Reynolds, and Kashi Vishwanath. I would also like to acknowledge and thank Diane Riggs

for coordinating the graduate school bureaucracy on my behalf during my many absences from

Duke.

Finally, I would like to thank my family, especially my parents, John and Sue, and my wife,

Jeannie. My parents helped me in enumerable ways throughout my graduate career. Without

Jeannie’s support throughout the majority of my graduate career, I am certain I would neither

have started nor finished this dissertation—now that I am done we can look forward to starting

a “normal” life that does not require apartments in both San Diego and Durham and bi-monthly

cross-country flights.

vi

Contents

Abstract . iv

Acknowledgements . vi

List of Tables . xii

List of Figures . xiv

1 Introduction . 1

1.1 Problem . 2

1.1.1 Infrastructure Complexity . 3

1.1.2 Impact of Virtualization . 4

1.2 Solution . 5

1.2.1 Focusing Questions . 5

1.2.2 The Neutrality Principle . 7

1.3 Hypothesis and Contributions . 9

1.4 Thesis Outline . 10

1.5 Acknowledgements . 11

2 The Extensible Operating System Approach 14

2.1 Relationship to Node Operating Systems . 14

2.1.1 Lessons from Microkernels . 16

2.1.2 Exokernel . 17

2.2 An Extensible Networked Operating System . 20

2.2.1 Multiplex Collections of Networked Resources 21

2.2.2 Allocate Resources across Multiple Sites . 22

2.2.3 Coarse-grained Resource Allocation . 24

2.3 Summary . 26

vii

3 Classical Resource Management 27

3.1 Hardware Virtualization . 29

3.1.1 Machine Virtualization . 29

3.1.2 Storage Virtualization . 30

3.1.3 Network Virtualization . 31

3.2 Middleware . 31

3.2.1 Batch Job Scheduling . 32

3.2.2 Grid Computing . 33

3.3 Data Center Operating Systems . 34

3.3.1 PlanetLab . 37

3.3.2 Utility Computing . 37

3.4 Elements of Distributed Systems . 38

3.4.1 Resource Scheduling and Arbitration . 38

3.4.2 Leases and Fault Tolerance . 40

3.5 Summary . 41

4 A Networked Operating System Architecture 42

4.1 Background . 42

4.1.1 Resource Leases . 43

4.1.2 Sharp Brokers . 44

4.2 Shirako and Cluster-on-Demand . 45

4.3 Design Principles . 47

4.3.1 Guest/Resource Neutrality . 48

4.3.2 Visible Allocation, Modification, and Revocation 51

4.3.3 An Abort Protocol . 55

4.4 Example: Allocating Virtual Clusters to Guests . 55

4.4.1 Integrating Machine Resources . 56

viii

4.4.2 Support for Virtual Machines . 57

4.4.3 Defining Machine Properties . 57

4.5 Summary . 59

5 Exposing Names and Secure Bindings 60

5.1 Example: Virtual Machines . 60

5.2 Overview . 61

5.3 Exposing Names . 63

5.3.1 Site-assigned Computons . 65

5.3.2 Broker-managed Hosts . 67

5.3.3 Broker-guided Colocation . 71

5.3.4 Broker-guided Colocation and Sliver Naming 73

5.4 Secure Bindings . 80

5.4.1 Logical Unit Naming . 80

5.4.2 Delegating Hardware Management . 82

5.4.3 Virtual Machine Examples . 84

5.4.4 Delegation using Leases . 88

5.4.5 Guest Failure Handling . 89

5.5 Exposing Information . 89

5.6 Summary . 90

6 The Lease as an Arbitration Mechanism 91

6.1 Overview . 92

6.2 Self-Recharging Virtual Currency . 94

6.2.1 Rationale . 95

6.2.2 The PDP-1 Market . 97

6.2.3 Generalizing the PDP-1 Market . 98

6.3 Using Credits in a Simple Market . 100

ix

6.3.1 A Market-based Task Service . 101

6.3.2 Effect on Global Utility . 105

6.4 Summary . 110

7 Leases and Fault Tolerance . 112

7.1 Approach . 112

7.1.1 Overview . 113

7.1.2 Interacting State Machines . 114

7.2 Actor Disconnections . 116

7.2.1 Actor Stoppage and Network Partitions . 116

7.2.2 Local State Recovery . 117

7.3 Lease Synchronization . 118

7.3.1 Actor Recovery . 120

7.3.2 Guest/Resource Recovery . 120

7.4 Implementation . 125

7.4.1 Lease State Machine . 125

7.4.2 Persistence and Recovery . 126

7.4.3 Idempotent Handlers . 127

7.5 Summary . 129

8 Flexibility and Performance . 130

8.1 Goals . 130

8.2 Implementation . 131

8.3 Flexibility . 133

8.3.1 Physical Machines, Virtual Machines, and Slivers 135

8.3.2 Amazon’s Elastic Compute Cloud . 139

8.4 Performance . 141

8.4.1 Illustration . 141

x

8.4.2 Scalability . 144

8.5 Summary . 147

9 Guest Case Studies . 148

9.1 GridEngine . 148

9.1.1 Integration . 150

9.1.2 Demonstration . 153

9.1.3 Lessons . 156

9.2 Plush . 158

9.2.1 Integration . 159

9.2.2 Lessons . 161

9.3 Planetlab . 161

9.3.1 Integration . 162

9.3.2 Discussion . 163

9.3.3 Lessons . 166

9.4 Jaws . 166

9.4.1 Design and Prototype . 167

9.4.2 Lessons . 169

9.5 Summary . 169

10 Final Thoughts . 172

10.1 Contributions . 172

10.2 Future Directions . 175

Bibliography . 178

Biography . 192

xi

List of Tables

2.1 The principles underlying Exokernel and Shirako are similar. Both systems focus
on hardware multiplexing, visible allocation/revocation, secure bindings, an abort
protocol, and exposing names. 20

4.1 The lease abstraction for the service manager implements the guest handler interface.
Service manager developers may add or modify guest handlers to support new types
of guests. 49

4.2 The lease abstraction for the site authority implements the resource handler interface.
Site administrators add new resource handlers or update existing resource handlers
to lease different types of resources. 49

4.3 The lease abstraction for the service manager implements the guest lease handler
interface to give service managers an opportunity to modify leases when their state
changes. 53

4.4 Selected properties used by Cluster-on-Demand, and sample values. 58

6.1 The bidding window is the number of auctions Burst bids when it has queued tasks.
The bidding window from Figure 6.4 dictates the amount of currency bid for each
auction. The table above shows the amount of currency Burst bids for each bidding
window. The large the window the lower the amount of currency bid, since its total
currency holdings are split across more bids. 108

7.1 A table outlining the the effect of a single actor failure on a guest in a small network
of actors that includes a single service manager, broker, and site authority. 124

8.1 Lines of Java code for Shirako/COD. 132

8.2 A table outlining the different resource drivers currently supported by Shirako. As-
pects of the specific technology are hidden from the lease abstraction beneath the
resource handler interface. 135

8.3 A table outlining the resource driver interface for a virtual machine. The authority
controls the binding of slivers to virtual machines, which are in italics. An authority
may export control of the hardware management services in bold since their execution
does not concern resource multiplexing or interfere with competing guests. 136

8.4 Parameter definitions for Section 8.4 . 144

8.5 The effect of increasing the cluster size on α as the number of active leases is held
constant at one lease for all N nodes in the cluster. As cluster size increases, the
per-tick overhead α increases, driving up the minimal lease term t′. 146

8.6 Impact of overhead from LDAP access. LDAP costs increase overhead α (ms/virtual
clock tick), driving down the maximum node flips per millisecond r′ and driving up
the minimum practical lease term t′. 146

9.1 A description of functions exposed by the Plush master via XML-RPC. External en-
tities, such as a service manager, call Load, CreateResource, Run, AddResource,
and RemoveResource to drive application execution. The Plush application de-
scription registers two callbacks with the Plush service manager, NotifyExit and
NotifyFailure, which the Plush master invokes when an applications completes or
fails, respectively. 159

xii

9.2 A summary of the different guests that we have integrated into Shirako as service
managers. Integration enables a level of adaptation and resource control not available
to each platform, itself. In addition to these guests, others have used the architecture
to integrate the Rubis multi-tier web application [185] and Globus grids [138]. 169

xiii

List of Figures

2.1 Distributed computing environments, such as PlanetLab and Globus Grids, are built
above hardware-level resource abstractions exported by resource owners. 15

2.2 An overview of Exokernel’s structure from [61]. The kernel acts as a secure multi-
plexer of hardware, in the form of CPU quanta, disk blocks, and memory pages, for
multiple guests. The kernel does not define programming abstractions such as file
systems, processes, threads, or virtual memory that restrict guests’ use of the hard-
ware. Guests are free to use the hardware directly to define their own programming
abstractions, or link against library operating systems that provide a set of common
programming abstractions. 18

2.3 The figure compares the structure of Exokernel with a networked operating system.
The primary design differences stem from a focus on multiplexing collections of re-
sources from multiple sites at the coarser granularity of physical machines, virtual
machines, and slivers. The focus motivates both a physical separation between the
service manager, the authority, and the guests and resources they control, and a
logical separation of policy between multiple authorities and brokers. 22

3.1 Physical and virtual hardware, node operating systems, and middleware are building
blocks for a new underware layer that programmatically maps software onto hardware.
Authorities control the binding of the resources they own to the service managers
that request them. Service managers use network-accessible APIs exported by each
authority to control the mapping of software (node operating systems, middleware,
etc.) for their guests onto each site’s hardware. Brokers represent the cohesive entity
that coalesces resources from multiple sites and offers them to service managers. . . 28

4.1 Summary of protocol interactions and extension points for the leasing system. A
guest-specific service manager uses the lease API to request resources from a Sharp

broker. The broker issues a ticket for a resource type, quantity, and site location that
matches the request. The service manager requests a lease from the owning authority,
which selects the resource units, configures them (setup), and returns a lease to the
service manager. The arriving lease triggers a join event for each resource unit joining
the guest; the join handler installs the new resources into the guest. Plug-in modules
for setup and join event handlers are applicable to different resource types and guests,
respectively. 45

4.2 An example scenario that illustrates Sharp and COD using a lease abstraction. The
scenario depicts a guest acquiring machines from two sites through a broker. Each
site maintains an authority server that controls its physical machines, and registers
inventories of offered machines with the broker. A service manager interacts with a
broker to lease machines from two different authorities on behalf of its guest. The
lease abstraction is resource-independent, guest-independent, and policy-neutral, and
masks all protocol interactions and lease state maintenance from the service manager
controlling its guest, the authority controlling its resources, and the broker mediating
between the two. 47

xiv

5.1 Sharp tickets specify a resource type and resource unit count. COD associates each
resource unit with a single host. 64

5.2 Each color represents a different lease. A computon is a predefined number of grains
that comprise a sliver. To support logical unit colocation using computons, an au-
thority associates a resource type with a computon and a resource unit count with a
number of logical units. An authority assignment policy colocates multiple compu-
tons and logical units on each host. 66

5.3 Authorities may permit brokers to determine the quantity of each grain that forms a
sliver as long as each ticket includes information specifying the host. Sharp accom-
modates host specification if brokers specify a host by associating it with a resource
type. 67

5.4 Brokers use vector addition to represent the two-dimensional packing of slivers onto
hosts. The figure depicts a host with slivers that comprise 16 grains in two different
dimensions. A broker carves tickets a, b, and c for slivers from the host. 68

5.5 Augmenting each ticket with a list of host names permits brokers to allocate multiple
slivers within each ticket. Each color represents a different lease. 72

5.6 Naming individual slivers permits brokers to separate the different grains of a sliver
into different leases, enabling a range of mechanisms that require sliver identification,
including generalized victim selection, lease forking and merging, and host selection. 75

5.7 Naming logical units separately from slivers allows authorities to bind/unbind multi-
ple slivers to a logical unit. These slivers may include remote slivers bound to different
hosts, such as a remote storage server exporting a virtual machine root disk image.
The scheme is general enough to also apply to logical resources, such as scarce public
IP address space. 81

5.8 The figure depicts an authority that reserves control of the hardware management
functions of each virtual machine. The service manager selects a root image from
a template of options and the authority creates the virtual machine using the setup
handler. The authority transfers control of the virtual machine to a service manager
by configuring sshd, or an equivalent secure login server, with a public key, which
the service manager transfers using a configuration property. 83

5.9 The figure depicts four service managers executing example hardware management
functions for their leased virtual machines. Secure bindings permit service managers
or authorities to access functions that control the hardware management services of a
logical unit, such as a virtual machine. Delegating control of hardware management
functions to service managers alleviates authorities from defining multiple software
configurations and allows authorities to focus solely on hardware multiplexing and
configuring access control for secure bindings. 84

xv

6.1 Flow of credits and resources in a networked infrastructure. Leasing rights for re-
sources flow from sites down through a broker network to consuming service managers.
Brokers allocate resource rights using any policy or auction protocol: payments in
credits flow up through the broker network. 95

6.2 The credit recharge rule returns credits to the buyers after a configurable recharge
time r from when the currency is committed to a bid in an auction, or if a bidder
loses an auction. 97

6.3 An example value function. The task earns a maximum value if it executes imme-
diately and completes within its minimum run time. The value decays linearly with
queuing delay. The value may decay to a negative number, indicating a penalty. The
penalty may or may not be bounded. 103

6.4 Two market-based task services, called Burst and Steady, bid for resources to satisfy
their load. As the recharge time increases, the global utility increases until the point
at which the task services’ static bidding strategies are too aggressive: they run out of
currency before they finish executing their task load. The result is the global utility
falls below that of a static partitioning of resources. The bidding window for Burst
(each line) is the expected length of time to complete a Burst of tasks, according to
its static bidding strategy. As the bidding strategy becomes more conservative (i.e.,
lower numbers) relative to the recharge time the allocation achieves a higher global
utility despite longer recharge times. 107

7.1 Interacting lease state machines across three actors. A lease progresses through an
ordered sequence of states until it is active; delays imposed by policy modules or the
latencies to configure resources may limit the state machine’s rate of progress. Failures
lead to retries or to error states reported back to the service manager. Once the
lease is active, the service manager may initiate transitions through a cycle of states
to extend the lease. Termination involves a handshake similar to TCP connection
shutdown. 115

8.1 Handler for configuring a virtual machine. Note that the handler is a simplification
that does not show the details of each Ant target. 137

8.2 Handler for configuring a physical machine. Note that the handler is a simplification
that does not show the details of each Ant target. 138

8.3 The progress of setup and join events and CardioWave execution on leased machines.
The slope of each line gives the rate of progress. Xen clusters (left) activate faster
and more reliably, but run slower than leased physical nodes (right). The step line
shows an GridEngine batch scheduler instantiated and subjected to a synthetic load.
The fastest boot times are for virtual machines with flash-cloned iSCSI roots (far left). 141

8.4 Fidelity is the percentage of the lease term usable by the guest, excluding setup
costs. Xen virtual machines are faster to setup than physical machines, yielding
better fidelity. 143

xvi

8.5 The implementation overhead for an example scenario for a single emulated site
with 240 machines. As lease term increases, the overhead factor α decreases as
the actors spend more of their time polling lease status rather than more expen-
sive setup/teardown operations. Overhead increases with the number of leases (l)
requested per term. 145

9.1 Number of GridEngine tasks in each batch queue over time during a trace-driven
execution. Note from the y-axis that the batch scheduler is experiencing intense
constraint from the task load (2400 tasks at peak load) relative to the 71 machines
that are available. 155

9.2 Number of machines in each of three virtual clusters over time during a trace-driven
execution. Machines transfer to higher priority research groups as their task load
increases. Strict priority arbitration results in machine reallocations to the highest
priority research group whenever they have queued tasks. 156

9.3 Combined size of the Architecture running and pending task queues, and virtual
cluster size over an eight-day period. 157

9.4 An example Plush application description that includes a request for resources from
a Shirako broker/authority. 160

9.5 MyPLC and Jaws obtaining Xen virtual machines from the Shirako prototype. The
prototype manages sharing of hardware resources between MyPLC and Jaws with a
simple policy: MyPLC gets any resources not used by Jaws. 170

xvii

Chapter 1

Introduction

“The sum is more than the whole of its parts.”

Aristotle

Collections of hardware components are the foundation of computation and consist of interconnec-

tions of different types of the same core elements: processors, memory, disks, I/O devices, and

network links. Since modern hardware components link to standard network interconnects it is

possible to control and coordinate their management programmatically. An operating system is

a software layer that manages hardware by coordinating its interaction with software: this the-

sis defines and evaluates an operating system architecture for managing collections of hardware

components spread across networks, such as the Internet.

To avoid confusion, we use the term networked operating system to reference this category of

operating system. We use the term node operating system to denote operating systems that centralize

the management of hardware components for a single machine. A physical machine is a collection of

hardware components, which may include one or more processors, disks, memory cards, and network

cards, connected over a bus. Examples of physical machines include routers, switches, sensors, and

mobile phones. We also use the term node operating system to encompass distributed operating

systems, which decentralize conventional techniques to manage multiple machines by presenting the

view of a single machine.

A networked operating system controls and coordinates the mapping of distributed applications

to networked collections of hardware in infrastructures. As with node operating systems, a networked

operating system determines the method by which software executes on collections of hardware

including what software executes, when it executes, where it executes, and for how long. Managing

collections of hardware encompasses a range of actions, which include one or more of the following:

installing software, uninstalling software, updating software [49], starting/stopping software services,

altering software configurations, diagnosing software performance problems [7, 141], monitoring

software execution [35], scheduling software execution [170], or assigning software to execute on

1

specific hardware [98, 119, 162].

While an operating system for networked resource management must address a wide variety

of problems, its foundation ultimately rests on how applications share a common, networked hard-

ware platform. This thesis focuses on defining an architecture that serves as the foundation for a

networked operating system that is able to address all of the software management subproblems

mentioned above. Section 1.1 makes a case for networked operating systems by examining current

problems in modern infrastructure management. Section 1.2 presents a simple solution to solve

these problems, asks a series of focusing questions that shape our vision of a networked operating

system, and defines a single design principle for building a networked operating system. Section 1.3

presents the hypothesis and contributions of this thesis and Section 1.4 presents an outline for the

remainder of the thesis.

1.1 Problem

A data center is a collection of hardware components under the control of a single sphere of au-

thority located in the same room or building. Administrators have the responsibility of installing

and maintaining software in data centers. These administrators continuously monitor and adjust

multiple, active software environments on a set of physical machines using one or more management

tools [1, 126]. Administrators not only keep critical management software operational, users also

request them to configure and reconfigure hardware for new uses. Managing multiple software en-

vironments on a diverse and growing computing infrastructure can exceed the abilities of even the

most capable administrators.

We refer to any software environment, from a node operating system and its processes executing

on a single machine to multiple node operating systems and their processes executing across multiple

machines, as a guest of the hardware to emphasize the distinction between an infrastructure’s

hardware platform and the software that runs on it. We also use the term guest to disambiguate

general software from node operating systems, processes, and applications.

A process is a programming abstraction defined by many node operating systems. There is

no accepted definition of application in the literature; however, in this thesis, we use the term

application to describe software running on one or more hardware components that performs a

2

specific function. Distributed applications execute across multiple physical machines. For example,

a distributed hash table or DHT is a distributed application spanning multiple machines, each

executing a node operating system, that provides one specific function: key-based data insertion

and retrieval [155]. The term guest may include one or more node operating systems and their

processes, running on one or more hardware components, and executing one or more distributed

applications.

1.1.1 Infrastructure Complexity

An article from the New York Times captures the state of data center infrastructures in 2007 [115].

The article speculates on the size of a data center recently constructed by Google on the bank of

the Columbia river in Oregon: “...the two buildings here—and a third that Google has a permit

to build—will probably house tens of thousands of inexpensive processors and disks...” The same

article posits that Google’s current operation consists of “...at least 450,000 servers spread over

at least 25 locations around the world.” Microsoft’s computing initiative is of similar scale; the

infrastructure is “...based on 200,000 servers, and the company expects that number to grow to

800,000 by 2011 under its most aggressive forecast.” The scale of these numbers is expected to

increase over time—managing millions of machines at multiple locations is on the horizon [173].

Computing infrastructures are not only growing in physical size. Google’s infrastracture, which

is “...spread over at least 25 locations...,” exemplifies an increase in geographical diversity that

extends beyond any single data center. We use the term infrastructure to refer to a collection of

hardware components under the control of multiple spheres of authority, such as 25 independently

administered data centers, and the term site to refer to a collection of hardware components under

the control of one sphere of authority, such as a single data center. The terms infrastructure and site

are broad enough to refer to any collection of hardware. For instance, the network of independent

autonomous systems that manage the core routers, switches, and network links that embody the

Internet are a set of independent sites that comprise an infrastructure. Sensor networks composed of

interconnected groups of sensors also follow the infrastructure-site paradigm. We use the description

of Google’s infrastructure to exemplify characteristics—large size and geographic dispersion—that

are common across all infrastructures.

3

1.1.2 Impact of Virtualization

As infrastructures grow to accommodate more users and sites, the number of different types of guests

and hardware components that they must support increases. Infrastructures are beginning to ad-

dress the problem using virtualization. Virtualization platforms, such as Xen [22] and VMware [168],

enable each physical machine to host one or more virtual machines.

Virtual machines expand an infrastructure’s management options by decoupling the machine

from the physical hardware. This decoupling makes hardware management more flexible and dy-

namic by giving site administrators, or trusted software acting on their behalf, the power to create

and destroy virtual machines, bind isolated slivers of hardware components to virtual machines,

and offer a wide array of hardware management services (see Section 2.2). However, virtualization’s

power introduces a new set of management challenges that exacerbate existing problems manag-

ing an infrastructure. For example, the virtual infrastructure can be an order of magnitude larger

than the physical infrastructure since virtualization increases the number of manageable hardware

instances. Furthermore, these instances may now be active or inactive (i.e., have their live, in-

memory state stored on disk) or have persistent state spread across multiple disks.

Many organizations maintain large collections of physical and virtual machines: universities,

financial institutions, small businesses, hospitals, governments, and even individuals increasingly

operate and depend on sizable, complex computing infrastructures. A recent Forrester Research

report states that 50% of global 2000 firms will have server virtualization deployed by mid-2007 [77].

The range of different hardware management services a site administrator can leverage for each

virtual machine is substantial, and, while each one of these services is useful for managing an

infrastructure, invoking them manually at the request of users does not scale.

Virtualization technology is also spreading beyond data centers—recent work extends hardware

virtualization to mobile devices [48], remote sensors [110], and network routers [24]. While vir-

tualization increases management complexity, it also provides an element of the solution: rich,

programmatic interfaces to control slivering and hardware management services. Broad adoption

of virtualization, and its complexity, motivates a networked operating system that simplifies infras-

tructure resource management by leveraging these new capabilities.

4

1.2 Solution

One solution to decreasing infrastructure management’s complexity is to automate resource man-

agement by giving guests enough control to obtain resources whenever and wherever they require

them. Rather than requiring intervention by a site administrator to install, maintain, and protect

guests, we envision a system where each guest, itself, continuously monitors its load, determines its

resource requirements, requests and configures new resources, and incorporates those resources into

its collective software environment. The infrastructure provides the means for guests and automated

guest controllers to find, request, and control sets of resources programmatically.

Delegating resource management to guests permits flexible infrastructures that are able to scale

to meet the diverse needs and requirements of many different guests. The solution not only unbur-

dens site administrators, it also empowers guests. Guests benefit from the power to dynamically

regulate their performance by requesting resources to react to changes in load, resource scarcity,

or failures. Infrastructures benefit from increased efficiency through infrastructure-wide statistical

multiplexing, if proper incentives exist to encourage guests to release resources when they do not

require them.

1.2.1 Focusing Questions

While simply stated, the proposed solution raises a number of important questions that shape

our vision of a networked operating system. The questions, and their answers, evolved from our

experiences building and using multiple prototypes—they represent the basis for the set of networked

operating system design principles we define and evaluate in this thesis.

How do we support a full range of guests? A networked operating system should support

any guest capable of executing on its hardware, and should not limit the capabilities of the hardware

by restricting support to a specific class of guests. For example, a guest of a data center may be

a load-leveling batch scheduler [75, 113, 183], a network testbed [23, 142], a compute grid [69], a

multi-tier web application [36], a single computational task, or a node operating system intended

for general use.

How do we balance the resource needs of each site with the needs of each guest?

Guests should be able to know how much resource they have and for how long (e.g., a lease).

5

Designing a system around any weaker model does not directly support guests that require strict

resource assurances to meet contractual obligations, which may promise clients a specific level of

service (i.e., a Service-level Agreement or SLA). In a utility computing model (see Section 3.3.2)

guests exchange money to rent resources from an infrastructure [74]: it is unlikely that a system

without resource assurances can be viable in a model that forces customers to rent a resource

despite being unsure of what they are getting, when they are getting it, and how long they can

use it. Similarly, an infrastructure needs resource assurances to know how much resource it is

allocating to each guest and for how long to make informed decisions about how to multiplex

resources between guests over time. For example, an infrastructure that rents resources to external

guests may periodically wish to reserve resources for internal use.

How does an infrastructure support guests that require resources from multiple

sites? A networked operating system should coordinate the allocation of resources owned and

controlled by different spheres of authority to support guests that require resources from multiple

sites. Guests, such as Content Distribution Networks [71, 172] or overlay routing systems [12], require

resources from geographically disparate sites for correct operation. Furthermore, as infrastructures

expand in physical size they also spread out geographically, with local site administrators controlling

each site’s resources. Both Google’s computing infrastructure, which is “spread over at least 25

locations” around the world, and federated computing platforms, formed from resources donated

by many autonomous sites, represent examples of infrastructures that span sites operating under

different spheres of authority. Studies suggest that statistical multiplexing between sites is important

since individual data centers experience long periods of low server utilization [118]. As a result, an

infrastructure must support the coordinated acquisition of resources from multiple sites to guests:

brokering services, proposed by Sharp [73], address multi-site resource sharing by aggregating

resource rights from many sites and coordinating their distribution to guests.

How do guests interact with an infrastructure to acquire and control resources?

Guests should interact with infrastructures and resources programmatically using network-accessible

APIs. Each guest has a controlling server, which we call service manager, that monitors, requests,

and controls guest resources programmatically. Each site operates a server, which we call an author-

ity, that exports a network-accessible API for guests to obtain and control resources. The authority

6

fulfills guest resource requests and isolates resources from co-hosted guests. Brokering services ex-

port a network-accessible API to programmatically receive and respond to service manager resource

requests on behalf of multiple sites. We collectively refer to service managers, authorities, and

brokering services as actors in a networked operating system.

How does an infrastructure arbitrate resources between guests when there are not

enough resources for everyone? Infrastructures require a method for deciding the priority of

guest resource requests. Markets are an attractive basis for arbitration in a networked infrastructure

composed of, potentially self-interested, sites and guests that define natural incentives for guests

to coordinate resource usage by associating usage with a price. Price provides a feedback signal

that enables guests to respond to price changes and self-regulate their resource usage. However,

market-based resource allocation is still an active research area with many unsolved problems that

continue to prevent its transition from research prototypes to usable systems [152]. A networked

operating system must include a basis for defining the incentives and controls that support evolving

market-based technologies as well as other, more conventional, forms of resource arbitration, such

as proportional-share or priority-based arbitration.

How do we design a system that is robust to faults and failures? A networked operating

system should be resilient to intermittent server or network failures. We advocate distributing

control of infrastructure resources across multiple actors: the service manager controlling each

guest’s software, the authority controlling each site’s hardware, and brokering services acting on

behalf of, or coordinating between, each guest and site. These actors, or the network linking them,

may fail at any time, independently of the resources they control. Service managers, authorities,

and brokering services must retain sufficient state to recover from actor failures, and define protocols

for synchronizing their state with the state of their peers to tolerate periodic disconnections due to

actor or network failures. Failures of actors, resources, guests, or the network must not compromise

forward progress in the collective system.

1.2.2 The Neutrality Principle

In this thesis we explore a software architecture that embodies the answers to the questions above.

The architecture defines a type of operating system that mediates the interaction between guests and

7

networked collections of hardware. Historically, operating systems have served two functions: they

multiplex resources to simultaneously execute multiple applications and they provide programming

abstractions to ease application development. We explore how a networked operating system should

address these two functions by examining the following questions.

• What is the right set of programming abstractions for a networked operating system?

• How does an infrastructure use these programming abstractions to multiplex resources?

The answers lead us to employ a general neutrality principle in our design. The neutrality

principle states that an operating system for networked resource management should be policy-

neutral, since only users and site administrators, and not operating system developers, know how to

best manage resources. In this thesis, we focus on how programming abstractions define policy. The

principle is a restatement of the end-to-end principle for networked operating system design [145].

Exokernel, discussed in Chapter 2, applied a similar neutrality principle to node operating system

design to eliminate programming abstractions, after arguing that these programming abstractions

represent subtle, but ill-advised, embeddings of resource management policy [61]. A contribution

of this thesis is the recognition that problems arising in the design of node operating systems are

similar to problems arising in the design of networked operating systems. As a result, studying

and adapting structures and techniques for designing node operating systems are able to resolve

existing problems in networked resource management. Extensive experience building and using a

networked operating system has led us to view neutrality as a guiding design principle. The goal of

this thesis is to define a minimal set of elements common to all networked operating systems that

are independent of any specific set of resource management policies or programming abstractions.

We find that a fundamental property common to all forms of networked resource sharing which

does not, directly or indirectly, embed resource management policy is that guests, by definition,

share resources and do not use them forever. We use the term resource to refer to a reusable aspect

of the hardware, and do not intend for the phrase “resource sharing” to include “file sharing,”

and other similar forms of sharing, that describe higher-level constructs for using a resource. To

address the time aspect inherent to resource sharing, we examine an operating system architecture

for networked infrastructure based on a lease abstraction, which restricts guest resource use to

well-defined, finite lengths of time.

8

A networked operating system that does not define resource management policy is capable of

supporting any type of guest or resource. Chapter 2 argues that strict adherence to the neutrality

principle requires that the lease abstraction be flexible enough to manage resources down to the

level of the hardware components that comprise physical and virtual machines.

1.3 Hypothesis and Contributions

This thesis evaluates the following hypothesis: “An operating system architecture for infrastructure

resource management that focuses narrowly on leasing control of hardware to guests is a foundation

for multi-lateral resource negotiation, arbitration, and fault tolerance.” In evaluating our hypothesis,

we make the following specific contributions.

1. Introduce a set of design principles for networked operating systems based on our experiences

building and using multiple prototypes. The design principles stem from the same motivation

as Exokernel, which states that a node operating system should eliminate programming ab-

stractions and concentrate solely on resource multiplexing. We show how to adapt and extend

Exokernel design principles to a networked operating system that multiplexes collections of

resources owned by sites spread across networks, such as the Internet.

2. Combine the idea of a reconfigurable data center from Cluster-on-Demand [39] and others [5,

15, 17, 97, 99, 116, 144, 177] with the Sharp framework [73] for secure resource peering

to demonstrate a networked operating system architecture capable of sharing resources from

multiple data center sites between multiple guests. We extend both models by developing

the architectural elements required to adapt and control any type of guest using any type of

resource.

3. Design, implement, and deploy Shirako, a prototype networked operating system, using a

single programming abstraction: the lease. The lease abstraction embodies Exokernel design

principles, including visible resource allocation/revocation, an abort protocol, exposing names,

exposing information, and secure bindings, and applies them to a networked operating system

that decentralizes control of resource allocation across multiple spheres of authority. We use

9

our experiences deploying the architecture to motivate extensions to Sharp and Cluster-on-

Demand that expose the names of distinct physical machines, virtual machines, and slivers.

4. Show that leases are a foundational primitive for addressing arbitration in a networked op-

erating system that supports a range of different arbitration policies, including market-based

policies, which are of particular importance for a system composed of self-interested actors.

Leasing currency defines a configurable tradeoff between proportional-share scheduling and a

market economy.

5. Leases are a common tool for building highly available, fault-tolerant distributed systems, and

have long been a basis for addressing network and server failures in distributed systems [107].

We show how combining the use of leases for long-term resource management with state

recovery mechanisms provides robustness to transient faults and failures in a loosely coupled

distributed system that coordinates resource allocation.

6. Evaluate the flexibility and performance of Shirako by sharing physical and virtual hardware

present in modern data centers between multiple types of guests, and showing that the archi-

tecture could scale to manage thousands of machines.

7. Present case studies of integrating multiple guests that manage networked resources to eval-

uate our approach. Guests include the PlanetLab network testbed [23], the Plush distributed

application manager [9], and the GridEngine batch scheduler [75]. We also leverage the archi-

tecture to prototype and evaluate Jaws, a policy-free batch scheduler that instantiates one or

more virtual machines per task.

1.4 Thesis Outline

Chapter 2 details the philosophy that underlies the neutrality principle by drawing parallels to pre-

vious work on Exokernel [61]. Chapter 3 examines related work in classical resource management

and its relationship to a networked operating system. In particular, we discuss: resource manage-

ment at each layer of the software stack, networked management of multiple software stacks, and

classical elements of distributed systems design. Chapter 4 presents a networked operating system

architecture that employs the neutrality principle to define a general lease abstraction by combining

10

and extending the key design principles of Exokernel, Sharp, and Cluster-on-Demand. Chapter 5

uses our experiences deploying the architecture to motivate extensions to Sharp and Cluster-on-

Demand that expose the names of distinct physical machines, virtual machines, and slivers. Chapter

6 shows how leases are a basis for resource arbitration policies and Chapter 7 discusses the architec-

ture’s use of leases for fault tolerance. Chapter 8 discusses the implementation of the architecture

within Shirako, and quantifies its flexibility and performance. Chapter 9 presents case studies of

integrating three existing guests and developing one new guest with Shirako’s architecture. Chapter

10 concludes.

1.5 Acknowledgements

The starting point for the architecture and Shirako derives from ideas originally present in Cluster-

on-Demand [39], led by then graduate student Justin Moore, and Sharp [73], led by then graduate

student Yun Fu. Shirako is a group effort that serves a broader range of research goals than discussed

in this thesis. The development of Shirako is part of a larger project, called Orca, that encompasses

the study of other elements that comprise a fully functional networked operating system.

As described in later chapters, Shirako includes an interface to plug in multiple types of resources

and guests as well as extensible interfaces for implementing and experimenting with different poli-

cies. Since Shirako’s development is a shared effort, multiple people have contributed over the years

to the different guests, resources, and policies that fill out the architecture, and we acknowledge

their contribution. Laura Grit led the development of broker provisioning/arbitration policy imple-

mentations as well as a general substrate for developing new lease-based adaptation, assignment,

and arbitration policies. Aydan Yumerefendi led the development of the first assignment policies

that used the modify resource handler, discussed in Section 4.3.2, to migrate virtual machines and

alter resource shares. These policies and their interactions are outside the scope of this thesis.

Varun Marupadi led the transition from using an LDAP database for persistent storage to using

a MySQL database, as well as completed the integration of NFS/ZFS as a usable Shirako storage

device. Varun Marupadi also ported Jaws and GridEngine to use a new guest packaging format

developed by Aydan Yumerefendi that permits the dynamic creation and linking of guest-specific

service managers within the Automat web portal [185]. Piyush Shivam and Aydan Yumerefendi

11

led the integration and testing of a Rubis-aware service manager [185] and Lavanya Ramakrishnan

spearheaded the integration of a Globus-aware service manager [138], both of which we mention,

but do not detail, in this thesis. Aydan Yumerefendi led the development and/or redevelopment

of multiple pieces of software including a node agent for easier integration of resources, a model-

checker for finding code bugs and validating lease state transitions, and a sophisticated web portal

for uploading and testing new management policies [185]. Aydan Yumerefendi has significantly

augmented the persistence architecture to include persistence of state other than core slice, lease,

and policy state to build the web portal for Automat [185].

The implementations of different guests, resources, and databases have been written and re-

written multiple times over the years in order to incorporate updates in resource and guest tech-

nologies, new constraints imposed by higher levels of the architecture, and more robust interfaces for

improved logging and debugging. Since all of Shirako’s various pieces are interdependent a number

of people have touched this code; however, Aydan Yumerefendi and I have led the development

of these changes over the last 4 years. Matthew Sayler has recently taken Shirako’s ad hoc rules

for event logging and formalized and rewritten the event logging subsystem to support work on

better classification, diagnosis, and repair of failures. David Becker significantly aided in the un-

derstanding of multiple data center administration technologies, most notably LDAP and Xen, and

provided support in tracking down the root cause of many guest-specific and resource-specific bugs

and failures.

The insights in this thesis stem from lessons I learned through my distinct experiences, begin-

ning with the original Cluster-on-Demand prototype in the early fall of 2002 up to the present day,

spearheading the implementation of the lease as a programming abstraction for managing guests,

resources, and persistence in a deployed system; these experiences required exercising and stressing

every aspect of the architecture, including integrating a multitude of specific guests and resources,

developing new adaptation policies and monitoring engines tailored for each guest/resource com-

bination, modifying and enhancing arbitration policies to perform guest-specific resource sharing,

developing a persistence architecture for lease and policy state, writing resource assignment policies

and developing resource-specific configuration directives (e.g., IP address allocation and domain

naming), and incorporating new disk images and monitoring software to support guests and sites

12

beyond the realm of Duke’s Computer Science Department. The integrative process I engaged in

spanned the entire architecture and allowed me to pursue my own distinct goal of gaining new in-

sights into networked operating system design through the experience of supporting real users using

real guests and real resources under multiple different management scenarios for a sustained period

of time.

13

Chapter 2

The Extensible Operating System Approach

“Because the system must ultimately be comprehensive and able to adapt to unknown

future requirements, its framework must be general, and capable of evolving over time.”

Corbató and Vyssotsky on Multics, 1965

Node operating system researchers have long realized the benefits of a flexible kernel that application

developers can extend to add new functionality: our approach to a networked operating system stems

from the same motivation [4, 27, 61, 108, 160, 182].

In Section 2.1 we argue that a networked operating system should concern itself only with re-

source multiplexing and not the definition of programming abstractions that ease guest development

but restrict flexibility. Guests are similar to node operating system applications and represent soft-

ware environments that execute on a hardware platform. We draw parallels between our approach

and previous work on microkernels, and outline the design principles of Exokernel, which explored

the separation of resource multiplexing from programming abstractions in the design of a node op-

erating system. Section 2.2 describes how the architecture in this thesis extends Exokernel’s design

principles to a networked operating system.

2.1 Relationship to Node Operating Systems

The landscape of networked computing today is analogous to node operating systems in key ways.

There are multiple existing platforms for resource sharing and distributed computing with large user

communities. We are again searching for an evolutionary path that preserves and enhances existing

programming environments, accommodates innovation in key system functions, and preserves the

unity and coherence of a common hardware platform. Finding the elemental common abstractions

or “narrow waist” of the architecture that supports all of its moving parts remains an elusive goal.

Node operating systems serve two purposes: they multiplex resources among multiple guest

applications and they provide programming abstractions that ease guest development. Program-

ming abstractions represent functionality embedded into a node operating system that simplify

14

visible allocation and revocation

distributed hardware resources

resource virtualization

control plane

distributed computing

environments

Internet-scale

services

resource multiplexinghardware-level abstractions

P
la

n
e
tL

a
b

G
lo

b
u

s
 G

r
id

O
th

e
r

E
n

v
ir

o
n

m
e
n

ts

Figure 2.1: Distributed computing environments, such as PlanetLab and Globus Grids, are built
above hardware-level resource abstractions exported by resource owners.

guests’ interaction with hardware. The implicit assumption is that it is appropriate to embed these

programming abstractions since they are useful for the majority of guests.

To support a diverse range of guests, we advocate programming abstractions that focus on

resource multiplexing and control. A narrow focus on resource multiplexing is able to accommodate a

wide range of scenarios. For example, the GENI initiative proposes an international network testbed

facility that multiplexes network resources—including data centers, mobile devices, sensors, storage,

and network links—among experimental prototypes for a new generation of Internet applications

and services [131]. These network services may eventually define a “new Internet” that is more

flexible and open than today’s “best-effort” Internet. However, to support new network services,

GENI must wrestle with core operating systems issues such as isolation, coordinated multiplexing

of a range of hardware resources, and programming abstractions for distributed computing. The

“future Internet” must provide a platform for planetary-scale applications not yet imagined, absorb

technologies not yet invented, and sustain decades of growth and “disruptive innovation” without

fracturing or collapsing under its own weight.

A stated motivation behind both PlanetLab and GENI (and Active Networks before them [174])

is overcoming the “ossification” of the existing Internet that prevents the adoption of new network

services [129, 132]. The Internet is not a suitable platform for innovations in high-bandwidth, ultra-

reliable, and ultra-secure technologies because it hides/abstracts details and control of resources in

the network’s interior from the services that execute on the network’s edge resources. As a result,

15

a resource management layer that exposes control of resources is a cornerstone of any new type of

Internet-scale operating system that seeks to satisfy the resource needs of all guests.

As depicted in Figure 2.1, we argue that a networked operating system must support multiple

guests over collections of networked hardware in such a way that sites can redeploy hardware easily

from one guest to another, rather than dedicating static islands of resources to each guest, as is

common today. This “pluralist” approach has a familiar justification: given the wide diversity of

needs among users, it is useless to wait for one system to “win” [52, 62]. Also, pluralism enables

innovation and customization—we want to be able to experiment with multiple approaches to dis-

tributed computing, not just one, and to provide a richer and wider set of experiences than any

single platform can offer.

2.1.1 Lessons from Microkernels

The problems that researchers face designing an Internet-scale networked operating system, as

proposed by GENI, also arise in a different context in the design of node operating systems. The

motivation for microkernels and extensible kernels are similar to our motivation for a networked

operating system: the “kernel” of the system should not restrict the range of guests it supports.

In this section, we review lessons from research on microkernels and highlight the motivations,

arguments, and principles behind the design of Exokernel, a variant of microkernel research, that

espouses a clean separation of resource multiplexing from programming abstractions [60, 61, 96].

Microkernels are a node operating system structure that shifts some functionality outside of

the kernel. Adopting a microkernel structure for a node operating system reduces the size of large

monolithic kernels, that contain an array of device drivers, file systems, and other subsystems, to

a small core that only coordinates hardware multiplexing and communication between privileged

subsystems. The idea underlying microkernels is that shifting functionality outside of the kernel

creates a more stable and reliable structure by extracting complex subsystems and executing them

in user-space. As a result, subsystems that are known to be unreliable, such as device drivers, are

unable to compromise correct system operation.

While early microkernel systems, such as Mach [4], extracted key subsystems from the kernel,

the kernel retained control over resource management policy by preventing unprivileged guests from

16

modifying kernel subsystems. Exokernel is a variant of the microkernel structure that addresses

this limitation by advocating a strict division between a node operating system’s kernel, which

multiplexes resources, and its guests, which implement programming abstractions. The division is

a logical extension of the key microkernel design principle that a “...concept is tolerated inside the

microkernel only if moving it outside the kernel, i.e., permitting competing implementations, would

prevent the implementation of the system’s required functionality [111].” The Exokernel structure

views user-level kernel subsystems as privileged extensions of the kernel that prevent guests from

modifying or replacing them, as depicted in Figure 2.2.

2.1.2 Exokernel

Exokernel, as well as other extensible operating systems [27], apply the neutrality principle to a node

operating system by designing a kernel that does not impede the implementation and execution of a

diverse range of guests by predefining a set of programming abstractions. We review the arguments

behind the Exokernel architecture and the minimal set of design principles it defines. In Section 2.2,

we relate how an extensible networked operating system applies and extends these arguments and

design principles to a new context.

A summary of the argument for Exokernel, taken from the first paragraph of [61], is as follows.

“Operating systems define the interface between applications and physical resources. Un-

fortunately, this interface can significantly limit the performance and implementation

freedom of applications. Traditionally, operating systems hide information about ma-

chine resources behind high-level abstractions such as processes, files, address spaces and

interprocess communication. These abstractions define a virtual machine that applica-

tions execute on; their implementation cannot be replaced or modified by untrusted appli-

cations. Hardcoding the implementations of these abstractions is inappropriate for three

main reasons: it denies applications the advantages of domain specific optimizations, it

discourages changes to the implementations of existing abstractions, and it restricts the

flexibility of application builders, since new abstractions can only be added by awkward

emulation on top of existing ones (if they can be added at all).”

An Exokernel is a secure hardware multiplexer that allows untrusted guests to use the hardware

17

quanta, blocks, pages

Exokernel

ExOS

Emacs

ExOS

httpd Cheetah

Webserver
OO OS

…

single

machine

Figure 2.2: An overview of Exokernel’s structure from [61]. The kernel acts as a secure multiplexer
of hardware, in the form of CPU quanta, disk blocks, and memory pages, for multiple guests. The
kernel does not define programming abstractions such as file systems, processes, threads, or virtual
memory that restrict guests’ use of the hardware. Guests are free to use the hardware directly to
define their own programming abstractions, or link against library operating systems that provide
a set of common programming abstractions.

directly to implement their own programming abstractions, or link against libraries that implement

node programming abstractions at application level. As with other microkernels, Engler et al.

argue that the approach results in a more minimal, secure, and reliable kernel compared with

monolithic kernels since it does not require implementing complex programming abstractions. The

Exokernel philosophy is in keeping with Butler Lampson’s hints for computer systems design, as

stated below [106].

“Dont hide power. ...When a low level of abstraction allows something to be done quickly,

higher levels should not bury this power inside something more general. The purpose of

abstractions is to conceal undesirable properties; desirable ones should not be hidden.

Sometimes, of course, an abstraction is multiplexing a resource, and this necessarily has

some cost. But it should be possible to deliver all or nearly all of it to a single client

with only slight loss of performance. ...Leave it to the client. As long as it is cheap

to pass control back and forth, an interface can combine simplicity, flexibility and high

performance by solving only one problem and leaving the rest to the client.”

Exokernel asserts that guests “desire” control of the hardware, and that a node operating system

should solve only the “one problem” of secure hardware multiplexing, thereby “leaving the rest” of

a node operating system’s job to the guest. Research on Exokernel design distilled a minimal set of

18

design principles to separate programming abstractions from hardware multiplexing.

• Fine-grained Resource Allocation. Exokernel allocates resources at the finest granularity

offered of the hardware, such as CPU quanta, memory pages, and disk blocks. The choice

to offer access to raw partitions of the hardware is in keeping with a strict adherence to

the neutrality principle: hiding hardware behind any type of higher-level abstraction hinders

flexibility and prevents guest-specific performance optimizations.

• Visible Allocation and Revocation. An Exokernel explicitly notifies each guest when

it allocates or revokes a resource, arguing that masking any type of resource allocation or

revocation is a form of abstraction. Explicit notifications provide guests an opportunity to

adapt their behavior in accordance with their resource allotment. For example, a guest that

loses a memory page requires a notification of the page’s revocation to know that it must swap

the page to disk [87].

• Secure Bindings. Exokernel uses secure bindings to associate each resource with a sin-

gle guest and track ownership. Secure bindings prevent competing guests from accessing or

modifying a resource by restricting resource access to the owning guest. They do not signif-

icantly impact performance because bindings are set only at the time of resource allocation

and revocation.

• An Abort Protocol. Exokernel uses an abort protocol to break a secure binding if a guest

does not voluntarily relinquish control of a revoked resource. The abort protocol preserves the

Exokernel’s right to revoke any resource at any time.

• Exposing Names and Information. Exokernel exposes physical names of hardware re-

sources, such as disk blocks and memory pages, whenever possible to remove a layer of in-

direction. A corollary to exposing physical names is exposing system-level information that

guests cannot easily derive locally, but require to efficiently utilize the hardware, such as

revealing the number of hardware network buffers [61].

19

Principle Exokernel Shirako

Hardware Multiplexing Exokernel allocates at the finest
granularity of the hardware: CPU
quanta, memory pages, and disk
blocks.

Shirako allocates hardware at the
granularity of physical and virtu-
alized hardware devices.

Visible Allocation/Revocation Exokernel notifies guests when
it allocates or revokes a CPU
quanta, memory page, or disk
block.

Shirako notifies guests when it
allocates, revokes, or modifies a
physical or virtual hardware de-
vice.

Secure Bindings Exokernel binds guests to hard-
ware and tracks ownership.

Shirako binds guests to physical
or virtual hardware devices and
tracks ownership.

Abort Protocol Exokernel uses an abort protocol
to break a secure binding.

Shirako uses an abort protocol
based on leases, which define a
natural termination point for re-
source revocation.

Exposing Names/Information Exokernel exposes the names of
hardware, such as memory pages
and disk blocks.

Shirako exposes the names of sliv-
ers, logical units (e.g., virtual ma-
chines), and hosts.

Table 2.1: The principles underlying Exokernel and Shirako are similar. Both systems focus
on hardware multiplexing, visible allocation/revocation, secure bindings, an abort protocol, and
exposing names.

2.2 An Extensible Networked Operating System

As with node operating system kernels, a networked operating system involves two different but

intertwined issues: resource multiplexing and programming abstractions. Existing systems for net-

worked resource management, like conventional node operating systems, implement programming

abstractions that violate the neutrality principle. For example, distributed operating systems, such

as Amoeba [160], extend node operating system abstractions across a collection of machines. Like

Exokernel, we argue that a networked operating system should strive to separate these abstractions

from physical resource management.

The same principles that govern node operating system design also apply to managing networked

hardware. We adapt Exokernel principles to a networked operating system to expose control of

collections of resources to guests, giving them the power to manage a subset of resources in a

multi-site infrastructure. The key design tenets of Exokernel are also found in our architecture.

We explore how the same principles apply to the allocation of collections of physical and virtual

machines. Table 2.1 summarizes the relationship between Exokernel design principles and the design

principles of Shirako, our prototype networked operating system.

Guests require visible resource allocation and revocation to adapt the dynamics of their resource

allotment, as described in Section 4.3.2, and sites require an abort protocol to break a guest’s binding

20

to resources, as described in Section 4.3.3. In Section 5.3, we discuss how to adapt the principles

of exposing names and information to manage collections of hardware. In Section 5.4.2, we discuss

secure bindings of guests to resources. Despite the similarities to node operating systems and

Exokernel, networked resource management is a fundamentally different environment with its own

distinct set of characteristics. Below we outline characteristics of a networked operating system that

motivate our design principles. We detail the motivation behind each principle in the subsequent

subsections.

• Multiplex Collections of Networked Resources. The heart of a networked operating

system is the allocation of collections of resources linked across a network, and not simply

the resources of a single machine. The distributed nature of the resources results in an ex-

ecution environment that binds guests to resources using network-accessible APIs and not

intra-machine software bindings.

• Allocate Resources across Multiple Sites. Unlike a node operating system kernel, no

single entity in a networked operating system controls all the resources; instead, the system

coalesces and multiplexes resources from multiple, independent sites.

• Coarse-grained Resource Allocation. Allocating resources at the level of CPU quanta,

memory pages, and disk blocks is too fine-grained for a networked operating system. We

argue that a coarser-grained approach is more appropriate for guests that control collections

of resources. Physical or virtual machines represent coarse-grained hardware allocations that

retain a hardware abstraction. Previous systems use the term slice to refer to coarse-grained

collections of networked resources [29, 23, 73].

2.2.1 Multiplex Collections of Networked Resources

We depict a comparison between Exokernel and an extensible networked operating system in Fig-

ure 2.3. The collection of brokers and authorities communicate to coordinate resource allocation

using Exokernel’s principles [73]. Service managers are akin to library operating systems, and

interact with brokers and authorities to coordinate allocation for guests.

A consequence of allocating networked collections of resources is that the actors in the system

control the binding of resources across a network, using network-accessible APIs. As a result, the

21

machines/slivers machines/slivers machines/slivers

authority authority authority

brokers

service manager service manager

PlanetLab Globus

quanta, blocks, pages

Exokernel

ExOS

Emacs

ExOS

httpd Cheetah

Webserver
OO OS

…

external clients external clients

single

machine
multiple

machines

multiple

machines

multiple

machines

Figure 2.3: The figure compares the structure of Exokernel with a networked operating system.
The primary design differences stem from a focus on multiplexing collections of resources from
multiple sites at the coarser granularity of physical machines, virtual machines, and slivers. The
focus motivates both a physical separation between the service manager, the authority, and the
guests and resources they control, and a logical separation of policy between multiple authorities
and brokers.

service managers, which control the guests, and the authorities, which control the resources, do not

execute on the machine (or machines) they are controlling, unlike a node operating system guest

or kernel. The interface exported by each authority must be network-accessible so external service

managers can invoke them. Further, interfaces must exist for the authority, itself, to control the

allocation and revocation of resources. Virtualization platforms provide the interfaces necessary to

sliver resources and present a hardware abstraction.

Another result of the separation of service managers and authorities from the guests and resources

they control is a reduced emphasis on the method of resource partitioning. The functions that

coordinate resource multiplexing and control are physically separate from the guests and resources

being multiplexed. As we describe in Section 4.3.1, it is possible to apply Exokernel principles to

networked resources in a general way that is independent of a specific guest or resource.

2.2.2 Allocate Resources across Multiple Sites

Multiple sites own and control networked resources in infrastructures. A networked operating system

must coalesce these resources into a coherent system that offers them to guests. We leverage

two design elements for a networked operating system that address multi-site resource sharing, as

described below.

22

• A Lease Abstraction. Leases are an effective tool for multi-actor resource negotiation,

arbitration, and fault tolerance that are compatible with Exokernel’s design principles.

• A Division of Policy and Control. In order to offer resources to guests from multiple sites,

sites must relinquish partial control over their allocation policy to some entity. We examine

how the Sharp model for resource peering defines this separation of policy and control, and

how the separation is compatible with the neutrality principle.

The Lease Abstraction

We identify the lease as an elemental programming abstraction for multi-actor resource negotiation,

arbitration, and fault tolerance. From the start, Exokernel assumes that a single trusted kernel

allocates and revokes resources from guests at any time. In a networked operating system, control

of guests resides outside of any site’s sphere of authority. As a result, negotiation between guests and

sites is unavoidable—sites need to know how much resource they are sacrificing and for how long to

prevent overcommitting their resources (or to control the degree of overcommitment [73]), and guests

require an assurance over the resources they hold to accurately plan for the future. Knowledge of

resource commitments is especially important if guests exchange payment for resources. As a result,

we examine a design built around a lease abstraction, which serves as the basis for all multi-party

resource negotiation and exchange.

Sites and guests use the lease abstraction to agree on the duration of resource use a priori.

Exokernel has no parallel to the lease abstraction because, unlike a networked operating system,

its design is bound to the resources it multiplexes since fine-grained allocation requires resource-

specific techniques to ensure good performance. The physical separation of service managers and

authorities from the resources they control combined with a focus on coarse-grained allocation

permits the management of guests and resources under a single programming abstraction.

Exokernel also does not address the time aspect of resource sharing: guests inevitably use each

resource for a limited period of time. Instead, Exokernel implements a programming abstraction

that only defines that a resource is given and then taken away. This abstraction is weaker than a

lease abstraction and does not have the requisite benefits for negotiation (see Chapter 4), arbitration

(see Chapter 6), and fault-tolerance (see Chapter 7).

23

It is the time element, which is so fundamental to resource sharing, that presents the strongest

argument for choosing the lease abstraction as “the tie that binds” a networked operating system to-

gether. Despite being fundamental to both resource sharing and distributed system design, we know

of no other system that ties together all aspects of resource management, including extensibility,

arbitration, and fault tolerance, under a single programming abstraction.

A Division of Policy and Control

We adopt the Sharp protocol for secure and accountable resource sharing between multiple sites.

Note that, in contrast to node operating systems like Exokernel, Sharp has no globally trusted

core; rather, an important aspect of Sharp is a clear factoring of powers and responsibilities across

a dynamic collection of participating actors that communicate to control resources.

Sharp’s framework goes beyond Exokernel’s policy-free design by placing the arbitration policy

for any type of resource in an external brokering service. A Sharp brokering service aggregates

resource rights from multiple sites and collectively coordinates their distribution to guests to enable

multi-site resource allocation. While Exokernel removes the scheduling and arbitration policy of the

CPU from the kernel by including a primitive for processes to yield their processor time to another

specific process, it does not include a similar primitive for other resources, such as memory.

Since Sharp brokering services allocate resource leases with a well-defined start and end time,

they also have the power to delegate service managers (or other brokering services) the present

or future right to a resource. Allocating the future right to use a resource is a foundation for

implementing sophisticated resource scheduling policies, such as advance reservations or futures

markets. Defining arbitration policies for a networked infrastructure composed of independent

guests and sites is more challenging than developing policies within a single kernel that owns all

resources for all time. In Chapter 6 we show how leases are a basis for a currency system that

provides a foundation for market-based allocation policies.

2.2.3 Coarse-grained Resource Allocation

Modern virtualization technology provides the power to bind performance-isolating reservations

and/or shares of individual hardware components to each virtual machine. Site administrators, or

24

trusted software acting on their behalf, may precisely allocate resources to virtual machines along

multiple resource dimensions of CPU, memory, I/O bandwidth, and storage. We use the term sliver

to describe a bundle of resources from multiple hardware components on the same physical machine.

Virtual machine performance depends on its sliver: if a virtual machine attempts to use more

resource than its sliver provides, and there are no surplus resources to permit it to burst, then

performance isolation dictates that the guest will suffer, but other co-resident virtual machines will

receive the resources promised to them (i.e., minimal crosstalk). Slivering may behave unfairly in

corner cases [82]; ongoing research is developing techniques for reducing virtualization’s performance

overhead are ongoing [117]. Characterizing the fundamental performance overheads and slivering

capabilities of virtual machines is an open research question. We view the performance overheads

of existing virtual machines as an acceptable cost for increased management flexibility, and the

slivering capabilities of existing virtual machines as acceptable for a range of scenarios that require

precise sliver isolation, as described in [136].

We advocate a structure where sites offer entire physical machines or slivers bound to virtual

machines to guests, rather than offering them individual CPU quanta, memory pages, or disk blocks.

We sacrifice some of the flexibility and performance improvements Exokernel offers on a single

machine to support commodity mechanisms for physical and virtual hardware management. Engler

et al. note that a virtual machine implements the perfect Exokernel interface, except that it hides

fine-grained resource allocation/revocation from each virtual machine [61]. The benefit of providing

this level of precision to guests comes at a cost in complexity. For example, Exokernel requires

complex techniques, such as downloading and sandboxing code in the kernel and defining untrusted

deterministic functions (or udfs), to ensure high performance at the lowest level of multiplexing for

the network and disk [96].

Hardware virtualization bypasses the complexities of downloading and sandboxing code inside

the kernel (a technique present in both Exokernel [61] and SPIN [27]) by combining the secure

presentation of hardware to unaltered guests with the simplicity of masking fine-grained resource

allocation decisions. An authority that delegates control of hardware to a guest may expose a

network-accessible API to control booting or rebooting a machine, loading software, such as a node

operating system kernel, onto a machine, linking the software running on one machine to software

25

running on an external machine, such as a remote storage device, or binding slivers to a virtual

machine.

With coarser-grained allocation, guests that implement programming abstractions that require

finer granularity over per-machine resources may install software that exports their hardware at the

proper granularity and handles allocation and revocation of machines. Global memory management

is an example of a distributed shared memory protocol that provides remote access to memory pages

and supports the dynamic addition and removal of machines [63].

2.3 Summary

In this chapter, we parallel our approach to networked operating system design with previous work

on node operating systems. In particular, we describe how our approach is reminiscent of Exokernel

and its design principles. We outline Exokernel design principles and describe how we extend them

to manage networked resources.

Exokernel principles were never widely deployed in commodity node operating systems because

the need for increased flexibility at the OS-level never materialized, and the focus on extensibility was

feared to be “leading us astray [56]”. In retrospect, interposing on fine-grained resource management

is expensive, and machine resources became cheap enough to dedicate or partition at a coarse grain.

[59] provides a comprehensive description of the barriers to the architecture’s adoption. While the

Exokernel approach was not adopted for node operating systems its principles are well-suited to

systems that manage collections of resources. These systems must accommodate multiple types

of guests and resources, as well as a rich set of arbitration and assignment policies. Networked

resource management may use a coarser-grained model of resource allocation to alleviate concerns

over implementation overhead and complexity that make extensibility difficult for node operating

systems.

26

Chapter 3

Classical Resource Management

“Operating systems are like underwear–nobody really wants to look at them.”

Bill Joy

Figure 3.1 depicts a modern software stack. At the lowest level of the stack is the physical hardware,

which the programmer cannot alter. A node operating system executes on the physical hardware

and multiplexes and abstracts hardware for applications. Virtualization layers now run underneath a

node operating system to increase the flexibility of a rigid physical hardware layer by providing server

consolidation, configuration and resource isolation, and migration. Finally, applications execute

above programming abstractions exported by the node operating system. In particular, middleware

is a class of application that defines new programming abstractions, extending those provided by

the node operating system.

Virtualization is a building block for programmatic resource management. However, virtual-

ization requires external policies to drive its mechanisms in accordance with guests’ needs. Node

operating systems manage the resources of individual machines, but OS-level scheduling policies and

programming abstractions do not readily extend to networked resource management. Middleware

welds together a diverse set of networked resources into a uniform programming environment by

masking differences in the lower levels of the stack, but since it runs above node operating systems

it cannot predict or control resources allocated by lower layers, unless the node operating system

exports that control.

Our approach represents a new layer in the software stack that provides the hooks to map guests,

such as middleware and node operating systems, onto physical and virtual hardware. We call this

new layer, which exposes rather than masks resources, underware to emphasize that it serves as

a control plane that operates below middleware, node operating systems, virtual hardware, and

physical hardware. Underware is a general term for the network of service managers, authorities,

and brokering services that communicate to collectively control resource management functions

for software stacks executing on collections of networked hardware components. Note that the

27

hardware

guest

Underware

physical hardware

virtual hardware

operating system

middleware

site authority

physical hardware

virtual hardware

operating system

middleware

physical hardware

virtual hardware

operating system

middleware

physical hardware

virtual hardware

operating system

middleware

brokers
brokers

site authority

service manager

Figure 3.1: Physical and virtual hardware, node operating systems, and middleware are building
blocks for a new underware layer that programmatically maps software onto hardware. Authorities
control the binding of the resources they own to the service managers that request them. Service
managers use network-accessible APIs exported by each authority to control the mapping of software
(node operating systems, middleware, etc.) for their guests onto each site’s hardware. Brokers
represent the cohesive entity that coalesces resources from multiple sites and offers them to service
managers.

underware layer includes only those entities that control hardware, and does not include either the

physical or virtual hardware controlled by authorities, or the node operating systems and middleware

controlled by service managers. We summarize below.

• Underware. Underware is a software layer that multiplexes resources by coordinating the

mapping of guest software onto collections of networked hardware.

• Hardware Virtualization. Hardware virtualization executes beneath node operating sys-

tems and provides the illusion of an isolated virtual machine. Sites use hardware virtualization

to partition physical resources without sacrificing the flexibility of the hardware.

• Middleware. Middleware is built above node operating systems and provides an environment

that masks differences in the underlying hardware and node operating system to enable a

28

homogeneous execution environment.

Below we further detail the capabilities of each layer of the software stack and describe its

relevance to a new underware layer.

3.1 Hardware Virtualization

Machine virtualization, first proposed in the mid-1960s [50], experienced a renaissance in the late

1990s with support for x86 processor virtualization [22, 168]. Since that time virtualization has

become a common tool for managing machine, network, and storage resources. Virtualization

provides mechanisms to create and manage virtual hardware, and offers more management flexibility

than physical hardware, which cannot be created or altered after fabrication.

Improvements in virtualization technology act as a catalyst for a networked operating system

by enriching the space of possible hardware management options. Each type of virtualization is a

building block for partitioning the different resources that comprise an infrastructure, and delivering

the resources to guests in a form that does not restrict their use. Slivers enable guests to receive

and control entire virtual machines, virtual disks, and virtual network links without conflicting

with competing guests. However, virtualization is not a panacea. Networked operating systems

coordinate the binding of multiple instances of virtual hardware to multiple guests. Below we

briefly outline important work in machine, network, and storage virtualization.

3.1.1 Machine Virtualization

Many different machine virtualization technologies exist that differ subtly in their implementa-

tion [22, 25, 54, 153, 168]. Some technologies provide true hardware virtualization [168], others

provide paravirtualization [22, 176] which alters the virtual hardware for improved performance,

others provide OS-level virtualization at the system call interface [54], and others simply strengthen

and enhance existing operating system isolation mechansims [153]. Each of these systems offer a

different set of hardware management services and slivering capabilities. We detail common hard-

ware management services in Chapter 5. In our architecture, service managers programmatically

control these capabilities for guests.

29

Improving the management capabilities listed above, as well as introducing new capabilities, is an

active area of research. For instance, machines, whether virtual or physical, require root disk images

that store persistent node operating system state. The popularity of machine virtualization has

motivated the packaging of applications with their operating system in a virtual appliance [147, 148].

Virtual appliances bind an application with its node operating system and bypass operating system

installation by executing both as a single unit on a virtual machine. Virtualization also enables new

capabilities for configuration debugging [101, 175], intrusion detection [57], and flash cloning [166].

3.1.2 Storage Virtualization

Like machine virtualization, storage virtualization provides a software layer that divides a physical

storage device into multiple virtual storage devices. Site administrators use different forms of

storage virtualization to quickly create and export network-accessible disks and file systems. Site

administrators may also use storage virtualization to mask the physical location of data or provide

a consistent view of data spread across multiple independent physical storage devices.

Multiple technologies support the creation and management of virtual pools of storage. Sun’s

ZFS file system supports snapshotting, cloning, and exporting of entire file systems. Logical Volume

Manager (LVM) operates at the block level, and allows the creation of logical disks and block-level

snapshots. Filer appliances also offer programmatic snapshotting and cloning at the block-level or

file system-level. Node operating systems may access pools of virtualized storage over a network

using network storage protocols such as iSCSI (a block level protocol) or NFS (a file level protocol).

Research into storage virtualization for collections of virtual machines is ongoing. Parallax [173]

is a block-level storage system designed for large collections of virtual machines that use a small set

of distinct root disk images or virtual appliances. Parallax supports fast cloning of disk images and

the migration of on-disk data in conjunction with virtual machine migration. Researchers are also

investigating methods for loosening the coarse-grained partitioning of disks, which restricts data

sharing and complicates security, ease of use, and management, by combining file-based sharing

with cloning and snapshotting capabilities in a virtualization-aware file system [133].

Storage virtualization that supports snapshotting and cloning of file systems and disks along with

the advent of virtual appliances provide the mechanisms necessary for a networked operating system

30

to create, alter, and destroy virtual storage devices and bind them to virtual machines on-demand.

3.1.3 Network Virtualization

The goal of network virtualization is similar to that of storage and machine virtualization: create and

isolate shared network links. For example, Virtual LANs (VLANs) provide a network of machines the

illusion of a dedicated LAN. Network virtualization also enables better testing and experimentation

of network applications and protocols. For example, VINI seeks to grant developers the control to

create their own private network on a shared physical infrastructure, which includes both edge hosts

and internal network links [24].

Virtualization support in switches, routers, and edge hosts increases the possibilities for man-

aging, isolating, and sharing internal network resources, such as bandwidth, in a more controlled

fashion than today’s “best-effort” Internet. For example, network virtualization technology can

enable multiple independent network architectures, rather than the single, global Internet that ex-

ists today [52, 62]. Violin investigates linking virtual machines over a virtual network that spans

the wide-area—the approach combines machine virtualization with network virtualization to give a

guest the illusion of a dedicated, distributed network infrastructure [144]. As with other forms of

virtualization, network virtualization provides a networked operating system mechanisms to sliver

and allocate network resources that do not exist for physical hardware.

3.2 Middleware

The term middleware was first used in 1968 and the original definition remains a good description:

middleware exists “... because no matter how good the manufacturer’s software for items like

file handling it is just not suitable; it’s either inefficient or inappropriate [122].” Middleware now

signifies a broad class of systems that layer software on top of the node operating system to create

a custom execution environment with its own set of abstractions tailored to the needs of a specific

class of applications.

Middleware approaches have long dominated the landscape for networked resource sharing be-

cause the only way to innovate before the advent of rich, programmatic interfaces to control physical

and virtual hardware was to layer new abstractions on top of node operating systems. With the rise

31

of virtual hardware and network-controlled physical hardware the assumptions that initially drove

networked resource sharing using the middleware approach have now changed. However, we do

not need to throw away years spent developing sophisticated middleware that support popular pro-

gramming models to adopt a new approach; instead, we only need to extend existing middleware to

support visible hardware allocation and revocation mechanisms provided by a networked operating

system, as discussed in Chapter 9. Below we discuss two important classes of middleware—batch

schedulers and grids—that represent guests of a networked operating system that define a program-

ming model.

3.2.1 Batch Job Scheduling

Batch job schedulers are middleware systems that schedule tasks on a set of compute nodes. Tasks

are computations that execute for some time, produce output, and then terminate. Tasks do not

include persistent services, such as multi-tier web applications, which do not fit the task mold

since they never terminate. Individual tasks may be complex workflows that define the sequenced

execution of multiple, independent sub-tasks, where each sub-task passes its output as input to

the next sub-task. Parallel tasks execute on many machines at the same time. For example,

MPI is a popular library for developing parallel tasks. Examples of batch schedulers include Sun’s

GridEngine [75] (SGE), Condor [113], Load Sharing Facility [183] (LSF), and PBS/Torque. Each

of these batch schedulers follows a similar model: users submit tasks at a submit host, which then

passes the task to a scheduler that decides when and where to execute tasks on one or more compute

hosts.

Batch schedulers must deal directly with managing networked resources. However, batch sched-

ulers do not share hardware resources between multiple guest environments—the resource they

provide is actually the service of executing a task on a set of resources. The scheduling service

defines an important programming model for networked resource sharing that redefines the capa-

bilities of the hardware to support tasks, which a system may queue, schedule, and execute. We

discuss the integration of the GridEngine batch scheduler with our architecture in Section 9.1.

Batch job schedulers provide a uniform programming model, but since they do not control node

operating systems or hardware, they have limited control over resource management. Quality-of-

32

Service, reservations, and flexible site control are important for batch job schedulers, but they have

been elusive in the practice. The problem is that batch job schedulers can only control when to

submit tasks to queues or node operating systems, but they cannot predict or control what resources

are allocated by the lower layer, unless the lower layer provides those hooks.

3.2.2 Grid Computing

Batch schedulers do not operate across multiple spheres of authority. In some cases, such as with

Condor glide-in jobs [37] or LSF multi-cluster [183], the scheduler may allow users of external batch

schedulers to submit tasks—these examples represent a shift toward a grid computing model. Batch

schedulers, which assume complete control of all available resources, are not grids. Grids focus on

standardizing protocols for distributed resource management. The Open Grid Forum (OGF), which

was formed in 2006 by merging the Global Grid Forum (GGF) and the Enterprise Grid Alliance,

is a community of grid users and developers that define standards for developing grids, such as the

Open Grid Services Architecture [70].

The goals of a networked operating system and grids are common, but the approaches are

different. We explore how to factor out resource multiplexing from a larger system that implements

programming abstractions and environments for distributed computing. Here we focus only on grids

built using the Globus toolkit [67], which implements OGF’s grid computing standards. The same

arguments generally apply to other grid computing systems.

Globus grids support familiar abstractions: they allow users to run their tasks and workflows

on somebody else’s node operating system. Globus is middleware that runs above node operating

systems installed by resource owners and sacrifices control over node operating systems to enable

some degree of heterogeneity. It derives from the “metacomputing” idea, which introduces standard

protocols and API libraries to weld diverse resources and diverse node operating systems into a

uniform execution platform. Globus also provides services to establish a common notion of identity,

and a common distributed middleware for routing jobs and scheduling them on local resources.

In practice, grids decentralize resource management across multiple spheres of authority by

extending the basic programming model of batch job schedulers. The choice of a batch job scheduling

model is not central to grids or their implementation. The focus derives from the needs of users

33

of computationally intensive workloads, which package their computations as tasks. In contrast to

grids, the goal of this thesis is to separate specific programming models from resource management.

Grids, like batch schedulers, represent an important programming model that an operating system

architecture for networked resource management must support.

3.3 Data Center Operating Systems

Previous work advocates controlling of collections of machines using a data center operating system

that coordinates their allocation for software. Muse represents an early example of this approach.

Muse combines the coordinated allocation of resources to guests with a policy for optimizing revenue

and energy consumption in a hosting center [38]. The original conception of Cluster-on-Demand

derived from the same motivation as Muse, but focused on mechanisms to drive the allocation

and reallocation of physical machines [120]. SHARC is a related system that adopts the approach

by advocating coordinated sliver allocation for collections of machines [163]. Muse and SHARC

preceded a resurgence in slivering technologies for virtual machines. As a result, both systems use

resource containers in node operating systems to sliver and isolate machine resources. The use of

resource containers does not provide the flexible hardware management services of virtual machines.

The implementation of data center operating systems differ from distributed operating systems,

which redefined each machine’s kernel, in their use of preexisting mechanisms for coarse-grained

slivering using resource containers [20] in node operating systems rather than redefining low-level

kernel mechanisms. Systems for virtual and physical machine management, described below, are

types of data center operating systems that use the same approach to coordinate the allocation of

virtual and physical machines. The approach is less intrusive than distributed operating systems

because it does not require redefining existing middleware or node operating system kernels. Existing

data center operating systems as well as recent systems for virtual and physical machine management

differ from our approach because they combine specific policies and programming abstractions with

specific mechanisms for multiplexing one or more types of resources.

34

Virtual Machine Management

Systems for managing networked resources in data centers leverage virtual machine technology

to take advantage of virtualization’s increased management flexibility. Industry products include

VMware Virtual Center and Xen Enterprise. The state-of-the-art products provide management

consoles that allow site administrators, not guests, to manually control virtual hardware resources.

These systems, which offer programmatic interfaces to collections of hardware, are building blocks

for a networked operating system.

Other systems that perform virtual machine management include SoftUDC [97], Sandpiper [181],

Virtual Computing Labratory [17], Usher [116], SODA [92], In Vigo [5], Virtual Workspaces [99],

Condor [146], and PlanetLab [23]. We outline the key aspects of these systems below.

While the systems differ in implementation and their target applications, each system’s goal

has the same basic element: automating a set of privileged actions, typically performed by a site

administrator, so users do not have to deal with the complexity of instantiating and placing virtual

machines in a data center. Our architecture differs from these systems by extracting specific resource

management policies and usage scenarios (e.g., programming abstractions) from the system and

defining a common set of elements for networked resource management based on the neutrality

principle. We describe the main points of each system below.

SoftUDC aims to provide a management console for administrators to control and manage an

infrastructure using virtualization technology. However, SoftUDC focuses primarily on how site

administrators use the console to manage an infrastructure and does not specifically address how

guests use the virtualized environment. Sandpiper focuses on specific policies for migrating virtual

machines to improve guest performance, and not a policy-free operating system architecture for

networked resource management. Our architecture is sufficient to export the mechanisms for service

managers to implement Sandpiper’s migration policies.

Virtual Computing Labratory (VCL) is a web portal where users may request a virtual machine

that VCL configures on-demand. Usher is similar to VCL and provides a command line console

for allocating virtual machines to users of a cluster. Neither VCL nor Usher address integration

with guests, resource adaptation policies, or support for infrastructures that span multiple sites.

In Vigo, Virtual Workspaces, and Condor concentrate on virtualizing resources for Grid computing

35

environments that support a task execution programming model. As we state above, task execution

represents one, of many, programming models that a networked operating system must support.

Our architecture supports these programming abstractions, as discussed in Section 9.1. SODA

recognizes the importance of programming models other than task execution, and instantiates User-

mode Linux [54] virtual machines for persistent services. In contrast, our architecture generalizes

to any programming model by supporting hardware for any type of guest.

Physical Machine Management

A networked operating system should also be able to provide mechanisms for manipulating the

physical hardware by exporting hardware management services of physical machines. Physical

hardware management focuses on controlling physical, not virtual, hardware such as raw machines,

disks, switches, and routers. For example, the Dynamic Host Configuration Protocol (DHCP) can

take control of a physical machine which boots into Intel’s Preboot eXecution Environment (PXE)

to transfer and invoke a custom kernel provided by the remote DHCP server. Once booted, the

custom kernel may rewrite a machine’s local disks or configure a machine to boot using a remote

disk via NFS or iSCSI.

Mechanisms also exist to boot machines remotely using programmable power strips to drive the

physical machine reallocation process [15, 39, 177], use Wake-on-LAN to programmatically power

machines up and down [38], or dynamically regulate CPU frequency to meet infrastructure-wide

energy targets [139]. Blade enclosures now provide network-accessible backplanes that obviate the

need for PXE, programmable power switches, or Wake-on-LAN to manage physical machines using

remote network protocols. Site administrators may also dynamically modify common management

services to control each machine’s view of its environment. These services include DNS for resolving

host names, NSS for determining file-access permissions, and PAM for user authentication.

Systems that manage physical infrastructure include Oceano [15] for SLA-compliant manage-

ment of web applications, Rocks [126] for quick installation of customized Linux clusters, and Emu-

lab [177] for configuring network emulation experiments. Emulab also supports instantiating virtual

machines for network experiments [142, 58]. Oceano, Rocks, and Emulab each implement impor-

tant programming models for web applications, machine imaging, and network experimentation,

respectively. Physical machine management and these programming models are realizable within

36

our architecture. We discuss the integration of physical machine management with our architecture

in Chapter 8.

3.3.1 PlanetLab

PlanetLab virtualizes the resources of over 700 machines from 379 distinct clusters located on 6

continents by acting as a brokering service that establishes relationships with sites spread across

the world. To join PlanetLab, sites permanently relinquish control of at least two machines by

registering them with PlanetLab Central and installing a PlanetLab-specific OS and disk image.

PlanetLab users may then access these machines, subject to PlanetLab allocation policies, to test

and deploy new network applications on a global scale. PlanetLab defines a programming model

around a distributed virtualization abstraction, called a slice: guests receive a virtual machine

presence on one or more machines in the federation. However, slices provide no assurance over the

underlying resources bound to each virtual machine and no notifications when a slice’s resource

allotment changes due to contention or failure.

In contrast, we advocate that sites control when, how much, and how long resources are made

available to federations like PlanetLab using a lease abstraction, and provide the mechanisms to

programmatically repurpose hardware for new uses by supporting guest control of the software

stack. Our architecture encourages further participation in PlanetLab by enabling infrastructures

to dynamically donate and withdraw their machines as local conditions dictate, reflecting a view

that sustainable federation will only occur when systems do not force sites to permanently relin-

quish their machines and do not bind machines to a specific programming model. In Chapter 9, we

demonstrate PlanetLab as one example of a guest running over our architecture. We also discuss

an integration of our architecture with Plush [9]: software originally developed for PlanetLab that

implements a programming model for distributed application management without multiplexing

resources. We describe how we generalize common programming abstractions for distributed ap-

plication management and apply them to resource management in a networked operating system.

We discuss PlanetLab’s programming model in detail and how it integrates with our architecture’s

policy-neutral principle in Chapter 9.

37

3.3.2 Utility Computing

Utility computing (or cloud computing) is a variant of networked resource management that focuses

on selling computing as a service: in this model, customers rent resources as they need them.

Amazon’s Elastic Compute Cloud (EC2) is an example of an operational computing utility [74].

EC2 customers programmatically create Xen virtual machines as they need them without purchasing

and maintaining their own dedicated infrastructure. Amazon’s Simple Storage Service (S3) allows

customers to store data, such as virtual machine disk images, on Amazon’s infrastructure. Amazon

meters the I/O bandwidth to and from S3, as well as the number of virtual machine hours clocked

on EC2, and charges customers monthly based on their usage.

The XenoServer Open Platform [85, 103] is a proposal for a global utility computing framework

based on Xen virtual machines. The platform proposes multiple utilities, such as EC2, as well as

resource discovery and payment systems to enable coordinated locating and purchasing of virtualized

resources. Our architecture may serve as a foundation for building and enhancing utility computing

platforms. In Chapter 8 we explore the benefits of the integrating our policy-neutral architecture

with EC2 to enable the leasing of EC2 resources.

3.4 Elements of Distributed Systems

A system for sharing networked resources is inherently distributed. Authorities, service managers,

and brokering services, along with the resources under their collective control, execute at different

points in a network under different spheres of authority. As a result, networked operating system

design encounters common problems from distributed systems design. Specifically, our architecture

applies and extends research into distributed resource arbitration and reliability. We review related

work in these areas below.

3.4.1 Resource Scheduling and Arbitration

A centralized scheme for resource scheduling and arbitration in a distributed infrastructure composed

of self-interested guests and sites requires sites to relinquish control of their resources. It is unlikely

that sites will relinquish this control en masse unless proper incentives exist to outweigh the impact

allocation decisions have on each site’s operational costs [38, 119, 139]. Markets represent a natural

38

approach to making decentralized resource scheduling and arbitration decisions among self-interested

actors. Markets encourage sites to contribute resources to infrastructures by providing an incentive,

such as money or the promise of future resource usage, to contribute, as well as a basis for sites to

make allocation decisions to guests under constraint.

The systems community has flirted with market-based allocation regularly over the years [34,

154, 156, 169, 180]. Unfortunately, market design is complex and places a heavy burden on the user

to manage currency, define utility and bidding functions, and dynamically adjust resource usage in

accordance with prices. Mapping currency to utility is a heuristic process that requires users to

continuously monitor resource prices. Sites must deal with the complexity of defining expressive

bidding languages and auction protocols for users. Furthermore, optimally clearing all but the

simplest auctions requires solving NP-hard problems. Shneidman et al. present a summary of the

challenges markets must address to become a viable resource allocation mechanism [152].

One problem Shneidman et al. discuss is a lack of a viable virtual currency system for compu-

tational markets. Chapter 6 presents a virtual currency system which associates currency with a

lease term and recycles currency back to the user at the end of the term. Importantly, the virtual

currency system does not define a resource management policy. Users lease currency in exchange

for resource leases. Adjusting the currency’s lease term provides a configurable tradeoff between

proportional-share scheduling and a market economy independent of the auction. The currency

serves as a foundation for accepted forms of allocation, such as proportional-share, as well as evolv-

ing, experimental forms of market-based allocation.

Proposals such as Karma [165], SWIFT [159], and CompuP2P [83] use currency to address the

free-rider problem in a peer-to-peer setting where anonymous users enter and leave the system at

a high rate. The design of currency in peer-to-peer systems reflects the model that trust is only

by reputation. Industry initiatives in utility computing are based on cash and rely on recycling of

currency within the larger common market [178].

There have also been recent proposals for community virtual currency. Tycoon is a market-based

system for managing networked resources [105]. Tycoon uses a price anticipating auction protocol

in which all bidders for a resource receive a share that varies with contention [64]. They prove that

the protocol always yields a Nash equilibrium when auctions are strongly competitive, competition

39

is stable, and bidders adapt to recent history according to stable utility functions. However, in

Tycoon, the result of each auction does not assure the buyer a predictable resource share. Resource

assignments in Tycoon vary continuously with contention, emphasizing agility over stability and

assurance. In our architecture, leases (discussed in Section 6.2) provide an opportunity to balance

the stability of knowing your resource assignment and your currency holdings, with the agility of

being able to alter your holdings over time, as discussed in Chapter 6.

3.4.2 Leases and Fault Tolerance

A network partition may interrupt communication between authorities, service managers, brokering

services, guests, and hardware at any time. Servers may also crash or fail at any time. Like other

distributed systems, a networked operating system must address network and server failures. Leases

are a useful tool for building fault-tolerant distributed systems that are resilient to failures [107].

Variants of leases are used when a client holds a resource on a server. The common purpose of a

lease abstraction is to specify a mutually agreed time at which the client’s right to hold the resource

expires. If the client fails or disconnects, the server can reclaim the resource when the lease expires.

The client renews the lease periodically to retain its hold on the resource.

Lifetime Management. Web Services Resource Framework (WSRF) uses leases as a tool for

distributed garbage collection of state [68]. The technique of robust distributed reference counting

with expiration times also appears in Network Objects [28], and subsequent systems—including

Java RMI [179], Jini [167], and Microsoft .NET—have adopted it with the lease vocabulary. While

our architecture benefits from the lifetime management property of leases, we also use leases for

resource management.

Mutual exclusion. Leases are useful as a basis for distributed mutual exclusion, most notably

in cache consistency protocols [78, 114]. To modify a block or file, a client first obtains a lease for

it in an exclusive mode. The lease confers the right to access the data without risk of a conflict

with another client as long as the lease is valid. The key benefit of the lease mechanism itself

is availability: the server can reclaim the resource from a failed or disconnected client after the

lease expires. If the server fails, it can avoid issuing conflicting leases by waiting for one lease

interval before granting new leases after recovery. Fault-tolerant distributed systems combine this

40

use of leases with replicated state machines [149] and quoroms or a primary-backup structure [31]

to provide data availability in the face of server failures.

Resource management. Our architecture, like Sharp [73], uses the lease as a foundation for

managing infrastructure resources. In Sharp, the use of leases combines elements of both lifetime

management and mutual exclusion. While providers may choose to overbook their physical resources

locally, each offered logical resource unit is held by at most one lease at any given time. If the lease

holder fails or disconnects, the resource can be allocated to another guest. This use of leases has

three distinguishing characteristics, as described below.

• Leases apply to the resources that host the guest, and not to the guest itself. The resource

provider does not concern itself with lifetime management of guest services or objects.

• The lease quantifies the resources allocated to the guest; thus leases are a mechanism for

service quality assurance and adaptation. In contrast, it is common with lease-based mutual

exclusion for the server to issue a callback to evict the lease holder if another client requests

the resource.

• Each lease represents an explicit promise to the lease holder for the duration of the lease. The

notion of a lease as an enforceable contract is important in systems where the interests of the

participants may diverge, as in peer-to-peer systems and economies.

3.5 Summary

This chapter ties together resource management at all layers of the software stack using a new layer

that coordinates the mapping of software onto networked hardware. We review systems for net-

worked resource management that manage multiple software stacks and describe how they combine

resource management policies and programming model with resource multiplexing. Finally, we show

how our architecture relates to classical issues in distributed systems research including resource

arbitration and the use of leases for reliability.

41

Chapter 4

A Networked Operating System Architecture

“Perfection is reached not when there is no longer anything to add,

but when there is no longer anything to take away.”

Antoine de Saint-Exupéry

This chapter outlines the key elements of a networked operating system architecture based on a lease

abstraction. We first review the relevant aspects of the Sharp resource peering framework [73],

which was also based on a lease abstraction. We then outline extensions to the lease abstraction

in Sharp including: guest/resource independence, visible resource allocation, modification, and

revocation, and an abort protocol. Finally, we illustrate how the lease abstraction can apply to

multiplex machine resource types used in Cluster-on-Demand and other systems [39].

4.1 Background

Our leasing architecture derives from the Sharp framework for secure resource peering and dis-

tributed resource allocation. The participants in the leasing protocols are long-lived software servers,

called actors, that interact over a network to manage resources. The term actor is meant to imply

that the software servers are independent and self-interested. Actors represent different trust do-

mains and spheres of authority that motivate a focus on negotiation and well-formed contracts. We

discuss the impact of actor self-interest in Chapter 6 in relation to market-based resource allocation.

• Each guest has an associated service manager actor that monitors the demands and resource

status of one or more guests, and negotiates to acquire leases for the mix of resources needed

to host the guests. Each service manager requests and maintains leases on behalf of one or

more guests, driven by its own knowledge of guest-specific behavior and requirements.

• An authority actor controls allocation for an aggregation of resources controlled by a single

sphere of authority, and is responsible for enforcing isolation among multiple guests hosted on

the resources under its control.

42

• A broker actor maintains inventories of resources offered by authorities, and matches service

manager requests to resources from its inventory. A site may maintain its own broker to

keep control of its resources, or delegate partial, temporary control to third-party brokers that

aggregate resource inventories from multiple sites. The original Sharp framework refers to

brokers as agents: we only use the term agent to describe a broker that operates under the

sphere of authority of one or more sites and/or guests. In this case, we say that the broker is

an agent acting on behalf of the corresponding sites and/or guests. We also refer to brokers as

brokering services to emphasize that they are software servers, and that they may cooperate

and replicate to support more robust brokering.

Sharp, which was initially prototyped for PlanetLab [23], defines a secure protocol for authorities

to lease resource rights over time to brokering services and service managers. We inherit the slice

terminology from the original Sharp work and note that the same term also describes the distributed

virtualization abstraction that exists in PlanetLab [23]. To avoid confusion, for our purposes, a slice

is simply a collection of resources leased by a single guest at any time, and is a generalization of the

distributed virtualization abstraction defined in [23]. Note that a service manager may control one

or more guests and, hence, may also control one or more slices.

4.1.1 Resource Leases

The resources leased to a guest may span multiple sites and may include a diversity of resource types

in differing quantities. Each Sharp resource has a type with associated attributes that characterize

the function and power of instances or units of that type. Resource units with the same type at a

site are presumed to be interchangeable.

Each lease binds a set of resource units from a site (a resource set) to a guest for some time

interval (term). A lease is a contract between a site and a service manager: the site makes the

resources available to the guest identity for the duration of the lease term, and the guest assumes

responsibility for any use of the resources by its identity. Each lease represents some number of

units of resources of a single type.

Resource attributes define the performance and predictability that a lease holder can expect

from the resources. Our architecture represents attributes associated with each lease as properties,

43

as discussed in Section 4.3.1. The intent is that the resource attributes quantify capability in a

guest-independent way. For example, a lease could represent a reservation for a block of machines

with specified processor and memory attributes (clock speed etc.), or a storage partition represented

by attributes such as capacity, spindle count, seek time, and transfer speed.

Alternatively, the resource attributes could specify a weak assurance, such as a best-effort service

contract or probabilistically overbooked shares [164]. The level of underlying isolation provided by a

resource (especially a virtualized one) is not fundamental to our architecture, as long as the service

manager and the authority mutually agree on the nature of the resource. For example, both parties

may agree to a lease for a group of virtual machines that span sites where each virtual machine

receives a continuously varying share of the processor time, memory allotment, and network link

of a physical machine in accordance with competition from co-located virtual machines, as with

PlanetLab [23] and VServers [153].

4.1.2 Sharp Brokers

Guests with diverse needs may wish to acquire and manage multiple leases in a coordinated way. In

particular, a guest may choose to aggregate resources from multiple sites for geographic dispersion

or to select preferred suppliers in a competitive market. A distinguishing feature of Sharp brokers

is that they have power to coordinate resource allocation. Sharp brokers are responsible for pro-

visioning: they determine how much of each resource type each guest will receive, and when, and

where. The sites control how much of their inventory is offered for leasing, and by which brokers,

and when. The authorities control the assignment of specific resource units at the site to satisfy

requests approved by the brokers. The decoupling present in Sharp balances global coordination

(in the brokers) with local autonomy (in the authorities).

Figure 4.1 depicts the Sharp broker’s role as an intermediary to arbitrate resource requests.

The broker approves a request for resources by issuing a ticket that is redeemable for a lease at

an authority. The ticket specifies the resource type and the number of units granted, and the

interval over which the ticket is valid (the term). Authorities issue tickets for their resources to the

brokers; the broker arbitration policy may subdivide any valid ticket held by the broker. All Sharp

exchanges are digitally signed, and the broker endorses the public keys of the service manager and

44

Site Authority

Join/leave

handlers,

monitoring

Handlers for

setup and

teardown,

monitoring

Assignment

policy

Application

resource

request policy

redeem ticket for lease

lease update

export ticketsrequest ticket

ticket update
Service Manager

leasing

API

lease

event

interface

leasing

service

interface

lease

status

notify

broker service interface

Plug-in broker policies for resource

selection, provisioning, and

admission control

Broker

Figure 4.1: Summary of protocol interactions and extension points for the leasing system. A
guest-specific service manager uses the lease API to request resources from a Sharp broker. The
broker issues a ticket for a resource type, quantity, and site location that matches the request.
The service manager requests a lease from the owning authority, which selects the resource units,
configures them (setup), and returns a lease to the service manager. The arriving lease triggers a
join event for each resource unit joining the guest; the join handler installs the new resources into
the guest. Plug-in modules for setup and join event handlers are applicable to different resource
types and guests, respectively.

authority. This chapter focuses on the design principles for a policy-neutral networked operating

system. Since our architecture conforms to Sharp, the delegation and security model applies

directly. The mechanisms for accountable resource contracts are described in more detail in [73].

The delegation model is suitable to support broker networks of any topology, ranging from a network

of per-site brokers to a deep hierarchy of communicating brokers.

We highlight two consequences of Sharp’s brokering model. First, defining brokers that coordi-

nate resource allocation by leasing resource rights is compatible with the neutrality principle: the

resource type may specify any resource including physical and virtual hardware. Second, since bro-

kers use leases to allocate the future right to a resource they are a suitable foundation for designing

advanced resource scheduling and arbitration policies, such as advanced reservations. Chapter 6

explores a currency system that sites and brokering services may leverage to implement different

policies that provides incentives for actors to contribute resources.

4.2 Shirako and Cluster-on-Demand

Shirako is a prototype implementation of our leasing architecture. Shirako includes a server to

represent each actor that implements interfaces for extension modules to configure different guests

and resources. The core of each actor is an actor-specific library that governs the behavior of resource

leases. Site developers use the authority library to multiplex different resources underneath the

lease abstraction on behalf of service managers. Likewise, guest developers use the service manager

45

library to instantiate different software environments using the lease abstraction to configure leased

resources on demand. The lease abstraction also encapsulates inter-actor lease protocol interactions

by defining the methods for ticket requests, redeems, and renewals.

Brokers have a similar library for developing arbitration policies that is independent of specific

guests or resources and does not require hooks for integrating specific guest and resource technolo-

gies. At the end of this chapter we illustrate how a Cluster-on-Demand authority integrates with

Shirako to manage physical and virtual machines. In the next section we use Cluster-on-Demand

to illustrate the design principles—guest/resource neutrality, visible allocation and revocation, and

an abort protocol—and how they apply to managing networked resources. In Chapter 5, we extend

the approach with additional design principles—exposing names and secure bindings—that include

sliver allocation. In Chapter 8, we give examples of other resources we integrate with the authority

library and in Chapter 9 we give examples of guests we integrate with the service manager library.

The lease abstraction manages state storage and recovery for each actor, and mediates actor

protocol interactions. The lease abstraction defines primitives, not policy, for developing guest-

specific service managers. In Chapter 9, we present several specific guests and the policies they use

to monitor their load, adapt to changing conditions, and handle software-related failures. Each actor

invokes lease interfaces to initiate lease-related actions at the time of its choosing. In addition, actor

implementations associate extension modules with each lease, which the lease abstraction invokes

in response to specific events associated with state changes. In Chapter 7, we describe a distributed

lease state machine which governs the state transitions that raise specific lease events. For example,

an event may include transferring a resource in or out of a slice—a logical grouping of resources

held by a guest.

Figure 4.1 summarizes the separation of the lease abstraction on each actor from different actor

management policies. Each actor has a mapper policy module that it invokes periodically, driven

by a clock. On the service manager, the mapper determines when and how to redeem existing

tickets, extend existing leases, or acquire new leases to meet changing demand. On the broker

and authority servers, the mappers match accumulated pending requests with resources under the

server’s control. The broker mapper deals with resource provisioning: it prioritizes ticket requests

and selects resource types and quantities to fill them. The authority mapper assigns specific resource

46

BrokerService Manager

Site A

Authority
Site B

Authority

physical

servers

virtual

machines

(small)

… storage

shares

virtual

machines

(large)

…

site inventory site inventory

guest application

(e.g., task queue, Web service)

leased resources (slice)

large

(site B)

virtual machines

small

(site A) Lease Abstraction

negotiate contract terms

configure host resources

instantiate guests

monitoring

event handling

lease groups

site

A

A

B

B

…

type

physical

small VM

storage

large VM

…

units

6

6

6

6

…

resource

inventory

Figure 4.2: An example scenario that illustrates Sharp and COD using a lease abstraction. The
scenario depicts a guest acquiring machines from two sites through a broker. Each site maintains
an authority server that controls its physical machines, and registers inventories of offered machines
with the broker. A service manager interacts with a broker to lease machines from two different
authorities on behalf of its guest. The lease abstraction is resource-independent, guest-independent,
and policy-neutral, and masks all protocol interactions and lease state maintenance from the service
manager controlling its guest, the authority controlling its resources, and the broker mediating
between the two.

units from its inventory to fill lease requests that are backed by a valid ticket from an approved

broker.

Figure 4.2 depicts a simple example of the benefit of combining COD and Sharp using Shirako

and the lease abstraction: a service manager leases two types of virtual machines from two different

sites using a broker and instantiates its guest on them. Following the neutrality principle, the lease

abstraction exposes only elemental resource sharing primitives including contract negotiation, site

resource configuration, guest instantiation, event handling, guest monitoring, and lease grouping

to the service manager and site. In the next section we outline the design principles for lease

abstraction and how the architecture embodies each principle.

4.3 Design Principles

We apply the neutrality principle by separating the lease abstraction from any dependencies on

specific policies, guests, and resources. We combine three different design principles to accomplish

this separation.

47

• Guest/Resource Neutrality. The lease abstraction is sufficiently general to apply to other

resources, such as bandwidth-provisioned network paths, network storage objects, or sensors.

As a result, we define a narrow interface that divides the lease abstraction from the guests and

resources that use it. Actors also exchange type-specific configuration actions for each lease

to control the setup or teardown of resources for use by the guest, and persist lease state as a

foundation for fault tolerance. To provide guest/resource independence, the lease abstraction

stores guest-specific and resource-specific state using opaque property lists.

• Visible Allocation, Modification, and Revocation. Guests must have an opportunity

to know about changes to their leased resource holdings over time to adapt to changing

conditions. For example, a guest may need to respond to load surges or resource failures by

leasing additional resources, or it may need to adjust to contention for shared resources by

deferring work or gracefully reducing service quality. As a result, the lease abstraction exposes

resource allocation, modification, and revocation to the service manager and authority.

• An Abort Protocol. Leases define a natural termination point for service managers and sites

to coordinate vacation of leased resources. After a lease expires sites are free to unilaterally

teardown leased resources.

4.3.1 Guest/Resource Neutrality

The architecture decouples the lease abstraction from specific guests and resources using two tech-

niques: a handler interface that hides guest and resource configuration from the lease abstraction,

and a technique for exchanging context-specific configuration information using opaque property

lists. We describe both techniques below.

Handler Interface

The lease abstraction integrates with different guests and resources using a narrow handler interface.

Service managers and authorities register handler modules with each lease that define guest-specific

and resource-specific configuration actions invoked in response to lease events. Although the inter-

faces at the service manager and authority are identical, to avoid confusion we refer to the handler

48

Function Description Example

join Executed by a service manager to
incorporate a new resource for a
guest.

Join for a guest batch scheduler configures a new
virtual machine to be a valid compute machine.

modify Executed by a service manager to
modify an existing guest resource.

Modify for a guest batch scheduler notifies the
scheduler that a virtual machine’s sliver size has
changed.

leave Executed by a service manager to
remove a resource from a guest.

Teardown for a guest batch scheduler issues direc-
tives to the batch scheduler’s master to remove a
compute machine from the available pool.

Table 4.1: The lease abstraction for the service manager implements the guest handler interface.
Service manager developers may add or modify guest handlers to support new types of guests.

Function Description Example

setup Executed by an authority to setup
a new resource for a site.

Setup for a virtual machine includes creating a new
root disk image and initiating the boot process.

modify Executed by an authority to modify
an existing site resource.

Modify for a virtual machine may migrate the vir-
tual machine to a new physical host and/or change
the isolated sliver of host CPU, memory, and band-
width.

teardown Executed by an authority to de-
stroy a site resource.

Teardown for a virtual machine includes deleting a
root disk image and destroying a virtual machine.

Table 4.2: The lease abstraction for the site authority implements the resource handler interface.
Site administrators add new resource handlers or update existing resource handlers to lease different
types of resources.

used by service managers as the guest handler and the handler used by authorities as the resource

handler.

Each guest and resource handler includes three entry points that drive configuration and mem-

bership transitions in the guest as resource units transfer in or out of a lease. A description of each

entry point for the guest handler is shown in Table 4.1 and the description of each entry point for

the resource handler is shown in Table 4.2. We summarize the execution of the handlers and the

sequence in which they execute below.

• The authority invokes a setup action to prime and configure each new resource unit assigned

to a lease by the mapper. The authority notifies the guest and issues the lease when all of the

setup actions for a lease complete.

• Upon receiving a lease notification from the authority the service manager invokes a join ac-

tion to notify the guest of each new resource unit in the lease. The join guest event handlers

(and the leave guest event handler) may interact with other guest software components to re-

configure the guest for membership changes. For example, the handlers could link to standard

entry points of a Group Membership Service that maintains a consistent view of membership

49

across a distributed application.

• The authority or service manager may invoke a modify action if the nature of a resource

changes on a lease extension. We discuss lease extensions further in the Section 4.3.2.

• Before the end of a lease, the service manager invokes a leave action for each resource unit to

give the guest an opportunity to gracefully vacate the resources. Once all leave actions for a

lease are complete the service manager notifies the corresponding authority.

• At the end of the lease an authority issues a teardown action for each resource unit to make

the resources available for reallocation.

Using Properties

To maintain a clean decoupling between the lease abstraction and specific resources and guests the

we store all guest-specific and resource-specific information in opaque property lists, which are sets

of (key, value) string pairs. Below we discuss the role of properties for context-specific information

exchange and state storage.

First, actors exchange context-specific information to guide allocation and configuration actions

in the guest and resource event handlers. For example, a guest may need to pass specific requirements

for configuring a resource to a site, which the service manager must communicate to the authority

when redeeming a ticket for a lease. Similarly, an authority must pass information about each

resource unit to a service manager in order for it to incorporate each resource into the guest.

Property lists attached to message exchanges are opaque to the lease abstraction on the peer.

Their meaning is a convention among the policies and handlers at the service manager, broker, and

authority. Property sets flow from one actor to another, through the policies on each of the steps

and protocol exchanges depicted in Figure 4.1, and down to the corresponding guest and resource

handler.

• Resource properties attached to tickets give the attributes of the assigned resource types. Bro-

kers attach resource properties to each ticket sent first to the service manager and subsequently

to the authority. The lease abstraction at the authority passes these properties directly to

the resource handler. Note that the authority assignment policy may append to the resource

properties before sending them to the resource handler to guide resource configuration.

50

• Configuration properties attached to redeem requests direct how an authority configures re-

sources. Service managers attach configuration properties to each ticket sent to the authority.

The lease abstraction at the authority passes the configuration properties directly to the re-

source handler.

• Unit properties attached to each lease define additional attributes for each resource unit as-

signed. Authorities attach unit properties to each resource unit in lease notifications sent to

the service manager. The lease abstraction at the service manager passes these unit properties

directly to the guest handler.

The lease abstraction on each actor also serializes its state to a local property list and commits it

to a persistent store, such as a database, before passing the properties to the resource or guest event

handler. Service managers may use local properties to attach and persist arbitrary data associated

with a guest or lease. In Chapter 7, we describe a methodology for tolerating actor server failures

where lease state transitions trigger local commits of lease state to a database.

The lease abstraction includes an interface with functions to save state to the local property

list and reset state from the local property list as a foundation for our methodology for tolerating

failures. Other first-class data structures in the architecture persist state using the same basic

property list approach including slices as well as the mapper modules that implement different

adaptation, arbitration, and assignment policies.

4.3.2 Visible Allocation, Modification, and Revocation

In our architecture, authorities and service managers specify the nature and length of resource use

in a lease contract and authorities programmatically notify service managers when the resources

specified in the contract change. Service managers leverage visible allocation, modification, and

revocation of resources to inspect the state of guests, determine how to handle a change in resource

allotment, and alter the guest’s configuration to incorporate the addition, modification, or loss

of resources. For example, a service manager controlling a network service supporting its own

clients may wish to gracefully degrade all clients’ service quality, provide differentiated quality of

service to preferred clients, or seek and request available resources from elsewhere in the networked

infrastructure to satisfy demand.

51

In our prototype, changes in a lease take effect only at the end of the previously agreed term.

We note that restricting changes to lease boundaries is a subtle policy choice. Examining the policy

implications of a lease abstraction that allows for renegotiation or revocation before lease expiration

is outside the scope of this thesis. The lease abstraction must support visible allocation, modification,

and revocation regardless of the strength of the lease contract. We leverage the principle of visible

resource allocation, modification, and revocation for guests in four distinct ways: lease flexing and

modifying, visible handler invocation, guest lease handlers, and lease groups.

Flexing and Modifying

First, peers may incorporate changes to the lease at renewal time by modifying each unit’s underlying

characteristics or flexing the number of resource units. Supporting resource modification on lease

renewals gives guests the opportunity to adjust to changes in an individual resource’s capabilities

or attributes. For example, if we treat a machine as a resource then hotplugging a new IDE hard

disk constitutes a fundamental change in the machine’s nature.

Resource flexing has the benefit of not forcing a service manager to vacate an entire lease and

replace it with a smaller one, interrupting continuity, if a lease’s units must be shrunk on a lease

extension. Shrinking leases on extensions requires using properties to pass context-specific infor-

mation using the lease abstraction, since a shrinking extend requires a general method for service

managers to transfer the name of victim units to relinquish to the authority. Section 5.3.4 discusses

this use of properties for generalized victim selection.

The protocol to extend a lease involves the same pattern of exchanges as to initiate a new lease

(see Figure 4.1). The service manager must obtain a new ticket from the broker by marking a request

as extending an existing ticket named by a unique ID. Lease renewals maintain the continuity of

resource assignments when both parties agree to extend the original contract. A lease extension

makes explicit that the next holder of a resource is the same as the current holder, bypassing

the usual teardown/setup sequence at the authority on lease term boundaries. Extends also free

the holder from the risk of a forced migration to a new resource assignment—assuming the renew

request is honored.

52

Function Description Example

onExtendTicket Executed by a service manager im-
mediately before issuing a request
to extend a ticket.

A guest may inspect its resource usage and
decide if it needs to increase the leased
units or select victims and shrink units.

onActiveLease Executed by a service manager once
all resources in a lease are active.

A guest may issue a directive to begin a
parallel computation, as in the case of an
parallel MPI task.

onCloseLease Executed by a service manager be-
fore the guest leave handler’s exe-
cute.

Download and store data from one or more
leased machines.

Table 4.3: The lease abstraction for the service manager implements the guest lease handler
interface to give service managers an opportunity to modify leases when their state changes.

Visible Guest/Resource Handler Invocation

Second, the guest handler described above, represents a form of visible allocation, modification, and

revocation for guests since the lease abstraction at the service manager invokes each guest event

handler after the corresponding asynchronous notification from the authority. The principle of visible

allocation, modification, and revocation also extends to the lease abstraction on the authority. The

service manager notifies the authority to redeem a new lease, extend an existing lease, or close an

expired lease. In response to a service manager’s notifications the authority executes each lease’s

corresponding resource event handler to setup, modify, or teardown resources. In particular, a site

may use the modify event handler on lease extensions to adjust the isolated resource slivers bound

to a leased virtual machine (i.e., change the nature of the resource). In Chapter 5, we show how

authorities may augment this use of the modify event handler by allocating slivers across multiple

leases.

Guest Lease Handlers

Third, each lease uses a guest lease handler, which the service manager invokes once when the

state of a lease changes. The guest lease handler exports an interface to functions defined by a

service manager for each lease. The implementation of the lease abstraction within the service

manager library upcalls a guest lease handler function before a lease state change occurs. However,

as opposed to the guest handler, the service manager invokes the functions on a per-lease, and not

per-resource unit, basis. The guest lease handler exposes lease state transitions to service managers,

which may take the opportunity to perform lease-wide actions, such as examining the load of a

guest to determine whether or not to extend or modify a renewing lease.

53

Guest lease handlers enable service managers to respond to resource flexing or modification in

aggregate, rather than responding at a per-resource granularity using the guest handler. Table 4.3

lists examples of how service managers use different functions of the guest lease handler. We have not

found the need to implement a guest slice handler that allows service managers to expose functions

for slice-wide state transitions (i.e., upcalled once if any lease in a slice changes state).

Lease Groups

Fourth, we augment the lease abstraction on the service manager with a grouping primitive that

defines a sequence for guest handler invocations. Since the service manager specifies properties on

a per-lease basis, it is useful to obtain separate leases to support development of guests that require

a diversity of resources and configurations. Configuration dependencies among leases may impose

a partial order on configuration actions—either within the authority (setup) or within the service

manager (join), or both. For example, consider a batch task service with a master server, worker

nodes, and a file server obtained with separate leases: the file server must initialize before the master

can setup, and the master must activate before the workers can join the service.

We extend the lease abstraction to enable service managers to enforce a specified configuration

sequencing for lease groups. The lease abstraction represents dependencies as a restricted form of

DAG: each lease has at most one redeem predecessor and at most one join predecessor. If there is a

redeem predecessor and the service manager has not yet received a lease for it, then it transitions

the request into a blocked state, and does not redeem the ticket until the predecessor lease arrives,

indicating that its setup is complete. Also, if a join predecessor exists, the service manager holds

the lease in a blocked state and does not fire its join until the join predecessor is active. In both

cases, the lease abstraction upcalls a service manager-defined method before transitioning out of

the blocked state; the upcall gives the service manager an opportunity to manipulate properties on

the lease before it fires, or to impose more complex trigger conditions.

For example, recent work observes that loose synchronization primitives define a useful trigger

condition for sequencing guest instantiation on resources that span a volatile wide-area network [10].

Lease groups are a generalization of task workflows that sequence the execution and data flow

of multiple tasks for batch schedulers and grids [184] as well as other workflow techniques for

instantiating distributed guests on an existing set of resources [9]. In contrast to task workflows,

54

lease groups define sequenced execution of distributed guests, which may include tasks, across a set

of allocated resources.

4.3.3 An Abort Protocol

An authority may unilaterally destroy resources at the end of a lease to make them available for

reallocation if it does not receive a notification from a service manager, although we note that the

decision of when to destroy resources without a service manager notification is a policy choice that is

outside the scope of this thesis. An authority is free to implement a restrictive policy that destroys

resources immediately at the end of a lease, a relaxed policy that destroys resources only when it

must reallocate them, or a policy that destroys resources at any time in between. Unilateral resource

teardown by an authority is reminiscent of Exokernel’s abort protocol.

Leases provide a mutually agreed upon termination time that mitigates the need for an explicit

notification from the authority to the service manager at termination time as implemented in node

operating systems using a weaker give away/take away abstraction, as in Exokernel and others [13,

61]. As long as actors loosely synchronize their clocks, a service manager need only invoke its leave

handlers for each lease immediately prior to termination time. As described in Chapter 7, service

managers notify authorities when they vacate leased resources which may then issue their resource

teardown handlers.

4.4 Example: Allocating Virtual Clusters to Guests

In this section we describe how an authority uses the lease abstraction to share resources in the

form of machines. The authority is inspired by Cluster-on-Demand (COD) which was originally

intended to allocate and configure virtual clusters from a shared collection of servers [39]. Each

virtual cluster comprises a dynamic set of machines and associated hardware resources assigned

to each guest at a site. The original COD prototype allocated physical machines using an ad hoc

leasing model with built-in resource dependencies, a weak separation of policy and mechanism, and

no ability to delegate or extend provisioning policy or coordinate resource usage across multiple sites.

Extensive experience using the COD prototype led to the Sharp framework, and subsequently to

the extensible leasing architecture we outline in this thesis.

55

4.4.1 Integrating Machine Resources

A COD authority defines resource handlers to configure different types of machines. The resource

handlers use machine-specific configuration and unit properties to drive virtual cluster configuration

at the site, as well as guest deployment. The authority selects the resource handler to execute for each

lease redeemed by a service manager based on each lease’s resource type and attached configuration

properties. The setup and teardown event handlers execute within the site’s trusted computing

base (TCB). The original COD prototype was initially designed to control physical machines with

database-driven network booting (PXE/DHCP). The physical booting machinery is familiar from

Emulab [177], Rocks [126], and recent commercial systems. The resource handler controls boot

images and options by generating configuration files served via TFTP to standard bootloaders (e.g.,

grub).

A COD authority drives reconfiguration in part by writing to an external directory server. The

COD schema is a superset of the RFC 2307 standard schema for a Network Information Service based

on LDAP directories. Standard open-source services exist to administer networks from a LDAP

repository compliant with RFC 2307. The DNS server for the site is an LDAP-enabled version of

BIND9, and for physical booting we use an LDAP-enabled DHCP server from the Internet Systems

Consortium (ISC). In addition, guest machines have read access to an LDAP directory describing

the containing virtual cluster. Guest machines configured to run Linux may use an LDAP-enabled

version of AutoFS to mount NFS file systems, a PAM module that retrieves user logins from LDAP,

and an NSS module that controls file-access permissions.

COD should be comfortable for site administrators to adopt, especially if they already use RFC

2307/LDAP for administration. The directory server is authoritative: if the COD authority fails,

the disposition of its machines is unaffected until it recovers. Site administrators may override the

COD server if a failure occurs with tools that access the LDAP configuration directory.

In addition to the resource handlers, COD includes classes to manage IP and DNS name spaces

at the slice level. The authority names each instantiated machine with an ID that is unique within

the slice. It derives machine hostnames from the ID and a specified prefix, and allocates private

IP addresses as offsets in a subnet block reserved for the virtual cluster when the first machine is

assigned to it. Public address space is limited; the system may treat it as a managed resource using

56

the lease abstraction, as described in the next chapter. In our deployment the service managers

run on a control subnet with routes to and from the private IP subnets. COD service managers

overload configuration properties to specify victim virtual machines by IP address on a shrinking

lease extension, giving guests the power to choose which machine an authority revokes in a lease

block.

4.4.2 Support for Virtual Machines

As a test of the architecture, we extend COD to manage virtual machines using the Xen hyper-

visor [22]. The extensions consist primarily of a modified resource handler and extensions to the

authority-side mapper policy module to assign virtual machine images to physical machines. The

new virtual machine resource handler controls booting by opening a secure connection to the privi-

leged control domain on the Xen node, and issuing commands to instantiate and control Xen virtual

machines. Only a few hundred lines of code know the difference between physical and virtual ma-

chines. The combination of support for both physical and virtual machines offers useful flexibility:

it is possible to assign blocks of physical machines dynamically to boot Xen, then add them to a

resource pool to host new virtual machines.

COD install actions for node setup include some or all of the following: writing LDAP records;

generating a bootloader configuration for a physical machine, or instantiating a virtual machine;

staging and preparing the OS image, running in the Xen control domain or on an OS-dependent

trampoline such as Knoppix on the physical node; binding pre-defined shares of CPU, memory,

and bandwidth to a virtual machine (see Section 5.3.1); and initiating the boot. The authority

writes some configuration-specific data onto the image, including a user-supplied public key and

host private key, and an LDAP path reference for the containing virtual cluster. The setup event

handler may also assign shares of a machine’s resources to a virtual machine to provide an assur-

ance of performance isolation, guided by resource properties attached to each ticket by the broker.

Furthermore, a COD authority may use the modify resource event handler to alter the assigned

sliver on lease extensions. We discuss sliver allocation in detail in the next chapter.

57

Resource type properties: passed from broker to service manager

machine.memory Amount of memory for nodes of this type 2GB

machine.cpu CPU identifying string for nodes of this
type

Intel Pentium4

machine.clockspeed CPU clock speed for nodes of this type 3.2 GHz

machine.cpus Number of CPUs for nodes of this type 2

Configuration properties: passed from service manager to authority

image.id Unique identifier for an OS kernel image
selected by the guest and approved by the
site authority for booting

Debian Linux

subnet.name Subnet name for this virtual cluster cats

host.prefix Hostname prefix to use for nodes from
this lease

cats

host.visible Assign a public IP address to nodes from
this lease?

true

admin.key Public key authorized by the guest for
root/admin access for nodes from this
lease

[binary encoded]

Unit properties: passed from authority to service manager

host.name Hostname assigned to this node irwin1.cod.cs.duke.edu

host.privIPaddr Private IP address for this node 172.16.64.8

host.pubIPaddr Public IP address for this node (if any) 152.3.140.22

host.key Host public key to authenticate this host
for SSL/SSH

[binary encoded]

subnet.privNetmask Private subnet mask for this virtual clus-
ter

255.255.255.0

Table 4.4: Selected properties used by Cluster-on-Demand, and sample values.

4.4.3 Defining Machine Properties

Configuration actions are driven by the configuration properties passed to the resource handler.

Table 4.4 lists some of the important machine properties. These property names and legal values

are conventions among the guest and resource handlers for COD-compatible service managers and

authorities. Service managers may employ various shortcuts to reduce the overhead to transmit,

store, and manipulate lease properties. The messaging stubs (proxies) transmit only the property

set associated with each protocol operation, and receivers ignore any superfluous property sets. For

extend/renewal operations, servers may reuse cached configuration properties, bypassing the cost

to retransmit them or process them at the receiver. Most unit properties and type properties define

immutable properties of the resource that service managers and authorities may cache and reuse

freely. Finally, the slice itself also includes a property set that all leases within the slice inherit.

Several configuration properties allow a service manager to guide authority-side configuration of

machines.

• Image selection. The service manager passes a string to identify an operating system con-

figuration from among a menu of options approved by the authority as compatible with the

58

machine type.

• IP addressing. The site may assign public IP addresses to machines if the visible property

is set.

• Secure node access. The site and guest exchange keys to enable secure, programmatic access

to the leased nodes using SSL/SSH. The service manager generates a key-pair and passes the

public key as a configuration property. The site’s setup event handler writes the public key

and a locally generated host private key onto the machine image, and returns each host public

key as a unit property.

After the authority configures all machines within a lease it notifies the service manager, which

then executes the selected join event handler for each resource unit within the lease, passing the

resource unit’s properties to the handler. The join and leave event handlers execute outside of the

authority’s TCB—they operate within the isolation boundaries that the authority has established

for a service manager and its resources. For example, in the case of a COD authority, the TCB does

not include root access to the machine (which the guest controls), but does include assignment of a

machine IP address since a COD authority does not virtualize the network.

In the case of COD, the unit properties returned for each machine include the names and keys

to allow the join event handler to connect to each machine to initiate post-install actions. A service

manager connects with root access using any available server executing on the machine (e.g., sshd

and ssh) to install and execute arbitrary guest software. Note that any server, such as sshd,

executing on the machine that the service manager connects to must be pre-installed on the image,

pre-configured for secure machine access, and started at boot time by the COD authority.

After the join event handler completes the service manager transitions the machine to an active

state. Once a machine is active further management of the guest (e.g., monitoring, adaptation,

failure handling) depends on the implementation of each service manager.

4.5 Summary

This chapter presents a networked operating system architecture derived from the Sharp frame-

work for secure resource peering. We present the lease abstraction and its design principles:

59

guest/resource independence, visible allocation, modification, and revocation, and an abort pro-

tocol. We then describe the use of the architecture and the lease abstraction to build and enhance

Cluster-on-Demand, a reconfigurable data center which represents one example of a class of existing

networked machine management systems.

60

Chapter 5

Exposing Names and Secure Bindings

“Intelligence is not to make no mistakes,

but quickly to see how to make them good.”

Bertolt Brecht

Our architecture defines a single programming abstraction—the lease—for managing multiple types

of guests and resources, and exhibits three design principles necessary to be independent of resource

management policy: guest/resource independence, visible resource allocation, modification, and

revocation, and an abort protocol. The architecture leverages the Sharp framework to support

brokering and secure delegation of resource rights to third parties. However, we show in this chapter

that the original conception of Sharp is insufficient for allocating virtualized hardware. We examine

extensions to our architecture and Sharp based on the principles outlined in Section 2.2 that enable

authorities and brokers to allocate and control virtualized hardware.

A goal of transitioning COD to use the lease abstraction described in the previous chapter is to

support the allocation of virtual, as well as physical, machines using a single guest programming

abstraction. Guests and sites have the option of choosing whether or not to use physical machines,

which offer control of the raw hardware, virtual machines, which combine slivering with a set of

hardware management services, or a combination of the two. Virtualizing hardware by combining

slivering with hardware management capabilities, such as virtual machine migration, enables re-

source management control that is more powerful and flexible than physical hardware management.

The slivering and hardware management capabilities of virtual machines, virtual networks, and vir-

tual storage offer fundamental tools for resource management. As a result, any system that controls

virtualized environments must address the allocation and binding of slivers.

5.1 Example: Virtual Machines

We focus primarily on the use of slivering and hardware management services in the context of

virtual machines, although these capabilities are independent of a specific virtualization technology.

61

For instance, virtual storage devices permit slivering storage into statically partitioned virtual block

devices or file systems, and exporting hardware management services, such as storage snapshotting

and cloning. We use the term host to refer to a physical hardware device, such as a physical machine

or physical block device, and the term logical unit to refer to a virtual hardware device, such as a

virtual machine or virtual block device, that executes on the host and supports sliver binding and

hardware management services.

We refer to each individual dimension of a sliver, such as CPU capacity or memory allotment, as

a grain, and use the number of grains to refer to the relative amount of a single resource dimension.

For example, actors may equate 50 grains of CPU capacity to a 50% CPU share while equating

200 grains of memory to 200MB of memory; in each case, the grain represents a unit of allocation

specific to the hardware. The use of the term grains is meant to decouple the partitioning and

isolation strategies of different resource dimensions from the specification of slivers: regardless of

the partitioning technology, actors represent slivers as multi-dimensional vectors of numerical grain

values.

The architectural principles and mechanisms in this chapter are independent of the fidelity of any

specific slivering mechanism. Fidelity is a metric that quantifies the accuracy of a slivering mech-

anism over time. For example, a low-fidelity slivering mechanism that specifies a virtual machine

should receive 30% of the processor time over a given interval may only provide 20%. Improving

mechanisms to achieve high-fidelity and low-overhead slivering is an active area of research [82].

Existing virtual machine slivering mechanisms have been shown to be useful for controlling service

quality for software services, such as a multi-tier web application [136].

5.2 Overview

Sliver binding raises a number of issues about the division of control in a networked operating system.

For example, a service manager request to grow or shrink a sliver bound to a logical unit may trigger

a migration, if there are not enough resources on a logical unit’s current host to satisfy the request.

Since brokers approve requests, they must convey information about the old and new host to the

authority that conducts the migration since slivers and logical units exhibit location dependencies

that bind them to a specific host. When allocating aggregations of slivers and logical units, brokers

62

must communicate to authorities the information necessary to preserve location dependencies.

The original research on Sharp and COD does not address how to delegate control of hardware

management and sliver binding to service managers. COD virtual clusters were initially designed

for the allocation of entire hosts [39, 120], and while previous Sharp systems [72, 73] address sliver

allocation for individual logical units, they do not address the flexible allocation of collections of

slivers or the delegation of hardware management to service managers. To demonstrate this point,

we initially consider the benefits and drawbacks of a simple solution—site-assigned computons—

that requires no changes to the original frameworks and protocols. After considering this solution,

we conclude that Sharp and COD need explicit mechanisms to accommodate sliver binding and

hardware management. We discuss a series of extensions that provide the mechanisms by explicitly

naming individual hosts, slivers, and logical units at the broker and authority.

We extend Sharp and COD to address the sliver allocation and management capabilities of

virtualized hardware, and frame our discussion of the principles around the naming information

present in Sharp tickets. However, the principles of exposing names and secure bindings are

independent of the Sharp ticket construct and the authority/broker policy division. The principles

enable mechanisms that are necessary for service managers to reference slivers and logical units at a

single authority without broker interaction. In particular, the mechanisms discussed in Section 5.3.3

and Section 5.3.4, which discuss augmenting tickets issued by a broker, and the mechanisms discussed

in Section 5.4, which discuss secure binding of slivers to logical units, are also necessary in an

architecture where the broker and authority operate under the same sphere of authority.

The discussion in this chapter also applies to authorities that internally separate their arbitra-

tion/provisioning policy from their assignment policy, similar to the separation of policy defined

by a Sharp broker. An internal separation is useful to permit an authority to define the arbi-

tration/provisioning and assignment policies, which may have conflicting goals, independently, as

described in previous work [81].

The information conveyed in Sharp tickets is a useful basis for framing the discussion, since

tickets, allocated by brokers, and leases, allocated by authorities, combine to convey information to

service managers about their allocated resources. Brokers and authorities do not expose names for

hosts, slivers, and logical units to service managers in Sharp. Service managers cannot reference

63

individual slivers or hosts or differentiate between them to control the binding of logical units to

hosts or slivers to logical units. The result is that while service managers are able to lease sets

of resources in aggregate, they are not able to operate on individual resources within each lease.

For example, Section 5.3.4 describes how the ability to reference a sliver enables a service manager

to select victim slivers for a lease that is shrinking on an extension—the capability is crucial if a

service manager values one sliver within a lease over another. Since service managers cannot name

each individual logical unit or sliver, authorities also cannot export control of individual hardware

management services for a logical unit, such as virtual machine hardware management functions

(e.g., save/restore, migration). We discuss exposing names and secure bindings, summarized below,

in the following sections.

• Exposing Names. Specifying names for hosts and slivers in Sharp tickets, allocated by

brokers, communicates location dependencies to the authority and accommodates mechanisms

for controlling sliver allocation.

• Secure Bindings. Logical units and slivers are separate entities. Naming logical units

in leases allows authorities and service managers to treat them separately, enabling service

managers to control the binding or unbinding of multiple, potentially remote, slivers to a

single logical unit. Naming logical units at the authority interface also permits an authority

to expose access to hardware management services by separating the naming of the logical

unit from the slivers bound to it.

5.3 Exposing Names

To understand why Sharp tickets do not accommodate flexible sliver allocation and arbitration,

recall from Section 4.1, that each Sharp ticket defines two distinct numerical values—a resource

type and a resource unit count—and consider an example of an authority assignment policy for

host allocation: the policy maintains a one-to-one mapping between each resource unit represented

in a redeemed Sharp ticket and each host. To fulfill a ticket redeemed by a service manager, the

assignment policy need only select and configure a single host of the proper resource type for each

of the resource units specified in the ticket, as shown in Figure 5.1. Now consider an example of an

assignment policy for logical units with slivers using the same Sharp ticket representation. What

64

100%
2

GB
1

Gb/s

4

GB

CPU Mem Net Storage

Host 100%
2

GB
1

Gb/s

4

GB

CPU Mem Net Storage

Host 100%
2

GB
1

Gb/s

4

GB

CPU Mem Net Storage

Host

2 weeksLease Length: 2 weeks 2 weeks

Service

Managers

Figure 5.1: Sharp tickets specify a resource type and resource unit count. COD associates each
resource unit with a single host.

should the resource type represent? Does it refer to the type of host, as in the previous case, or

does it refer to a specific grain of a sliver, such as a CPU? What should the resource unit count

represent? Does the resource unit count refer to the number of logical units, similar to the previous

case, or to the number of grains of a sliver, such as 50 grains of CPU? Authorities and brokers must

resolve these questions to implement sliver assignment and arbitration policies, respectively.

This section outlines a progression of candidate solutions within each subsection to answer these

questions and discusses the benefits and drawbacks of each candidate. Each candidate solution

provides a successively greater degree of freedom for guests to control resources. We give a brief

description of each candidate solution below, before providing a more detailed discussion.

• Site-assigned Computons. Computons pre-define fixed size quantities for each grain that

forms a sliver. With site-assigned computons an authority associates a computon with a

resource type. The approach simplifies sliver allocation by reducing the flexibility a broker

has to determine size of slivers it allocates.

• Broker-managed Hosts. Brokers, instead of sites, can determine sliver allocation by aug-

menting the information in Sharp tickets to specify each sliver’s size as a multi-dimensional

vector of numerical grain values. However, supporting broker-managed hosts by augment-

65

ing Sharp tickets with a vector of grain values constrain’s sites’ freedom to control sliver

placement.

• Broker-guided Colocation. Brokers can allocate tickets for multiple slivers if, for each

allocated sliver, they provide a name for the sliver’s logical host. Providing a name for the host

gives authorities the information necessary to map a logical host to a host and to determine

a feasible sliver-to-host mapping.

• Broker-guided Colocation with Sliver Naming. Naming each sliver in a ticket allows a

broker to allocate the different grains that comprise a sliver in separate leases. The flexibility

affords a separation of grains that do not have the same lease lifetime, such as CPU and

storage, into different leases since a service manager is able to reference previously allocated

slivers in subsequent requests.

5.3.1 Site-assigned Computons

The first candidate solution we consider is site-assigned computons, depicted in Figure 5.2. Compu-

tons have been proposed as an abstraction for simplifying the allocation of slivers—they pre-define

the number of grains along each dimension of a sliver [3]. With site-assigned computons, a site

divides its hosts into computons and then delegates the power to allocate computons to brokers. As

a result, resource requests from service managers must conform to the computon sizes defined by

the site and offered by the broker.

Computons reduce complexity by predetermining the quantity of each grain that comprises a

sliver and restricting sliver allocation to one dimension at a cost in flexibility. To illustrate, consider

a site operating a single physical machine with a 4.0 GHz CPU, 8 gigabytes of RAM, and a gigabit

I/O channel. A site may choose to partition its single physical machine into 4 computons. In this

case, the site associates each computon with a resource type that represents the equivalent of a 1.0

GHz CPU, 1 gigabyte of RAM, and 256 Mb/s I/O channel.

Site-assigned computons require no extensions to the original Sharp ticket representation. With

site-assigned computons, the resource unit count in the Sharp ticket represents the number of differ-

ent logical units allocated and the resource type represents the type of logical unit and its computon.

We use resource unit and logical unit interchangeably, since each extension below associates the re-

66

25%
500

MB
250

Mb/s
1GB

25%
500

MB
250

Mb/s
1GB

25%
500

MB
250

Mb/s
1GB

25%
500

MB
250

Mb/s
1GB

CPU Mem Net Storage

VM

VM

VM

VM 25%
500

MB
250

Mb/s
1GB

25%
500

MB
250

Mb/s
1GB

25%
500

MB
250

Mb/s
1GB

CPU Mem Net Storage

VM

VM

VM 25%
500

MB
250

Mb/s
1GB

25%
500

MB
250

Mb/s
1GB

25%
500

MB
250

Mb/s
1GB

CPU Mem Net Storage

VM

VM

VM

2 weeksLease Length: 4 days 2 weeks 2 weeks

Service

Managers

Figure 5.2: Each color represents a different lease. A computon is a predefined number of grains
that comprise a sliver. To support logical unit colocation using computons, an authority associates
a resource type with a computon and a resource unit count with a number of logical units. An
authority assignment policy colocates multiple computons and logical units on each host.

source unit count with the number of logical units. We use the computon approach to support sliver

and logical unit assignment to allocate virtual machines in the COD example in Section 4.4 without

altering Sharp tickets.

To support sliver allocation in Sharp using only the resource type and resource unit count,

authorities associate a resource type with a computon size, and a resource unit count with a number

of distinct logical units bound to computons. The assignment policy for computons is trivial since

it defines a fixed one-to-one mapping between each resource unit of a ticket and each logical unit

bound to a computon. Initially, the simplicity of computons proved beneficial: the representation

of Sharp tickets and the assignment policy did not need to change to allocate logical units and

slivers since a computon-aware assignment policy is a simple extension of the initial host assignment

policy. Instead of the assignment policy defining a one-to-one mapping between each resource unit

and each host, it defines an n-to-one mapping between each resource unit and each host, where n

is the site’s predefined number of each computon of a specific type per host.

Site-assigned computons accommodate flexible sliver allocation if sites predefine a range of dif-

ferent size computons for hosts and associate the different computons with different resource types.

The Sharp ticket protocol does not preclude service managers from altering their resource type on

67

10%

700

MB 250

Mb/s 200

MB

40%

300

MB 250

Mb/s 1.8

GB

12%

900

MB 250

Mb/s 100

MB

38%

100

MB 250

Mb/s 1.9

GB

CPU Mem Net Storage

VM

VM

VM

VM

2 weeksLease Length: 4 days 2 weeks 2 weeks

Service

Managers

Figure 5.3: Authorities may permit brokers to determine the quantity of each grain that forms a
sliver as long as each ticket includes information specifying the host. Sharp accommodates host
specification if brokers specify a host by associating it with a resource type.

or before lease extensions, so brokers and authorities may support service managers that request to

alter their slivers within the bounds of a site’s predefined computons. The next section discusses

the benefits of delegating the power to determine sliver allocation to a broker.

5.3.2 Broker-managed Hosts

We now consider a series of new naming and binding mechanisms that build on each other, starting

with a candidate solution, called broker-managed hosts, in this subsection. In contrast to site-

assigned computons, the broker-managed hosts approach allows the broker, as opposed to the site,

to define and allocate slivers. The approach has two advantages relative to site-assigned computons.

First, it gives brokers the power to satisfy service manager sliver requests precisely. Work on

feedback control of web applications demonstrates that a service manager controlling a multi-tier web

application, such as Rubis [36], adapts individual grains of CPU and memory allotment at precise

granularities, not known a priori, to regulate service quality in response to load fluctuations [136].

To support this type of dynamic sliver allocation, we extend Sharp tickets to allow a brokers to

allocate the grains of a sliver.

In order to support broker-managed hosts, we augment Sharp tickets to specify a single vector

68

r2=(8,4)

r4=(4,8)
s(2)

2

4

5

1

r5=(4,4)
16

16

Figure 5.4: Brokers use vector addition to represent the two-dimensional packing of slivers onto
hosts. The figure depicts a host with slivers that comprise 16 grains in two different dimensions. A
broker carves tickets a, b, and c for slivers from the host.

of numerical grain values within each ticket, in addition to specifying the resource unit count and

the resource type, as depicted in Figure 5.3. Brokers and authorities use resource properties (see

Section 4.3.1) attached to tickets to store and retrieve this information: authorities attach the

quantity of each grain to source tickets exported to brokers, and brokers attach the quantity of

each grain in tickets allocated to service managers. Authorities then delegate the power for brokers

to determine the partitioning of each host into slivers and allocate them to service managers, as

depicted in Figure 5.3.

Figure 5.4 depicts a broker’s representation of a set of numeric-valued grains in a vector, ~ri, for

each ticket i. The number of grains and their granularity is a property of the host. The site specifies

them in the source tickets it issues to brokers. For a source ticket j we refer to the dimension

attribute vector—the space available in each unit—as ~sj . The broker “carves” tickets from its

sources to fill requests without violating capacity constraints of the sources along each dimension.

Consider the example in Figure 5.4, which depicts three single-unit tickets with varying ~r-vectors

(slivers) carved from one host of a source with ~s = (16, 16). The total allocated from the host is

given by vector addition: the host is full when
∑

~r = ~s. We define the space remaining on the host

after ticket i is assigned to it as ~s(i). The next assignment of a ticket j to the same host is feasible

if and only if ~rj ≤ ~s(i).

Allowing brokers to manage hosts by allocating slivers introduces a conflict between the broker

69

and the authority. For each redeemed ticket, the authority must determine the assignment of slivers

to hosts. To address the problem, we examine the information a broker stores in each Sharp ticket

in order to guide the authority assignment policy to a feasible mapping of slivers to hosts. One

method for providing mapping information without further augmenting each ticket is for authorities

to associate each host with a different resource type. As a result, the Sharp ticket implicitly encodes

the name of the host by specifying the resource type, and the assignment policy assigns the sliver

to the one host associated with the ticket’s resource type. Note that augmenting Sharp tickets

to include additional information does not free the broker from performing the initial mapping of

slivers to hosts, which is a variant of the NP-hard Knapsack problem if the broker associates each

sliver with a value and seeks to maximize value [81]. Kelly gives a full treatment of the Knapsack

problem and its relation to resource allocation, and demonstrates that even simple variants of the

problem are NP-hard [100]. We discuss the authority assignment problem and its impact below.

Constructing a Feasible Assignment

Delegating control of sliver allocation and assignment to a broker requires the authority assignment

policy to reconstruct the broker’s mapping of slivers to hosts. Consider a Sharp ticket, which treats

all resource units of a given resource type as interchangeable. In this setting, the assignment policy

is a simple n-to-one mapping: an authority maps each resource unit to a host with an available

computon. However, if a broker controls sliver allocation, the n-to-one mapping no longer holds

since the broker is free to allocate the grains of a sliver in any quantity. As service managers

redeem tickets for slivers, the authority assignment policy must construct a mapping of slivers to

hosts. Reconstructing a broker’s mapping of slivers to hosts is as hard as the NP-hard bin packing

problem if the ticket only encodes the resource type, the resource unit count, and the amount of

each grain that forms a sliver. We call this problem the authority assignment problem.

The formal definition of the bin packing problem is as follows: pack n objects, each with weight

w, into the minimum number of bins of capacity c [46]. To prove that the authority assignment

problem is NP-hard, consider an authority that receives a stream of tickets redeemed by service

managers, where each ticket encodes a set of logical units each with an assigned sliver with a weight

wi that the authority must map to hosts (e.g., bins). Without loss of generality we consider slivers

composed of a single grain. Consider an authority that is able to solve the authority assignment

70

problem and map logical units to a set of m hosts given a set of n logical units and their weights

wi for i = 1 to n. To solve the bin packing problem, the authority need only repeat the process for

m− j hosts for j = 1 to m− 1—the solution to the bin packing problem is the minimum value of j

for which the authority is able to find a mapping of logical units to hosts. Since an algorithm that

solves the authority assignment problem also solves the bin packing problem we conclude that the

authority assignment problem is NP-hard.

The classical bin packing problem considers a single dimension—an authority assigning slivers

composed of multiple grains must consider multiple dimensions. Furthermore, the authority must

deal with an online variant of the problem where each redeemed ticket alters the total number of

logical units, which may necessitate both a new packing and a set of migrations that achieve the

new packing.

Migration Freedom

In addition to constructing a feasible assignment, authorities may also alter the initial placement

of slivers to hosts using migration. Authorities have an incentive to retain the freedom to assign

and migrate slivers for load balancing. Previous work demonstrates that load balancing affects

aggregate site power consumption and total cost of ownership [38, 119]. Sites may also leverage

migration freedom to perform probabilistic host overbooking [164] or gain the flexibility to route

around hardware failures. A design goal is to leave this flexibility in place.

An authority is free to change the mapping of a resource type to a host at any time as long as it

reflects any change in the mapping by migrating all slivers from the old host to the new host if both

hosts are identical. Changing the resource type to host mapping does not affect the complexity of the

assignment policy since the mapping of slivers to hosts remains unchanged. Since the authority is

overloading the resource type to represent both the physical host and its characteristics, an authority

that alters the resource type to host mapping must ensure that the physical characteristics of the

new host are equivalent to the physical characteristics of the old host.

An authority is free to deviate from the sliver to host mapping defined by each ticket if it

is able to construct a feasible sliver to host assignment and a migration plan that specifies the

sliver migrations necessary to shift to a feasible mapping. For example, an authority that deviates

71

from the colocation defined by a broker may find it impossible to satisfy a new ticket redeemed

by a service manager. In this case, the authority must have a plan to migrate slivers to a feasible

assignment. Constructing at least one feasible sliver-to-host assignment is trivial since each ticket

encodes a logical mapping of each sliver to a specific resource type, which identifies a specific physical

host. However, generating a migration plan that defines the minimal number of migrations to shift

from one feasible sliver assignment to another feasible sliver assignment is a variant of the NP-hard

migration planning problem [84].

Solutions exist if there is enough stable storage to cache instantiated logical units to disk, al-

though caching logical units, such as virtual machines, to stable storage may impact performance

and the total number of migrations may be unacceptably high. The problem is tractable for author-

ities at low utilizations, since there exist many different feasible sliver assignments; however, in the

general case the problem requires exponential time. Simple heuristics can balance the tension be-

tween migration freedom and migration overhead. For example, an assignment policy that reserves

space for each sliver at two hosts, the host defined in the ticket and a host of the site’s choosing,

permits an authority to freely assign slivers to hosts while retaining a trivial single hop migration

plan as long as the site is less than 50% utilized. We note that the power of load balancing to reduce

power consumption and total cost of ownership or perform resource overbooking is most important

at these low utilizations [38, 119].

5.3.3 Broker-guided Colocation

We now consider a candidate solution where brokers guide colocation by extending tickets from

Section 5.3.2 to specify a set of host names in each ticket, in addition to the sliver size specified

by broker-managed hosts. The solution builds on the advantages of broker-managed hosts—flexible

sliver allocation and migration freedom—by enabling service managers to request tickets for a set

of slivers that span multiple hosts rather than a single host, as required in the previous subsection.

Broker-guided colocation requires brokers to augment Sharp tickets to convey a logical name for

the host of each sliver allocated in a ticket. The assignment policy requires the information to guide

the assignment and migration of multiple slivers in a single ticket.

A naive method for augmenting tickets to include host naming information is for brokers to

72

10%

700

MB 250

Mb/s 200

MB

40%

300

MB 250

Mb/s 1.8

GB

12%

900

MB 250

Mb/s 100

MB

38%

100

MB 250

Mb/s 1.9

GB

CPU Mem Net Storage

VM

VM

VM

VM 100

MB

250

Mb/s

12%

900

MB 250

Mb/s 100

MB

38%

100

MB 250

Mb/s 1.9

GB

CPU Mem Net Storage

VM

VM

VM
10%

700

MB 250

Mb/s 200

MB

40%

300

MB 250

Mb/s 1.8

GB

10%
700

MB

250

Mb/s

200

MB

CPU Mem Net Storage

VM

VM

VM
38%

1.9

GB

2 weeksLease Length: 4 days 2 weeks 2 weeks

Service

Managers

Figure 5.5: Augmenting each ticket with a list of host names permits brokers to allocate multiple
slivers within each ticket. Each color represents a different lease.

associate a distinct logical host name for each individual resource unit allocated at a site: each

ticket stores a host name for each resource unit (e.g., slivers) allocated, as well as a resource type

and a set of resource properties specifying the sliver size for each resource unit, as depicted in

Figure 5.5. As service managers redeem tickets, an authority associates each host name with a

single physical host and allocates a single sliver of the specified size to each of the hosts referenced

in the ticket. Note that the list of host names in a ticket may include duplicates if a broker allocates

two slivers to the same host. The host name is a logical reference to a host at the site, and the site

may alter the mapping between a host name and a physical host at any time.

Either the site or broker may initially define the host names. The only constraint is that there is a

unique host name for each physical host, such as a physical machine. For example, a site may define

host names in the initial source ticket exported to the broker. Alternatively, a broker may define

host names on-the-fly as it fulfills sliver requests; in this case, the site constructs a table mapping

unique host names to hosts as service managers redeem tickets. Our prototype uses globally unique

identifiers to ensure host names are unique and allows a broker to generate host names on-the-fly;

each authority maps host names to physical hosts as service managers redeem tickets.

Defining host names that identify a host for each resource unit in a ticket enables the allocation

73

of multiple slivers in a single ticket and provides a degree of migration freedom at the authority

without forcing it to solve the authority assignment problem from Section 5.3.2 to reconstruct a

broker’s colocation decisions. However, naively storing n host names in a ticket that allocates n

resource units redefines the relationship between ticket size and the resource unit count in Sharp:

rather than the size of each Sharp ticket being a constant, the size of each ticket scales linearly

with the number of allocated resource units.

The tradeoff between ticket size and naming is fundamental: enabling a range of control mech-

anisms for service mangers requires that brokers and authorities independently expose the names

of each host and, as we describe below, each sliver and logical unit. We note that while the size

of Sharp tickets is constant relative to the resource unit count, each lease, as described in the

previous chapter, returned by an authority to a service manager contains per-unit properties that

scale linearly with the number of resource units.

A linear relationship between the size of the lease and the resource unit count is unavoidable if

a service manager requires a method for contacting each individual logical unit, which requires a

unique name, such as an IP address, to coordinate communication. If we restrict sliver allocation

to a single lease then there exist optimizations for creating sublinear representations of the sliver to

host mapping, as described in [80], that do not require augmenting each ticket with n host names.

These representations reduce space by treating multiple hosts as a single pool, and conveying group

sliver allocation as a deduction from this pool. If there is enough idle space on each host in the pool

then group sliver allocation requires only a constant size ticket, since the ticket need only convey

that one sliver should be drawn from each of n hosts in the pool.

As a broker allocates slivers, the pools fragment into multiple smaller pools. In the worse case,

the broker must allocate n slivers to n different pools to satisfy a request; in this case, the ticket

size is linear with the resource unit count.

5.3.4 Broker-guided Colocation and Sliver Naming

There is a benefit to exposing the name of each host, regardless of the ticket size: service managers

may separate the allocation of different grains of a sliver into multiple leases. In this section we

extend broker-guided colocation from the previous subsection by augmenting Sharp tickets to

include the names of slivers in addition to the names of hosts. Naming slivers is beneficial for two

74

reasons. First, guests are able to separate the different grains of a sliver into different leases. For

example, service manager requests for storage leases, which tend to be on the order of days, weeks,

and months, are distinct from requests for CPU share leases, which tend to be on the order of

seconds, minutes, and hours.

Second, a guest is able to convey preferences to a broker for each grain independently. For

example, a guest that requires a lease extension for both storage (e.g., to store a virtual machine’s

root disk image) and additional CPU share (e.g., to improve performance) is able to separate the

requirements into two broker requests. The capability allows a guest to separate requests that serve

different needs. For example, a rejected request for additional CPU share only slightly degrades

guest performance, whereas a rejected request for storing a root disk image terminates a virtual

machine.

To cover the need to specify different grain preferences in our prototype, we initially tagged

each requested grain with a simple boolean elastic attribute that specified a binary preference for

each grain using request properties. If a service manager sets elastic to be true for a grain then

the broker assumes that allocation of the grain is not critical, so it is free to allocate less than the

requested value, as in the case for requesting additional CPU. In contrast, if a service manager sets

elastic to be false then the broker must either allocate the requested grain in full or not at all, as

in the case for requesting storage for a virtual machine root disk image. The elastic attribute is

a binary representation that captures two different preferences a service manager is able to convey

for the individual grains that comprise a sliver. Rather than conveying preferences for individual

grains, an alternative approach splits the allocation of grains that comprise a sliver across multiple

leases. This approach removes the need for individual preference semantics, as we discuss next.

In order to independently lease the different grains of a sliver we expose a sliver name for each

resource unit of a lease and associate each sliver name with a host name, as depicted in Figure 5.6.

Brokers generate unique sliver names for initial service manager sliver requests. Service managers

use the initial sliver names generated by the broker in subsequent requests for additional grains for

a particular sliver. If a ticket allocates n resource units then the broker specifies n host names and

a mapping from each host name to each of n sliver names. In this model, the host name maps to a

host at the authority as before, and the sliver name maps to a logical unit at the authority.

75

10%

700

MB 250

Mb/s 200

MB

40%

300

MB 250

Mb/s 1.8

GB

12%

900

MB 250

Mb/s 100

MB

38%

100

MB 250

Mb/s 1.9

GB

CPU Mem Net Storage

VM

VM

VM

VM 100

MB

250

Mb/s

12%

900

MB 250

Mb/s 100

MB

38%

100

MB 250

Mb/s 1.9

GB

CPU Mem Net Storage

VM

VM

VM
10%

700

MB 250

Mb/s 200

MB

40%

300

MB 250

Mb/s 1.8

GB

10%
700

MB

250

Mb/s

200

MB

CPU Mem Net Storage

VM

VM

VM
38%

1.9

GB

1 hour
Lease Length:

1 day

12 hours

1 week

2 hours

3 days

4 hours

2 weeks

3 hours

6 hours

1 hour

4 days

1 hour

3 days

6 hours

2 weeks

Service

Managers

Figure 5.6: Naming individual slivers permits brokers to separate the different grains of a sliver
into different leases, enabling a range of mechanisms that require sliver identification, including
generalized victim selection, lease forking and merging, and host selection.

To request additional grains for a block of leased logical units, a service manager appends the

names of a set of existing slivers to a ticket request. If a request is for n logical units, then the

service manager attaches n sliver names to the ticket, and the broker allocates the additional grains

from each host mapped to each existing sliver. Service managers are able to request multiple slivers

within a single ticket, even if a broker has previously allocated grains for a subset of the slivers. For

example, a service manager may attach only s sliver names to a request for n logical units, where

s < n; in this case, the broker simply generates n − s new sliver names, maps them to hosts, and

returns the s existing sliver names and the n − s new sliver names in the ticket.

Broker may need to alter the sliver name to host name mapping if the current logical host of a

sliver does not contain enough grains to satisfy an additional request. Authorities must consent a

priori to this type of broker-driven migration of slivers since they must account for these unexpected

sliver migrations in their migration plan. If an authority does not consent then the broker cannot

fulfill the request for the sliver.

76

Grouping Slivers

As described above, naming slivers enables service managers to request the grains of a sliver across

multiple leases. Authorities require a mechanism for associating the binding of leases that comprise

a sliver to a single logical unit. A simple grouping mechanism, similar to lease groups used by service

managers in Section 4.3.2 to sequence the invocation of logical units and the binding of slivers, is

sufficient for this purpose.

For example, when an authority detects a new sliver name it records the sliver name, instantiates

a new logical unit, and binds the logical unit to the grains specified by the sliver. The authority

treats each subsequent ticket that contains the sliver name as an ancestor of the instantiated logical

unit, and uses the relationship to pass properties of the logical unit to the resource handler that

binds subsequent slivers. As with the lease groups in Section 4.3.2, resource handlers for slivers must

reference the host and logical unit properties, such as the internal IP address of a virtual machine

monitor and a virtual machine name, to alter the grains bound to a logical unit.

The primary difference in this grouping mechanism and the mechanism described in Section 4.3.2

is that brokers specify the predecessor relationships for each sliver, and not for each lease. However,

the architecture does not preclude brokers or authorities from restricting service managers to altering

the sliver size of entire blocks of leased logical units in unison; in this case, the grouping mechanism

closely resembles an authority-side implementation of the lease grouping mechanism in Section 4.3.2,

where tickets that specify existing sliver names encode the specification of a setup, as opposed to a

join, predecessor.

The reason for the granularity difference (e.g., per-sliver as opposed to per-lease) in the two

grouping mechanisms is that service managers use the lease groups from Section 4.3.2 to configure

blocks of virtual machines for a guest and not individual slivers. Since we have not found a need

to alter the configuration of a guest or its virtual machine due to the allocation of a sliver, we have

not found a need for a service manager lease grouping mechanism at a granularity finer than a

lease. For brokers and authorities, which handle the allocation of slivers to virtual machines, a finer

granularity grouping mechanism allows service managers to request individual slivers for a single

virtual machine in a block of requests.

Note that separating the grains of a sliver into different leases does not prevent leases for multiple

77

resource units—host and sliver names are sufficient for an authority to map the grains specified in

a lease to the correct host and sliver. We retain the key property of Sharp tickets: each ticket

specifies a lease for a block of equivalent resource quantities (i.e., the size of the sliver). The Sharp

delegation model relies on uniform resource quantities within a lease. However, broker-managed

colocation with sliver naming eliminates the property of Sharp tickets that dictates that the units

of a lease are interchangeable. Interchangeable units are not central to Sharp’s delegation model,

as described in [80], and are necessary to separate the lease lifetime of different grains, and enable

new service manager control mechanisms, as described below.

Generalized Victim Selection

In many cases, guests need to select which sliver to revoke for a given lease. For instance, a batch

scheduler forced to shrink the number of units in a lease due to contention has an incentive to

revoke an idle sliver, rather than a sliver that is a week into executing a month-long task. Control

of victim selection is especially crucial if a guest does not have mechanisms to suspend/resume work

on a sliver or migrate the execution of work to an equivalent sliver. In Section 4.4, we describe how

a COD guest overloads configuration properties, and selects victim virtual machines using their

private IP address.

Naming slivers using an IP address is not ideal for three primary reasons. First, an IP address

is an attribute of a specific logical unit (e.g., a virtual machine) and not a sliver. As we see in the

next subsection, naming logical units allows authorities to bind multiple slivers to a single logical

unit. Furthermore, the model should be general enough to support victim selection for other logical

units, such as virtualized storage partitions or networks, which have slivering capabilities, but are

not typically associated with IP addresses. As a result, not naming slivers in tickets requires each

assignment policy to define its own sliver naming scheme. Second, even assuming virtual machine

allocation, an authority may not allocate each virtual machine its own IP address if a single leased

virtual machine acts as a gateway to a virtualized private network with an IP namespace unknown

by the site [24]. Third, a virtual machine may contain one or more private and/or public IP addresses

at any given time. As a result, the service manager and authority must agree on conventions for

naming machines based on IP address.

In Section 4.4, we circumvented this problem by associating each virtual machine with one and

78

only one IP address and dictated that service managers name each virtual machine by its IP address.

Sliver naming enables a general mechanism that is not bound by the networking substrate to select

specific victim slivers to revoke for each lease.

Lease Forking and Merging

Service managers have the power to request blocks of slivers in a single lease. However, after a

broker grants a lease, the service manager is free to renegotiate the conditions of the lease at any

time. Service managers require sliver naming to renegotiate with a broker to fork a lease into two

separate leases with different conditions. For instance, a batch scheduler that leases a block of slivers

to execute multiple tasks may need to renegotiate the lease of a single sliver running an important

computation. The new lease conditions may increase the number of grains that comprise the sliver or

lengthen the lease term to provide an assurance that the task completes before a specified deadline.

The capability is especially important if the service manager cannot migrate the task to a new sliver.

In this case, the service manager does not need to renegotiate the conditions of all of the slivers in

the original lease.

Naming slivers allows the service manager and broker to convey which sliver to fork into a new

lease, alleviating the need to restrict lease renegotiation to all the slivers within the lease. The

opposite of lease forking is lease merging. Service managers or brokers may wish to renegotiate

with each other to consolidate slivers from different leases into a single lease to reduce the overhead

of lease maintenance if the slivers have the same size and lease term. As described in Section 8.4,

the overhead of lease management is the primary metric that determines performance of service

managers, authorities, and brokers.

Host Selection

Naming slivers accommodates a broker that reveals information to each service manager about the

mapping of slivers to hosts. A broker may choose to reveal the information for two primary reasons.

First, the information gives service managers the power to specify a host for a requested sliver. A

service manager may want to specify hosts if it is leasing “best-effort” slivers that have no reserved

capacity, and only use excess capacity; in this case, hosts with no other colocated slivers are most

desirable. A host with no other colocated slivers is also desirable if a service manager is planning for

79

future growth of the sliver to meet anticipated demand. If the authority permits broker migration,

a service manager may request that a broker migrate a sliver to a host that has no colocated slivers.

Second, pushing information to the service manager to control host selection simplifies the al-

location problem in the broker. Brokers that hide the information must allow service managers to

convey their preferences for multiple sliver possiblities and map those preferences onto one or more

hosts by solving a variant of the Knapsack problem. In the most general case, a broker that does

not expose information must allow service managers to specify resource requests as utility functions

that the broker then uses to optimize global resource allocation. A broker that exposes information,

such as host selection, has the option of pushing this complexity to the service manager, which is

in a better position to decide its local allocation choices given enough information, at some cost in

global utility. For example, instead of the broker deciding which host a sliver maps to, a service

manager has the freedom specify the host to sliver mapping it desires.

Sliver naming and host selection ensures that the architecture accommodates either type of

broker—one that optimizes for global utility or one that exposes control for each service manager

to optimize their local utility.

Aggregation vs. Separation

Naming hosts and slivers enables new control mechanisms that allow service managers, brokers,

and authorities to separate the different grains that form a sliver into different leases. Naming

information also allows actors to reference specific slivers and hosts within a lease. Exposing these

names has two drawbacks: scalability and complexity. We discuss scalability in Section 5.3.3. Sharp

tickets provide enough information to perform the same lease operations on sets of slivers and hosts

in aggregate. However, the lack of naming prevents lease operations that treat grains, slivers, and

hosts separately, as described above. The naming information gives service managers, brokers, and

authorities more flexibility, but the flexibility comes at a cost in complexity. Actors must reason

about, track, and operate on individual slivers and hosts, rather than entire leases. It is important

to note that exposing this information does not force service managers, brokers, and authorities to

use it, and does not preclude the aggregate model in Sharp.

80

5.4 Secure Bindings

The previous section details how broker-managed colocation along with naming hosts and slivers

enables useful mechanisms. In this section, we discuss how naming logical units enables a general

method for authorities and service managers to bind to, and control, the hardware management

services of each logical unit. We then compare and contrast two approaches for managing logical

units: an approach that only exposes hardware management services to authorities and an approach

that delegates control of hardware management services to service managers using logical unit names.

We explore these two approaches using virtual machines and physical machines as the examples of

logical units and hosts, respectively.

5.4.1 Logical Unit Naming

Naming slivers enables mechanisms that eliminate subtle embeddings of resource management policy.

The policies include the inability to separate the lease lifetime of different grains of a sliver, the

inability to select victims of a shrinking lease, the inability to renegotiate the lease conditions of

specific slivers, and the inability for service managers to select specific hosts for each sliver. In this

section we extend broker-guided colocation with sliver naming to also include the naming of logical

units.

Logical units and slivers are distinct entities: slivers represent the portion of a host’s resources

allocated to a logical unit, whereas a logical unit is a software layer that serves as an execution

environment bound to sliver resources. In this subsection we discuss how disassociating slivers from

logical units enables the binding and unbinding of multiple slivers to and from a logical unit over

time, as depicted in Figure 5.7.

Broker-managed colocation with sliver naming described in Section 5.3.3 equates slivers and

logical units: each sliver has a unique name and is bound to one and only one logical unit. As a

result, the integration of COD described in Section 4.4 names sliver/virtual machine combinations

using the virtual machine’s private IP address, which is a configuration attribute that is unknown to

the broker. Naming logical units enables an authority to offer mechanisms to service managers that

treat slivers and logical units independently. Figure 5.7 illustrates the separation between virtual

machine execution environments, one example of a logical unit, and a set of leased slivers that are

81

10%

700

MB 250

Mb/s 200

MB

40%

300

MB 250

Mb/s 1.8

GB

12%

900

MB 250

Mb/s 100

MB

38%

100

MB 250

Mb/s 1.9

GB

CPU Mem Net Storage

VM

VM

VM

VM10GB

20GB

Remote Storage

Public IP Address

1 hour
Lease Length:

1 day

12 hours

1 week

2 hours

3 days

4 hours

2 weeks

3 hours

6 hours

1 hour

4 days

1 hour

3 days

6 hours

2 weeks

Service

Managers

3 days 1 month20 days

Figure 5.7: Naming logical units separately from slivers allows authorities to bind/unbind multiple
slivers to a logical unit. These slivers may include remote slivers bound to different hosts, such as a
remote storage server exporting a virtual machine root disk image. The scheme is general enough
to also apply to logical resources, such as scarce public IP address space.

bound to that environment.

We give two examples of mechanisms that require a distinct name for each logical unit below.

For each example, we give examples of the mechanism using virtual machines.

Remote Sliver Binding

Virtual machines bind to slivers on multiple hosts at distinct locations. This mechanism is useful

for authorities that store virtual machine root disk images and other critical software on slivers of

virtualized block-level or file-level partitions from one or more storage servers. Binding a virtual

machine to a storage sliver is necessary to support remote root disk images. Remote sliver binding

also enables authorities to use the lease abstraction to manage storage separately from other virtual

machine resources, such as CPU and memory. This flexibility is necessary to store unused virtual

82

machine images until a guest or user requires them.

Virtual machine technology also exists that binds together slivers from multiple physical ma-

chines to present the illusion of a symmetric multiprocessor. Virtual Iron’s VFe virtualization

platform is an example of a virtual machine platform that combines slivers from multiple physical

machines to provide the illusion of a single scalable symmetric multiprocesser.

Binding Logical Resources

Techniques for binding multiple slivers to a logical unit are general enough to allocate the logical

resources of an authority. For example, this mechanism is useful for authorities that control a

limited public IP address space. Authorities may represent each public IP as a resource type with

an associated sliver and host, and delegate the power to arbitrate public IP addresses to a broker.

Service managers may then lease public IP addresses and bind them to virtual machines using sliver

naming and lease grouping mechanisms. The authority-side binding of a public IP address to a

virtual machine may configure edge proxies to route traffic to and from the private IP address of

the virtual machine, as is the case with Amazon’s EC2 [74]. Our current prototype binds public

IP addresses by logging into a virtual machine using a preinstalled key and configuring the virtual

machine with the public IP address directly.

5.4.2 Delegating Hardware Management

Authority resource handlers for virtual machines in Section 4.4 define machine configurations that

encode sliver binding as well as the specification of a root disk image and associated software

packages. Figure 5.8 depicts the approach taken in Section 4.4: the authority reserves control of the

hardware management functions of each virtual machine. As a result, the service manager selects a

root image from a template of options and the authority creates the virtual machine using the setup

handler. The authority transfers control of the virtual machine by configuring sshd, or an equivalent

secure login server, with a public key the service manager transfers using a configuration property.

The service manager has no ability to access a leased virtual machine’s hardware management

functions.

However, guests require a diverse range of different machine configurations and software pack-

ages for operation. To offer multiple machine configurations to guests, one approach is for site

83

10%

700

MB 250

Mb/s 200

MB

40%

300

MB 250

Mb/s 1.8

GB

12%

900

MB 250

Mb/s 100

MB

38%

100

MB 250

Mb/s 1.9

GB

CPU Mem Net Storage

VM

VM

VM

VM

Remote Storage

Public IP Address

1 hour
Lease Length:

1 day

12 hours

1 week

2 hours

3 days

4 hours

2 weeks

3 hours

6 hours

1 hour

4 days

1 hour

3 days

6 hours

2 weeks

Service

Managers

3 days 1 month20 days

10GB

20GB

Secure Bindings

Authority

Authority

Authority

Authority

create()

create()

create()

create()

Examples

Functions

Service

Manager

Service

Manager

Service

Manager

Service

Manager

Transfer Login

Capability

public.key

public.key

public.key

public.key

Figure 5.8: The figure depicts an authority that reserves control of the hardware management
functions of each virtual machine. The service manager selects a root image from a template of
options and the authority creates the virtual machine using the setup handler. The authority
transfers control of the virtual machine to a service manager by configuring sshd, or an equivalent
secure login server, with a public key, which the service manager transfers using a configuration
property.

administrators to reserve control over the definition of machine configurations inside the resource

handlers, as in Section 4.4. To retain this control and accommodate a diverse range of guests,

site administrators may either create many different resource types and associate these types with

different machine configurations, or overload configuration properties and write scripts beneath the

resource handler interface that allow service managers to direct their own machine configuration.

Another approach is for authorities to permit service managers to upload new resource handlers

and approve or sandbox them, similar, in principle, to how SPIN [27] downloads and sandboxes user-

defined kernel extensions. This approach advocates neutrality through policy injection rather than

policy removal. The policy injection approach requires site administrators to enumerate different

possible machine configuration alternatives, and publish those alternatives for external service man-

agers to develop against. Supporting a diverse range of guests by defining machine configurations or

writing scripts to guide configuration is difficult if there are a numerous set of configurations. As a

84

10%

700

MB 250

Mb/s 200

MB

40%

300

MB 250

Mb/s 1.8

GB

12%

900

MB 250

Mb/s 100

MB

38%

100

MB 250

Mb/s 1.9

GB

CPU Mem Net Storage

VM

VM

VM

VM

Remote Storage

Public IP Address

1 hour
Lease Length:

1 day

12 hours

1 week

2 hours

3 days

4 hours

2 weeks

3 hours

6 hours

1 hour

4 days

1 hour

3 days

6 hours

2 weeks

Service

Managers

3 days 1 month20 days

10GB

20GB

Secure Bindings

Service

Manager

Service

Manager

Service

Manager

Service

Manager

reboot()

save()

imageUpload()

restore()

Examples

Functions

Figure 5.9: The figure depicts four service managers executing example hardware management
functions for their leased virtual machines. Secure bindings permit service managers or authorities
to access functions that control the hardware management services of a logical unit, such as a virtual
machine. Delegating control of hardware management functions to service managers alleviates
authorities from defining multiple software configurations and allows authorities to focus solely on
hardware multiplexing and configuring access control for secure bindings.

result, we examine an alternative approach below that accommodates any number of guest-specific

configurations by delegating a machine’s management and configuration to the service manager

leasing the machine.

5.4.3 Virtual Machine Examples

Delegating management of virtual machines to guests gives guests the same power as a site ad-

ministrator on their subset of the infrastructure’s resources, as depicted in Figure 5.9. Figure 5.9

illustrates four service managers invoking hardware management functions for their leased resources

exported by an authority. The authority retains only the power to place slivers and bind/unbind

slivers to virtual machines. Authorities delegate to guests the privilege to invoke hardware man-

agement services exported by an authority for each named virtual machine. This alternative does

85

not require site administrators to write resource handlers to support different machine configura-

tions. In contrast, authorities limit resource handlers to controlling the immutable aspect of each

resource—the binding of slivers to machines and the delegation of other management functions to

the service manager.

The resource handler controls sliver binding and the machine’s destruction at the end of each lease

(e.g., the abort protocol). Aside from assigning a physical machine for each sliver, sliver binding

represents the only aspect of virtual machine instantiation and configuration that an authority

controls. The design follows the Exokernel approach to limit privileged authority operations to

resource multiplexing. Delegating management enables the holder of a lease access to hardware

management services, such as those provided by virtual machines. Authorities that delegate machine

management provide service managers control of the underlying hardware using a set of network-

accessible APIs. Below we outline a list of hardware management services that service managers

may find useful or even necessary. For each of these services we use “machine” to indicate that the

service applies to both physical and virtual machines.

• Upload a custom machine root disk image/kernel. Authorities may expose a service

to upload a custom root disk image with a custom kernel to a leased storage partition. The

advent of virtual appliances as a standard mechanism for distributing applications with their

operating system and root disk image makes this functionality a necessity for many guests.

• Download a virtual machine root disk image. Authorities can expose an external

mechanism to download the contents of leased storage, including a virtual machine root disk

image. The mechanism is similar in principle to Amazon’s Simple Storage Service [74].

• Instantiate a new virtual machine. Authorities can expose a service to boot a new virtual

machine given one or more sliver names that meet a minimum set of requirements for CPU,

memory, bandwidth, and storage.

• Bind/unbind a sliver to/from a virtual machine. Authorities can expose a mechanism

outside of the leasing protocols to alter the binding of slivers to virtual machines, as described

in the previous section. For instance, a service manager may bind a root disk image on a local

or remote storage server to a virtual machine prior to booting.

86

• Shutdown or reboot a machine. Authorities can expose an external interface to shutdown

or reboot a virtual machine if network communication to the machine is impossible due to a

machine crash, network partition, or network misconfiguration. This control is also useful for

recovering from guest software and configuration failures.

• Place a physical machine in a low-power idle state. Physical machines have mech-

anisms, such as Wake-on-LAN, that allow site administrators to place them in a low-power

idle state to conserve power and wake them up as needed. An authority that charges service

managers for energy usage may allow service managers to place machines in an idle state..

• Regulate the CPU frequency of a physical machine to reduce power. Physical

machines also have mechanisms to adjust the CPU frequency in accordance with resource

demand to conserve energy. Authorities that expose this control to service managers enable

them to meet system-wide power targets, as described in [139]. Service managers may also

use regulation of their CPU sliver grain to produce soft power states, as described in [121].

• Remote kernel debugging. Node operating system developers often use virtual machines

to ease the kernel development process. Virtual machines allow developers to substitute using

a serial line for remote kernel debugging with a network connection attached to the virtual

machine’s virtual serial line. Authorities are free to expose this control to service managers to

allow remote kernel debugging for leased virtual machines.

• Console access to a virtual machine. Debugging a corrupt root disk image or kernel

requires service managers to have console access to a virtual machine that is unable to complete

the boot process and service a network connection. Authorities may expose console output

and console control to service managers.

• Snapshot a machine root disk image. Storage virtualization technologies allow snapshots,

immutable copies of a storage device at an instant in time, to preserve data from an important

instance in time. Authorities can give service managers the control to snapshot leased storage.

• Clone a machine root disk image. Storage virtualization technologies also allow snapshot

clones that service managers may alter. Cloning snapshots is a common tool for quickly

generating new machine root disk images from a template. An authority may delegate cloning

87

to a service manager that leases additional storage for a clone. The service manager may then

bind the sliver specify the clone to a new virtual machine.

• Reset a machine and its root disk to an initial state. A service manager may wish to

reset a machine that becomes corrupted to a fresh state. This is especially useful for developing

new guests. Root disk images cloned from templates provide an easy mechanism for resetting

a machine: delete the current root disk image, create a new clone from the template, and boot

the machine.

• Suspend, save, and download a virtual machine memory image. Most virtual ma-

chines have the capability to save their in-memory state to disk. Authorities can allow service

managers to save this state to leased storage and/or download the in-memory state.

• Upload, restore, and resume a virtual machine memory image. Service managers

may wish to upload and restore the in-memory state of virtual machines. Authorities can

allow service managers to upload previous virtual machine images and restore them.

• Migrate virtual machines/data within a site. A service manager may wish to shift

data between two leased storage partitions or shift virtual machines between leased slivers on

different hosts. The authority can expose a mechanism to perform these migrations without

requiring service managers to go through the download/upload process.

• Migrate virtual machines/data between sites. A service manager may wish to shift

data or virtual machines to storage partitions or slivers at a different site. The authority can

expose a mechanism to coordinate cross-site migration if the service manager delegates the

authority an appropriate authentication mechanism: a variation of standard Sharp tickets is

a suitable authentication mechanism to delegate this control.

• Migrate slivers. The previous two mechanisms address migration of virtual machines be-

tween two slivers leased by a service manager. A site may also expose the control to migrate

slivers. This control is most useful for “best-effort” virtual machines that only use excess re-

sources at each machine. In this case, a service manager may want to migrate a “best-effort”

sliver to a physical machine with the greatest amount of excess resource without coordinating

with a broker. Delegating control of sliver migration to service managers is problematic since

88

it introduces a conflict with each site’s incentive to place slivers to balance load and each

broker’s incentive to allocate slivers to maximize global performance.

The mechanisms above represent only a small subset of the hardware management services

possible with physical and virtual machines. Other hardware management services may aid in

intrusion detection [93], flash-clone new virtual machine’s from the memory of existing virtual

machines [166], or enable configuration and kernel debugging [175, 101]. Future work may enable

more extensible virtual machines which allow sites to delegate each service manager the control

to upload and link their own custom hardware management services or define their own custom

hardware layer [86].

A consortium of industry virtualization leaders, including Dell, HP, IBM, Microsoft, VMware,

and XenSource, have taken a step towards a common virtual machine layer with the Open Virtual

Machine Format Specification (OVF) which describes a portable and extensible format for packaging

and distributing virtual machines to any platform. The OVF format includes methods for verifying

the integrity of virtual machine appliances from third-party vendors and enables tools to wrap

virtual machines with meta-data that contains information necessary to install, configure, and run

the virtual machine. The end goal of the OVF standard is to make virtual machines independent

of the virtualization platform.

5.4.4 Delegation using Leases

The primary contribution of this thesis is not to demonstrate that authorities can export these

existing hardware management services to service managers, but, instead, to demonstrate that the

leasing architecture combined with sliver and logical unit naming can support service manager

control of any existing or future hardware management service.

Authorities may use the setup and teardown resource event handlers to modify key-based access

control to specific hardware management services from above. As with secure bindings in Exokernel,

authorities only need to modify the access control once at the beginning of a lease and once at the

end of a lease. Within a lease, a service manager is free to execute any hardware management

services approved and exported by the authority for each named logical unit in its lease.

89

5.4.5 Guest Failure Handling

Exporting hardware management services to service managers has the benefit of unburdening au-

thorities from addressing guest failures. In contrast, authorities delegate the power to allow each

service manager to introspect on their own leased hardware, reboot a machine, upload a new kernel

and/or root disk image, or alter a root disk image while a machine is shutdown. These mechanisms

are crucial for guests to diagnose and recover from software failures without requiring authority or

site administrator intervention.

From experience, we have seen that the primary source of failures in COD does not derive from

bugs in the leasing protocols or physical or virtual hardware failures, but from software failures of

guests. Without the proper mechanisms to allow guests to correct failures, the burden of correcting

them devolves to the authority and site administrator, which know little about the hosting guest

software. We note that delegating this control is not a panacea for failures, but it does enable an

avenue for failure correction that does not involve the authority or site administrator.

5.5 Exposing Information

As authorities and brokers expose more control to service managers there is a need for them to

expose more information so service managers can utilize their new control. Examples from above

that address the allocation of “best-effort” virtual machines exposes information to the service

manager to allow it to control the binding of each sliver to a physical machine. For instance, the

broker may expose the assignment of slivers to hosts so a service manager may select an appropriate

host, or the authority may expose the control to migrate slivers, without the broker’s knowledge, to

allow a service manager to migrate a “best-effort” sliver to a host with the most excess resources.

Determining the level of information to expose to service managers is orthogonal to defining an

architecture that does not constrain service manager’s use of the hardware. We note that in many

cases leveraging control requires exposing information about the hardware platform. For example,

Planetlab exposes nearly all information about resource usage to third-party services that allow

guests to make queries about available resources [124] and freely migrate to machines with the most

excess resources [125]. However, some authorities and brokers may consider this type of allocation

information privileged and restrict exposing both the information and control of sliver migration

90

to service managers, as in Amazon’s Elastic Compute Cloud [74]. Ultimately, the decision of how

much control to delegate and information to expose to service managers rests with each site.

5.6 Summary

In this chapter we identify naming of hosts, slivers, and logical units as a design principle of a

networked operating system and explore the benefits and drawbacks of different alternatives and

approaches to naming. The naming schemes of authorities and brokers determine the mechanisms

that they can offer to service managers. Sharp did not name hosts, slivers, or logical units. As a

result, ticket size is independent of the number of allocated units, but the naming scheme prevents

mechanisms that operate on individual slivers and/or logical units. The original naming scheme

is appropriate if these mechanisms are unnecessary. Our goal is not to determine the appropriate

granularity of naming, but to demonstrate the importance of naming in a networked operating

system, show that our architecture accommodates a range of approaches, and describe the impact

of naming on the mechanisms the architecture is able to support.

We show how Sharp tickets accommodate different naming schemes in a brokered architecture

by augmenting tickets with names for hosts, slivers, and logical units. The naming scheme is

general enough to apply to any virtualized resources, including network and storage virtualization,

that offers hardware management services and slivering capabilities. Finally, we show that naming

virtual machines enables sites to export hardware management services to service managers for their

leased machines.

91

Chapter 6

The Lease as an Arbitration Mechanism

“I can imagine no society which does not embody some method of arbitration.”

Herbert Read

Examples of guests that share an infrastructure include content distribution networks, computa-

tional grids, hosting services, and network testbeds such as PlanetLab. The growing reach and scale

of these systems exposes the need for more advanced solutions to manage shared resources. For

example, the tragedy of the PlanetLab commons is apparent to any PlanetLab guest or observer,

and there is now a broad consensus that networked resource management needs resource control

that is strong, flexible, and fair. While overprovisioning is an acceptable solution in centrally con-

trolled environnments, networked environments composed of multiple self-interested actors require

incentives to contribute so the collective system is sustainable.

Market-based resource control is a logical next step. The Internet has already grown convincing

early examples of real, practical networked systems structured as federations of self-interested actors

who respond to incentives engineered to induce a desired emergent global behavior (e.g., BitTor-

rent [47]). At the same time, grid deployments are approaching the level of scale and participation

at which some form of market-based control is useful or even essential, both to regulate resource

allocation and to generate incentives to contribute resources to make them self-sustaining.

Service managers and brokers define adaptation and arbitration policies, respectively, that in-

teract and negotiate to guide the flow of resources to and from multiple service managers. In our

architecture these policies are pluggable—service manager and broker developers define them and

plug them into the respective library implementation. Policy flexibility is necessary to accommo-

date a diverse set of site and guest objectives [79]. Markets are a natural, decentralized basis for

arbitrating resource usage in networked systems composed of a community of resource providers

and consumers. In this chapter, we demonstrate that leases are an arbitration primitive that is

able to define a range of different arbitration policies, including market-based policies that define

incentives necessary to avoid a “tragedy of the commons.” In market-based allocation, a service

92

manager and broker negotiate exchanges of currency for resources. We leverage active research on

market-based task services [16, 32, 44, 90, 134] to demonstrate the power of leasing currency to

bridge the gap between proportional-share allocation and markets, by arbitrating resource usage

between two independent market-based task services from our previous work [90].

6.1 Overview

Market-based arbitration defines incentives and price feedback for guests to self-regulate resource

usage [34, 154, 156, 169, 180]. However, the use of computational markets for resource arbitration is

still an active area of research. Below we summarize the complexities that computational markets

and a networked operating system must address. These complexities amount to multiple policies

that actors must define to ensure both an efficient global resource allocation and an efficient local

resource allocation for each actor.

• Service managers, which control guests, such as batch schedulers, that require resources to

service external clients, must determine how many resources they require to make their clients

“happy.” A service manager must first associate a notion of happiness, or utility (e.g., a

value that quantifies happiness), with a level of performance. The service manager must then

associate a desired performance level with a quantity of resource; only then can the service

map overall utility to a resource allotment.

• A service manager must purchase resources at some price. In a market, price is denominated

using currency. The service manager must determine the price it is willing to pay for resources

to achieve the desired level of performance, and hence utility. The price the service manager is

willing to pay may depend on future events, such as the replenishment of currency, expected

load increases, or competing service managers. Purchase price also determines future currency

holdings and impacts future allocation decisions.

• An authority (or broker) uses an auction to set prices and clear bids. Auctions are well-studied

in the literature and come in many varieties. Incentive-compatible auctions are important to

ensure that services bid their true valuations. Clearing all but the simplest auctions require

solving NP-hard problems. In particular, combinatorial auctions which clear bids for bundles

93

of resources, such as CPU share, memory allotment, and storage, are related to the Knapsack

problem [100].

• The service manager, authority, and broker must continually repeat these steps to adapt as

conditions (e.g., competition, load, prices) change over time.

Market-based allocation is an active area of research. An arbitration primitive for a policy-

neutral system must also be able to support more conventional means of arbitration, such as static

priorities or proportional-share allocation. An lease-based arbitration primitive is a general mecha-

nism that associates actors with identifiable currency tokens, which service managers, brokers, and

authorities use to arbitrate usage under constraint. Our goal is to demonstrate the properties of

leases as a basis for arbitration—we do not explore the full range of arbitration policies possible

with this mechanism, such as combinatorial auctions for slivers, or how these policies interact with

adaptation and assignment policies.

Service managers lease currency to brokers and authorities in the same way that authorities

and brokers lease resources to service managers. We present a self-recharging virtual currency

model: once the lease for currency ends the service manager is free to lease the currency to another

broker or authority. Section 4.1 describes how our architecture derives from Sharp. Previous

Sharp-based systems restrict arbitration to barter exchanges, which rely on consumers to identify

mutual coincidences of needs or enter into transitive barter arrangements: a common currency is

an important step toward an efficient market economy in which resource control is open, flexible,

robust, and decentralized [45, 73].

We use the market-based task service to highlight the many different policy issues that arise with

resource arbitration and markets, including mapping performance to resource allotment, mapping

resource allotment to utility, mapping utility to currency bids, and dealing with uncertainty of future

resource availability. Due to the market complexities, we use simple policies to show the benefits

of a lease-based arbitration primitive: a service manager that plans future resource usage over a

limited time horizon can achieve higher utility with self-recharging currency than using either a

strictly proportional-share or market-based approach.

94

6.2 Self-Recharging Virtual Currency

The use of self-recharging virtual currency is an instance of the large class of market-based resource

control systems in which self-interested actors use their currency to obtain resources at market

prices, subject to their budget constraints (e.g., [19, 34, 105, 154, 158, 169, 170]). Currency is

denominated in some common unit that constitutes a standard measure of worth ascribed to goods.

Each unit of currency is possessed exclusively by some system actor, who may transfer it to another

actor in exchange for goods.

We use a virtual currency—called credits—rather than a fungible cash currency (e.g., dollars)

to arbitrate resource usage. Our premise is that external control over resource allocation policy is

crucial in systems that serve the needs of a networked infrastructure. In a virtual currency system,

consumers are funded with credit budgets according to some policy. As with other virtual currencies,

a global policy may distribute and delegate credits in a decentralized or hierarchical fashion to meet

policy goals [169, 170]. In contrast, cash markets allow real-world wealth to dictate resource access

policy, and currency allotted by a global policy can be diverted to other purposes. We envision that

credits may be purchased or redeemed for cash (or other goods) as a basis for a cash utility market

or to reward contributors.

Money is any currency that functions as a store of value. The holder of money has full control over

when and how it is spent. Money economies depend on a balance of transactions to recycle currency

through the economy. Once money is spent, the spender permanently relinquishes ownership of it.

Actors may run out of money, leaving resources idle even while demand for them exists (starvation).

As they spend their money, they must obtain more, either by offering something else of value for

sale, or by means of an income stream from an external source (e.g., the state).

Actors may save or hoard income over time to increase their spending power in the future, and

may use that accumulation to corner the market, manipulate the price of resources in the system, or

starve other users. Some systems (e.g., [43, 154]) limit hoarding by bounding savings or discourage

it by imposing a demurrage (a tax on savings). Money economies are prone to cycles of inflation

and deflation caused, in part, by fluctuations in the circulating money supply.

95

Figure 6.1: Flow of credits and resources in a networked infrastructure. Leasing rights for resources
flow from sites down through a broker network to consuming service managers. Brokers allocate
resource rights using any policy or auction protocol: payments in credits flow up through the broker
network.

6.2.1 Rationale

As stated above, we outline a currency that is self-recharging: the purchasing power of spent credits

is restored to the consumer’s budget after some delay. In effect, the credits recharge automatically,

ensuring a stable budget but bounding the opportunity for hoarding. The purpose of self-recharging

currency is to eliminate reliance on fragile mechanisms to recycle currency through the economy. In

particular, it is not necessary for each consumer to contribute in proportion to its usage, although

a global policy could punish free riders by draining their credit budgets if desired.

Self-recharging currency refreshes each consumer’s currency budget automatically as it is spent—

credits recharge after a fixed recharge time from the time they are spent. The automatic recycling

of credits avoids the “feast and famine” effects of money economies (hoarding and starvation).

A consumer with a budget of c credits can spend them according to its preferences, substituting

resources or scheduling its usage through time according to market conditions, but it can never hold

contracts or pending bids whose aggregate face value exceeds c. The consumer can never accumulate

more than c credits, and it can spend up to c credits in any interval equal to the recharge time.

Self-recharging credits are analogous to a money economy in which the state provides each actor

with a steady flow of income over time, while imposing a 100% income tax to prevent hoarding.

Actors may purchase goods by contracting to divert some portion of their income for the duration

of the recharge time in exchange for the good: in effect, the state gives a tax credit for mort-

96

gaged income. The incentive to conserve income by delaying purchases is adjustable based on the

recharge time. With a recharge time of zero there is no incentive to conserve, and the system re-

verts to proportional-share allocation. As the recharge time grows, additional mechanisms must be

introduced to recycle funds, as in a money economy.

In a perfect market, each consumer is assured access to a share of resource value proportional

to its share of the wealth. With self-recharging currency, this assurance applies to any interval

whose duration is the recharge time. However, the purchasing power within any interval depends

on the movement of prices through time. Self-recharging currency emphasizes the importance of

adjustable incentives to schedule resource usage through time, in contrast to many previous systems

which balance only instantaneous supply and demand.

Self-recharging currency is not a new idea: Lottery Scheduling [170] is one simple and popular

example of a system with self-recharging currency, and the self-recharging credit currency model

was inspired by Sutherland’s 1968 proposal for a futures market in computer time [158]. Lottery

scheduling and Sutherland’s proposal are two points in the self-recharging currency design space:

we generalize self-recharging currency to continuous, rolling, brokered, multi-unit futures auctions.

Lottery Scheduling [157, 170] uses a form of self-recharging currency that recharges on every

time quantum. A lottery scheduler fills demand in proportion to instantaneous currency holdings;

its single-resource single-unit auction protocol is a simple random lottery, making it efficient enough

for fine-grained scheduling (e.g., at CPU quanta). However, Lottery Scheduling is not a market:

consumers receive no price signals and cannot defer their purchasing power into the future since

they have no incentive to defer a resource request in response to spot shortages.

In contrast, self-recharging credits are redeemable for any resource available for sale according

to prevailing prices within some time window. With a short recharge time the system is similar to

Lottery Scheduling in that it approximates proportional-share scheduling and provides no incentive

for saving. Longer recharge times provide more incentive for service managers to plan their resource

usage over time, but begin to resemble a money economy with increasing risk of hoarding and

starvation.

97

Figure 6.2: The credit recharge rule returns credits to the buyers after a configurable recharge time
r from when the currency is committed to a bid in an auction, or if a bidder loses an auction.

6.2.2 The PDP-1 Market

Self-recharging currency was first introduced by Sutherland in 1968 under the name “yen” to im-

plement a self-policing futures market for a PDP-1 computer [158]. Although the paper is widely

cited, we are not aware of any subsequent published work that generalizes this form of virtual cur-

rency. We now describe credits in the PDP-1 market, then outline how we apply the concept to a

continuous market for multiple resources.

Consumers in the PDP-1 market bid yen for time slots on the computer during the next day. In

essence, the system runs an open ascending English auction for each time slot.

• Bidders commit their currency at the time it is placed for bid; the currency is held in escrow

and is not available for concurrent bids. The protocol is compatible with an open (i.e., exposed

bids) or closed (i.e., sealed bids) auction with a fixed call-time for bids.

• A high bid preempts a low one since only a single unit of each good is for sale; preemption is

immediately apparent to the loser, which can reclaim its yen. If a subsequent bid preempts an

existing bid or if a bidder cancels a bid, the currency is immediately available to the bidder.

• Each bidding period determines the allocation for the next day. The bidding period ends

before the beginning of the day; once the bidding period ends no user is allowed to change

bids.

98

• The market recharges the winning bid’s currency after the resource is consumed (i.e., after

the purchased slot expires). The yen then become available for auctions for the following day.

6.2.3 Generalizing the PDP-1 Market

We extend the PDP-1 market to a networked market with multiple rolling auctions. As in the

PDP-1 market, the bidder commits credits to each bid, and these credits are transferred at the time

of the bid.

The crux of the problem is: when to recharge credits spent for winning bids? The PDP-1 market

recharges credits when the purchased contract expires, which occurs 24-48 hours after the auction,

depending on the time of day for the purchased slot. It is easy to see that the PDP-1 credit recharge

policy is insufficient for a market with continuous rolling auctions. If credits spent for a contract

recharge as soon as the contract expires, then a dominant strategy is to bid for instant gratification so

that spent credits recharge sooner. The value of scheduling usage through time would be diminished,

and the market would revert to a proportional-share as in Lottery Scheduling [170]. In general, a

variable recharge time disadvantages buyers whose credits expire further in the future. The effect

is negated in the PDP-1 market because the buyer always receives the recharged credits in time to

bid for the next auction.

To maintain a consistent recharge time across multiple concurrent auctions, we enforce the credit

recharge rule: spent credits recharge back to the buyer after a fixed interval—the recharge time—

from the point at which the buyer commits the credits to a bid. The recharge time is a global

property of the currency system. The credit recharge rule has three desirable properties:

• It encourages early bidding, yielding more accurate price feedback to other bidders, depending

on the auction protocol.

• It discourages canceled bids, since shifting credits to another bid delays recharge of the credits.

• It encourages early bidders to bid higher, to avoid incurring the opportunity cost on any

credits returned by the auction protocol for losing bids. The opportunity cost incurred by

bidders is higher the earlier they commit their bids.

99

These properties address known limitations of many common auction protocols. For example,

open ascending auctions with fixed call times as used in the PDP-1 market (Section 6.2.2) encourage

predatory late bidding just before the auction closes, a property that the PDP-1 market has in

common with Ebay. Also, open auctions tend to minimize profit to the seller unless potential

buyers are motivated by uncertainty to expose their willingness to bid high: this problem is a

key motivation for sealed-bid auctions. These concerns have also motivated the design of auction

protocols such as the Hambrecht OpenBook auction for corporate bonds [2].

One implication of the credit recharge rule is that it is possible for a buyer to receive credits

back before a contract expires, and thus it is possible for a buyer to hold pending bids and contracts

whose face value exceeds its credit budget c. This occurs rarely if the recharge time is long relative

to the lease terms, as in the PDP-1 market. Whether or not it occurs, it is easy to see that the key

property of the PDP-1 market continues to hold: a consumer can commit exactly its budget of c

credits in any interval whose duration is the recharge time. A decision to spend or save credits now

does not affect the consumer’s purchasing power in future intervals.

The credit recharge rule has a second implication for brokered auctions: credits passed to a broker

expire to preserve the currency balance when they revert to the consumer’s budget after the recharge

time. As a result, brokers have an incentive to spend credits quickly. To simplify management of the

currency, our prototype imposes a binding bids rule for credits: credits committed to a bid become

unavailable until they recharge. Bidders cannot cancel or reduce their bids once they are committed.

In this way, it is never necessary for a broker to return escrowed credits (e.g., to a losing or canceled

bid) after the broker has spent them.

The currency model is well-matched to price-anticipating auction protocols as in Tycoon [64, 105],

in which brokers accept all bids but the service rendered varies according to contention. The self-

recharging currency model is independent of the auction protocol: our experiments use an auction

similar to Tycoon in which the broker allocates resources in proportion to bids. The protocol is

simple and incentive-compatible for bidders; however, due to the credit recharge rule, the bidder’s

use of the credits is lost until they recharge regardless of the desired number of resources allocated.

The credit recharge rule does not constrain the auction protocol. For instance, brokers may use

common incentive-compatible auctions, such as a generalized Vickrey auction.

100

6.3 Using Credits in a Simple Market

In this section we demonstrate the benefit of self-recharging currency for arbitrating resource usage

in a simplified market setting. We show that in this setting a service manager that plans well over

the recharge time may achieve higher utility than using strict proportional share or market-based

allocation.

Markets must define specific policies, described in Section 6.1, to ensure effective allocation. To

demonstrate important properties of self-recharging currency we insert simple policies for each of

these policies. While the policies lack the complexity of a true market, they allow us to separate

the properties of the currency system from the properties of specific policies. Since our goal is not

to define optimal bidding strategies, but to demonstrate properties of the self-recharging virtual

currency model, the bidding strategies have knowledge about the future workload embedded into

them and the auction protocols are simple. We do not examine bidding strategies that dynamically

adjust bids based on the workload. Nothing in the currency model prevents the use of any type of

auction, including combinatorial auctions [128].

We use a previously studied market-based task service, described below, that associates a utility

function with each task. We then define static, unchanging service-specific and workload-specific

bidding strategies for two competing market-based task services, and use a simple proportional-

share auction, inspired by Tycoon, to divide resources between the two services. We vary the the

recharge time of the currency and the planning horizon of the service manager bidding strategy to

demonstrate the effects on the global utility of both services. Self-recharging currency’s effect on

global utility is independent of the different policies that define a market.

We use a simulator from our previous work to experiment with multiple market-based task ser-

vices bidding for resources to satisfy their workloads using self-recharging virtual currency [90]. In

our prototype, since all actors abide by the principle of visible allocation, modification, and re-

vocation, they know when they receive resources in exchange for currency. Actors may transmit

immutable properties of self-recharging virtual currency that encode identity and quantity using

context-specific property lists. Furthermore, self-recharging currency leverages Sharp’s secure re-

source delegation model to prevent actors from counterfeiting currency or recharging currency early.

Next, we present the market-based task service in detail. In particular, we outline the task

101

service’s formulation of utility for tasks and the scheduling of tasks on the available resources in the

service.

6.3.1 A Market-based Task Service

Batch job scheduling systems address resource arbitration with a combination of approaches in-

cluding user priority, weighted proportional sharing, and service level agreements that set upper

and lower bounds on the resources available to each user or group [75, 113, 183]. These scheduling

mechanisms have largely been translated, with few adaptations, for use on the grid. Market-based

approaches refine this capability by enabling users to expose the relative urgency or cost of their

tasks, subject to constraints on their resource usage.

In value-based [33, 40] or user-centric [44] scheduling, users assign value (also called yield or

utility) to their tasks, and the system schedules to maximize aggregate value rather than to meet

deadline constraints or a system-wide performance objective such as throughput or mean response

time. In economic terms, value maps to currency where users “bid” for resources as a function

of their value, currency holdings, and competing bids. The system sells resources to the highest

bidder in order to maximize its profit. This approach is a foundation for market-based resource

management in infrastructures composed of multiple sites.

Here we use market-based scheduling in grid service sites based on user bids that specify value

across a range of service quality levels. Representations of task value create a means to dynamically

adjust relative task priority according to the workflow of the organization (e.g., giving jobs higher

priority when other activities depend on their completion). For example, the results of a five-hour

batch job that is submitted six hours before a deadline are worthless in seven hours. The scheduler

must balance the length of a task with both its present value and its opportunity cost. In short, it

must balance the risk of deferring a task with the reward of scheduling it. The task scheduling model

extends the treatment of task scheduling for linearly decaying value functions in the Millennium

cluster manager [42, 44].

Background

We consider a service market in which each site sells the service of executing tasks, rather than

hardware resources. In a service market, clients and servers negotiate contracts that incorporate

102

some measure of service quality and assurance as well as price. For example, clients may pay more

for better service, and servers may incur a penalty if they fail to honor the commitments for service

quality negotiated in their contracts. We present the simplest type of service: a batch task service.

A market-based task service is based on three key premises, as described below.

• Batch tasks consume resources but deliver no value until they complete.

• A task submission specifies a resource request (service demand) to run the task, and correctly

specifies the tasks’s duration if its resource request is met.

• Each task is associated with a user-specified value function (utility function) that gives the

task’s value to the user as a function of its completion time. The next section discusses these

value functions, which are used to specify bids and service contracts.

The customer and the task’s service manager agree on the expected completion time and value,

forming a contract. If the site delays the task beyond the negotiated completion time, then the

value function associated with the contract determines the reduced price or penalty. As a result,

task service managers must consider the risks inherent in each contract and scheduling choice.

Value Functions

Each site makes scheduling decisions based on the task value functions. These functions give an

explicit mapping of service quality to value, exposing information that allows each task service to

prioritize tasks more effectively. Value-based scheduling is an alternative to scheduling for deadline

constraints, which give the system little guidance on how to proceed if there is no feasible schedule

that meets the constraints (e.g., due to unexpected demand surges or resource failures). Value

functions also serve as the basis for a task service to define bids on resources in an underlying

resource market, as we demonstrate in the next section with self-recharging virtual currency.

A value function specifies the value of the service to the user for a range of service quality levels—

in this case, expected task completion times. The key drawback of the user-centric approach is that

it places a burden on users to value their requests accurately and precisely. The more precisely

users can specify the value of their jobs, the more effectively the system can schedule their tasks.

The formulation of value functions must be simple, rich, and tractable. We adopt a generalization

103

Time

V
a

lu
e

RuntimeMaximum Value

Decay at constant rate d

Penalty

Figure 6.3: An example value function. The task earns a maximum value if it executes immediately
and completes within its minimum run time. The value decays linearly with queuing delay. The
value may decay to a negative number, indicating a penalty. The penalty may or may not be
bounded.

of the linear decay value functions used in Millennium [44, 42], as illustrated in Figure 6.3. Each

task i earns a maximum value valuei if it completes at its minimum run time runtimei; if the job

is delayed, then the value decays linearly at some constant decay rate decayi (or di for short). Thus

if task i is delayed for delayi time units in some schedule, then its value or yield is given by:

yieldi = valuei − (delayi ∗ decayi) (6.1)

These value functions create a rich space of policy choices by capturing the importance of a

task (its maximum value) and its urgency (decay) as separate measures. Tasks are more urgent if

expensive resources (such as people) are waiting for them to complete, or if they must be finished

before real-world deadlines. The framework can generalize to value functions that decay at variable

rates, but these complicate the problem significantly.

A scheduler is driven by a sequence of task arrival times (release times) [arrive0, ..., arrivei] and

task completion/departures. It maintains a queue of tasks awaiting dispatch, and selects from them

according to some scheduling heuristic. Once the system starts a task, it runs to completion unless

preemption is enabled and a higher-priority task arrives to preempt it. RPTi represents task i’s

104

expected Remaining Processing Time—initially its runtimei.

Two common scheduling algorithms are First Come First Served (FCFS), which orders tasks by

arrivali, and Shortest Remaining Processing Time (SRPT), which orders by RPTi. We consider

the value-based scheduling problem under the following simplifying assumptions:

• The processors or machines for each task service manager are interchangeable. Preemption is

enabled; a suspended task may be resumed on any other processor. Context switch times are

negligible.

• The task service never schedules a task with less than its full resource request—tasks are always

gang-scheduled using common backfilling algorithms with the requested number of processors.

For simplicity we assume that the resource request is a single processor or machine.

• The predicted run times runtimei are accurate. There is no interference among running tasks

due to contention on the network, memory, or storage. We do not consider I/O costs [26] or

exceedance penalties for underestimated runtimes. Users may leverage recent work on active

learning to learn correct estimates for task runtimes on a given set of resources [151].

A candidate schedule determines the expected next start time starti and completion time for

each task i. The completion time is given as starti + RPTi assuming the task is not preempted.

Thus, the expected value yieldi for taski in a candidate schedule is given by Equation 6.1 and the

delay for the expected completion time:

delayi = starti + RPTi − (arrivali + runtimei) (6.2)

Scheduling based on linearly decaying value functions is related to well-known scheduling prob-

lems. Total Weighted Tardiness (TWT) seeks to minimize
∑

i diTi where di is the weight (or decay)

and Ti is the tardiness of taks i. A task i is tardy if it finishes after a specified deadline. We focus on

the variant in which each task’s deadline is equal to its minimum run time, so that any delay incurs

some cost. If penalties are unbounded, then this problem reduces to Total Weighted Completion

Time (TWCT), which seeks to minimize
∑

i diCi where di is a task’s weight (equivalent to decay)

and Ci is its completion time in the schedule [18].

105

The offline instances of TWT and TWCT are both NP-hard. We use online heuristics for

value-based scheduling [33, 40] in a computational economy: the best known heuristic for TWCT

is Shortest Weighted Processing Time (SWPT). SWPT prioritizes tasks according to the task’s

dj/RPTj, and is optimal for TWCT if all tasks arrive at the same time. Our task service schedules

tasks based on SWPT and uses the measures of task utility to formulate bids to a resource provider

(or broker).

Previous studies give no guidance on how users value their jobs, since no traces from deployed

user-centric batch scheduling systems are available. We use the workloads from [44] where value

assignments are normally distributed within high and low classes: unless otherwise specified, 20% of

jobs have a high valuei/runtimei and 80% have a low valuei/runtimei. The ratio of the means for

high-value and low-value job classes is the value skew ratio. However, we note that the specification

of the workload does not have a significant impact on the results.

6.3.2 Effect on Global Utility

The previous section outlines a market-based task service that associates a utility function with

each task: these task services execute tasks on a set of available machines. We now consider a

scenario with two competing task services bid for machines using self-recharging virtual currency.

The bidding strategy for each task service is workload-specific. The first task service, denoted as

Steady, executes a steady stream of low-value tasks, while the second task service, denoted as Burst,

executes intermittent bursts of high-value tasks. We choose the two workloads to demonstrate the

capability of self-recharging currency to achieve a higher utility than proportional-share by shifting

resources to the Burst service only when it requires them. The name of each task service implies

both its workload and its bidding strategy.

The intuition behind the experiments is rooted in the fact that with low recharge times there is

no incentive for a service to withhold a bid, even if it does not have any load; larger recharge times

provide the incentive to withhold bids when a service has no load since currency acts as a store of

value. This results in higher global utility if two services are able to plan their bids over time and

they have different resource needs at different times, as is the case with Steady and Burst.

106

Defining an Auction

A market requires an auction protocol to decide the allocation of resources based on the received

bids. We use an auction that clears bids by allocating a proportion of the total machines at a site

to each service manager according to the proportion of each service managers currency bid relative

to the total submitted currency bid. Thus, if the two services bid currency in demoninations csteady

and cburst for a single auction, then Steady receives machinestotal ∗ csteady/(csteady + cburst) and

Burst receives machinestotal ∗ cburst/(csteady + cburst). Auctions in our experiments occur every

time period at, and each auction reallocates every available machine in the pool. Our simulated site

allocates resource leases of length at.

The auction allocates multiple machine units, but does not allocate bids for slivers (e.g., CPU,

memory, or I/O bandwidth). The auction is similar to Lottery Scheduling, except that currency is

taken away for the duration of the recharge time and not immediately returned to the task service.

Defining Bidding Strategies

The bidding strategies of Steady and Burst are static—neither strategy adjusts bids dynamically, as

is the case in a traditional market. The bidding strategy for Steady evenly splits its currency across

every auction within the recharge time window. We dictate that auctions occur at fixed times evenly

spaced within the recharge time window. In our experiments, auctions occur every 100 simulated

minutes and the recharge time varies as a fixed multiple of 100 minutes. The bidding strategy is

appropriate since Steady plans a priori for a steady stream of low-value jobs that does not require

changes to the bids.

The bidding strategy for Burst evenly splits its currency across a small window of auctions

whenever it has queued tasks. The Burst service does not bid when there are no queued tasks. In

contrast to Steady, Burst’s bidding strategy assumes that any queued tasks are part of a fixed-size

burst of high-value task submissions. The bidding strategy for Burst is appropriate if it can obtain

enough machines over its small window of bids to satisfy the burst. However, if it cannot attain

enough machines, then the self-recharging currency model dictates that it must wait at least one

recharge time interval to bid for additional machines to finish its remaining tasks. If the Burst

service does not receive enough machines then it either planned its bids poorly (i.e., spread them

107

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Im
pr

ov
em

en
t o

ve
r

a
S

ta
tic

 P
ar

tit
io

ni
ng

 (
%

)

Recharge Time (hours)

1 minute
2 minutes
4 minutes
6 minutes
8 minutes

10 minutes
12 minutes

Figure 6.4: Two market-based task services, called Burst and Steady, bid for resources to satisfy
their load. As the recharge time increases, the global utility increases until the point at which the
task services’ static bidding strategies are too aggressive: they run out of currency before they finish
executing their task load. The result is the global utility falls below that of a static partitioning
of resources. The bidding window for Burst (each line) is the expected length of time to complete
a Burst of tasks, according to its static bidding strategy. As the bidding strategy becomes more
conservative (i.e., lower numbers) relative to the recharge time the allocation achieves a higher
global utility despite longer recharge times.

out over too many windows) or it does not have enough currency to purchase enough machines to

satisfy the burst.

As exemplified by the bidding strategies of Steady and Burst, all market-based services must plan

both their resource usage and bids over time in accordance with their load to ensure an efficient

allocation of resources. A benefit of self-recharging currency is that it clearly defines the planning

horizon for service managers—before making a bid a service manager need only account for the

impact a bid has on its currency holdings over a single recharge interval. After the recharge interval

the service manager is free to use the currency again, and past decisions have no residual impact.

In our experiments, we focus on the effect on global utility as the recharge time changes relative to

the static bidding strategies of Steady and Burst. These changes in the recharge time impact global

utility because they affect the efficacy of each service’s static bidding strategies.

Experimental Setup

Figure 6.4 shows the effect on the global utility as a function of the recharge time as the two services

compete for resources in a simulated market setting.

108

Bidding Window Currency

1 auction 500

2 auctions 250

4 auctions 125

6 auctions 83

8 auctions 63

10 auctions 50

12 auctions 42

Table 6.1: The bidding window is the number of auctions Burst bids when it has queued tasks. The
bidding window from Figure 6.4 dictates the amount of currency bid for each auction. The table
above shows the amount of currency Burst bids for each bidding window. The large the window the
lower the amount of currency bid, since its total currency holdings are split across more bids.

Steady’s workload consists of a task stream of 2000 tasks with exponentially distributed inter-

arrival times of 1 simulated minute and exponentially distributed durations of 100 minutes. Each

task has a value function as described in Section 6.3.1 with a normally distributed decay rate with

a mean of 2 and a standard deviation of 1; both the value skew and the decay skew are 1.

Burst’s workload consists of 10 fixed size batches of tasks that arrive every 1000 simulated

minutes with 100 tasks of duration 100 minutes in each batch. Each task has a value function with

a normally distributed decay rate with a mean of 20 and a standard deviation of 1; both the value

skew and the decay skew are 1.

Thus, the value of executing a task in the Burst workload has 10 times the value as executing

a task in the Steady workload. The total number of available machines in the infrastructure is 100

and each service manager has 500 credits. To compute global utility we calculate the sum of the

yield, using the equations from Section 6.3.1, of all tasks completed by both services. Auctions are

held every 1 minute (at = 1).

Each line of Figure 6.4 represents a different bidding window for the Burst service. The bidding

window is the expected length of time for Burst to satisfy a burst of high value tasks. Note that

the bidding window does not represent the actual time it takes to satisfy the burst of high-value

tasks. If the Burst service has any queued tasks, it bids its currency holdings divided by the bidding

window, evenly splitting its currency across all bids during the expected time period of the burst.

The y-axis represents the improvement in global utility over a static partitioning of 50 machines to

each service and the x-axis is the recharge time. Table 6.1 shows the amount of currency Burst bids

for each auction in the bidding window.

109

Conclusions

We draw multiple conclusions from the experiment. First, we observe that a recharge time of 1

minute, which is equivalent to proportional-share scheduling, achieves a higher global utility than

statically partitioning resources between the two task services. The result is expected since the

services do not bid if they have no queued tasks; in this case, they leave resources for the service

that has the dominant workload. In a true market, with a recharge time equal to the auction period

at, there is no incentive for a service to withhold a bid, even if it does not have any load; larger

recharge times provide the incentive to withhold bids when a service has no load since currency acts

as a store of value.

Second, for any given bidding window of Burst we observe that as the recharge time increases

the global utility to a maximum point after which it experiences a steep drop. The increase in utility

demonstrates a key property of the recharge interval—with short recharge times the Steady service is

able to allocate more currency to bid for each auction, reducing the machines allocated to the Burst

service during its task bursts. As the recharge time increases, the Steady service must decrease the

currency per bid per auction to ensure that its currency is evenly split across all the auctions in the

recharge interval. In contrast, the Burst service’s bids remain constant since the burst size does not

change with the recharge time. As a result, the Burst service receives an increasingly larger share

of the machines to satisfy high-value tasks, resulting in a steady increase in global utility.

The Burst service takes at least 2 auction periods (i.e., two minutes), given its workload, to

satisfy a task burst if allocated all of the available machines in the pool. When the recharge time

exceeds the length of a burst the assumptions built into the bidding strategy no longer hold: there is

more than one burst per recharge interval so the service must save currency. Poor planning outside

the range of the recharge interval in the bidding strategy has a significant impact on global utility.

We see the impact of poor planning in Figure 6.4 as the global utility decreases drastically. Burst

does not have enough currency to satisfy subsequent bursts of tasks, which occur before the recharge

time, because it spends all of its currency on the first burst.

For example, if Burst extends its bidding window to 2 minutes, then the Burst service bidding

strategy expects the currency to recharge before the next arrival of tasks, which occurs every 10

auction periods (or minutes). As a result, once the recharge interval exceeds 10 minutes the global

110

utility drops below the global utility of a static partitioning, since the Burst service has no currency

to bid after the second burst of tasks.

If the bidding window is 4 minutes, then the Burst service expects the currency to recharge after

2 bursts finish since the service saves currency after finishing its first task burst in 2 minutes to

process another burst. Spreading bids across 4 auctions reduces the value of each bid. As a result,

the larger bidding window achieves less global utility than a bidding window of 2 minutes because

the service gains less machines, due to its lower bid, to complete its task burst. However, a bidding

window of 4 minutes allows the service to continually increase utility until the recharge time is 20

minutes (as opposed to 10 minutes) since the it is able to save enough currency to process 2 bursts.

The experiment demonstrates that the ability to plan usage (and bids) over time is an important

part of a successful market. Poor planning relative to the recharge time can result in global utility

that is worse than a static allocation. As the recharge time increases services must carefully budget

their currency to account for load increases that may occur before a recharge. The recharge interval

defines the period that a service must plan its usage: a short recharge time is similar to proportional-

share scheduling which imposes less risk from the consequences of starvation and poor planning,

while a long recharge time resembles a true market economy with all of the inherent risks of planning

incorrectly.

Infrastructures will continue to require short recharge times as long as the policy questions for

markets remain unanswered. We show here that increasing the recharge time beyond proportional-

share improves global utility if service managers plan their usage over the recharge time. We conclude

that a lease-based currency model improves global utility beyond proportional-share allocation and

may incorporate advances in market policies as they develop by adjusting the recharge time.

6.4 Summary

Markets define incentives for actors to contribute resources to a networked operating system and

provide a means to arbitrate resource usage. This chapter outlines a new form of currency, called self-

recharging virtual currency, as a lease-based resource arbitration primitive for networked resource

management. We demonstrate one way to use the primitive to define a market for task scheduling

as one example market.

111

The recharge time of the currency is a configurable parameter that allows a market to set the

appropriate window for consumers to plan their usage: a short recharge time resembles proportional-

share scheduling where bidders require little planning, while a long recharge time resembles a true

market economy where users must carefully plan their usage over time to satisfy both present and

future demands. We show that self-recharging currency can increase global utility relative to a

proportional share economy if bidders plan effectively over the recharge time; if bidders do not plan

effectively the global utility may be significantly less than a static allocation of resources.

112

Chapter 7

Leases and Fault Tolerance

“Our greatest glory is not in never falling, but in rising every time we fall.”

Confucius

This chapter examines a methodology for addressing faults and failures in a networked operating

system that leverages the lease’s role in building reliable distributed systems [107]. We focus on

failures of service managers, brokers, and authorities and the network that connects them. Failure

recovery for guests and resources requires guest-specific and resource-specific detection, diagnosis,

and repair policies. The architecture also enables service managers and authorities to absorb guest

and resource failures by requesting additional resources; however, specific policies for detection,

diagnosis, repair, and replacement are outside the scope of this thesis.

Addressing actor failures is particularly important due of the scope of the architecture: correct

operation of networked hardware affects any guest that uses the hardware. For example, guests that

coordinate emergency services, such as Internet 911, must ensure sustained operation in the presence

of network failures. Resilience to failures is difficult, in part, because the architecture distributes

control of the hardware across loosely coupled actors that communicate to control allocation. These

actors and the network that connects them, may periodically experience transient outages. For

example, power outages may cause one actor server to fail, while other actors continue operation, a

network failure may cause two disconnected actors to continue operation despite the lack of a viable

communication channel, or authorities and service managers may become disconnected from the

resources and guests they manage. We use the term disconnection to describe the transient outages

each actor experiences throughout the lifetime of the system.

7.1 Approach

With respect to actor failures, the goal of a networked operating system is to simply make for-

ward progress, despite transient disconnections due to actor and network failures. The network of

113

independent actors that comprise the system must remain in a consistent state despite transient

disconnections, and must be able to reincorporate previously disconnected actors, resources, and

guests back into the collective system. The result is sustained operation despite one or more failures

in the system.

Individual actors may use conventional distributed systems techniques, such as replicated state

machines [149] or the primary-backup approach [31], to replicate themselves to ensure high avail-

ability in case of a crash. To ensure sustained operation, each actor in a networked operating system

must assume that a peer actor may become disconnected at some time due to conditions outside

of its control (e.g., wide spread network outage). Additionally, since actors are independent they

cannot rely on peers to conform their behavior for the benefit of other actors or the system. Each

individual actor must rely on the leasing protocols and its own local behavior to ensure a consistent

global system state.

Each actor operates independently of the other actors and is self-interested. We assume that

accountability is sufficient to prevent fraudulent behavior of an actor. A full treatment of account-

ability as a mechanism to prevent fraudulent behavior or detect byzantine or strategic behavior

is outside the scope of this thesis. The actor failures described in this chapter assume that actor

accountability is sufficient to prevent actors from not following the leasing protocols. As a result,

we assume that actors are fail-stop.

Actors may experience arbitrary delays in communicating with peer actors or processing requests,

but we assume that sent messages are eventually delivered unless the sender fails before delivery or

the receiver fails permanently. In this chapter, we use concrete examples from the COD authority in

our discussion of failures: authorities use virtual machine monitors to instantiate virtual machines

for service managers, and service managers instantiate guests on top of these virtual machines. The

techniques are applicable to a range of resources and guests, as described in Section 7.4.3.

7.1.1 Overview

The lifetime management property of leases ensures that a permanently failed actor releases any

remote actor state bound to the lease. In this chapter, we discuss how to ensure that an actor

can recover from a failure and reincorporate itself back into the collective system. We achieve this

114

property by defining a self-synchronizing lease state machine that commits local actor state changes

to persistent storage and ensures that all state transitions are idempotent.

These concepts extend to any asynchronous distributed system composed of independent actors

whose loose coupling complicates coordinating updates to shared state. In this model actors issue

requests to peers (actors, guests, or resources) to execute operations that change remote state, but

are free to control and manipulate their own local state. These concepts apply to systems that

share networked resources because they involve independent actor servers, resources, and guests.

We note that distributed system designers in practice have proposed changing the organization of

their systems to adhere to a similar design pattern, as indicated in [88]. However, our work is

motivated not by infinite scalability, but by a loose coupling of actors.

Networked operating system actors represent an important example of this type of distributed

system, which comprises a group of servers that request pair-wise state changes and operation

execution. For example, service managers request state changes by a broker (e.g., issue a ticket),

state changes by an authority (e.g., configure a resource), and state changes on each resource (e.g.,

execute guest software) where the remote actor executes one or more operations to complete the

state change. Likewise, an authority that requests state changes on each resource (e.g., setup the

resource) and state changes by the service manager (e.g., notification of a lease) follows the same

model.

7.1.2 Interacting State Machines

Actors (service managers, brokers, and authorities) form a distributed system that consists of mul-

tiple servers that communicate over an unreliable, wide-area network to negotiate the acquisition

of resource leases for guests. Service managers and authorities may behave in a volatile wide-area

network or a more robust local-area network. For example, PlanetLab Central acts much like a

single authority for resources it controls at numerous locations globally. Actors model each lease

as a state machine that interacts with peer actor state machines. Each actor communicates with

its peers to advance the state of each lease with actor communication occuring on a per-lease basis.

The different actors in the system implement distinct, asynchronous lease state machines to guide

lease state changes. We describe each actor’s lease state machine below.

Figure 7.1 illustrates typical state transitions for a resource lease through time. The state for

115

Figure 7.1: Interacting lease state machines across three actors. A lease progresses through an
ordered sequence of states until it is active; delays imposed by policy modules or the latencies to
configure resources may limit the state machine’s rate of progress. Failures lead to retries or to
error states reported back to the service manager. Once the lease is active, the service manager may
initiate transitions through a cycle of states to extend the lease. Termination involves a handshake
similar to TCP connection shutdown.

a brokered lease spans three interacting state machines, one in each of the three principal actors

involved in the lease: the service manager that requests the resources, the broker that provisions

them, and the authority that owns and assigns them. Thus, the complete state space for a lease

is the cross-product of the state spaces for the actor state machines. The state combinations total

about 360, of which about 30 are legal and reachable.

The lease state machines govern all functions of the lease abstraction on each actor. State

transitions in each actor are initiated by arriving requests or lease/ticket updates, and by events

such as the passage of time or changes in resource status. Actions associated with each transition

may invoke policy modules or handler executions and/or generate a message to another actor. All

lease state transitions trigger a commit of modified lease state and local properties to an external

repository, as described in Section 7.4.2. The service manager lease state machine is the most

complex because the architecture requires it to maintain ticket status and lease status independently.

For example, the ActiveTicketed state means that the lease is active and has obtained a ticket to

renew, but it has not yet redeemed the ticket to complete the lease extension.

116

7.2 Actor Disconnections

Actors request lease state changes from peer actors to guide the allocation of resources and the

instantiation of guests. Actors may unexpectedly fail or go offline for a variety of reasons including

power outages, software bugs, or scheduled server upgrades. To ensure sustained operation, actors

must be able to come back online, recover their previous state, and continue normal operation

without interrupting the state of the rest of the system. We discuss the challenges associated with

actor disconnections from other actors and from the guests and resources they control, and the

approaches we use to address these challenges.

A disconnected actor cannot communicate with peer actors or with the guests or resources

under its control. Thus, disconnections can cause an actor to become out of sync with the rest

of the system. For example, the state of a disconnected actor’s peers and the resources under its

control may change during the period of disconnection: a lease may expire or a pending action on

a resource may complete. An actor disconnection may prevent the actor from receiving lease state

change notifications from its peers.

Disconnections are often transient—actors restore communication at some time in the future,

either by re-starting after a failure or by correcting a network partition. If a disconnection is not

transient and an actor does not restore communication then the lifetime management property of

leases dictates that all leases eventually expire and transition other actor’s state to the pre-lease state

without the need for direct communication. Systems frequently use leases for garbage collection of

state when disconnections occur [28, 68, 167, 179]. We now describe how the architecture addresses

transient disconnections.

7.2.1 Actor Stoppage and Network Partitions

There are two primary reasons for an actor to become disconnected from the rest of the system:

the actor server goes offline or the network becomes partitioned. Actors address network partitions

at the RPC layer; message exchanges with peer actors, remote resources, or remote guests may be

periodically retried until an actor restores network communication or a lease expires. As described

in the previous section, we strive to keep the actor state machine simple: it does not include

states to represent failed cross-actor, cross-resource, and cross-guest communication. The lifetime

117

management property of leases eliminates the need for setting arbitrary RPC-level timeouts that

may depend on a particular resource or the network location of a peer actor.

We focus on disconnections due to actor stoppages: there are two phases required to recover an

offline actor as described below.

• In phase one, which we term local recovery, the actor restores its local state to its last state

using information from a persistent store, such as a database.

• In phase two, called lease synchronization, the actor independently synchronizes the local state

of each lease, which may be stale due to the passage of time or unknown external events, with

the current state of the lease; lease state changes may occur at remote resources, guests, or

peer actors.

7.2.2 Local State Recovery

Phase one involves restoring the pre-failure state of a failed actor server. As described in Chapter 4,

each actor commits local lease state to a persistent store, such as a database, using opaque property

lists. Actors store sufficient lease state to recover from a failure. Actors cache state in memory

during normal operations in order to process requests (e.g. execute arbitration, assignment, and

provisioning policies). The cached lease state is written to the persistent store to ensure that actors

can regenerate all cached, in-memory state after a failure. However, despite caching, it is important

for actors to be able to regenerate all state not present in the persistent store whenever a failure

occurs.

We use the term local recovery to describe the process of rebuilding an actor’s cached, in-memory

state from the persistent store. Local recovery includes the process of regenerating state not stored

at the time of failure. Most other objects stored in the actor database rarely (if ever) change.

Deciding what objects to write to the actor database, and when, is an important part of local

recovery and lease synchronization.

Many of the stored objects are static and include information about each actor such as service

manager slices, site resource inventory, user information, and peer actors. Each lease is the primary

dynamic object stored by each actor that changes state over time. Each actor may manage hundreds

or more simultaneous leases, including leases that interact with multiple distinct service managers,

118

authorities, and brokers. As described in the previous section, all actor interactions are based on an

asynchronous, distributed lease state machine that advances each lease through a series of distinct

states on three actor servers.

The local state of a lease dictates the action taken by an actor when an event occurs for that

lease. For instance, lease events may include an incoming lease message from a peer that requires

an actor to take an action (e.g., instantiate resources), or trigger a timing-related event (e.g., a

lease end or lease extension). It is crucial that each lease be in the correct state when a lease event

occurs; the correct operation of the distributed lease state machine depends on it. As a result, every

time the state of a lease changes an actor writes the updated lease to a database to enable recovery

if the actor fails. Lease updates to a local database are transactional.

7.3 Lease Synchronization

Storing and updating lease information in a local database ensures that an actor can recover its

last committed local state. After recovery, the actor contains the same state as it did at the time

of failure. However, local recovery is not sufficient for resuming operation in the wider system since

each lease’s state at peer actors may change while an actor is inoperable. As a result, we require

the lease synchronization phase of actor recovery.

For instance, while an actor server is inoperable time may pass, causing the server to miss

timing-related events. While an inoperable actor server cannot trigger timing events, a peer actor’s

lease state machine may alter the lease’s state. Actors do not stop when a peer actor fails—they

remain operational and may trigger lease events. However, the lease state machine ensures that

an inoperable actor halts the progression of the lease state until the lease expires. This property

of the lease state machine is beneficial since it bounds the number of transitions an inoperable

actor misses. To a peer actor, an inoperable remote actor appears the same as a network partition:

communication is impossible and lease state transitions which require an action by a failed actor

will remain blocked within the RPC layer until the lease expires.

Likewise, during an actor server failure the resources under the control of the actor may change

state. An action issued by an actor on a resource before a failure may complete or may, itself,

fail while the actor is inoperable. The state of each resource under an actor’s control changes

119

independently of the actor.

The recovery architecture of actor servers takes a multi-pronged approach to lease synchroniza-

tion, as outlined below.

• Actors log all lease state transitions before performing any actions associated with the lease

transition. Logging enables recovery of lease state for a failed actor. Actors perform write-

ahead logging to ensure that transitions are not lost in a failure.

• Lease states may indicate a pending lease state transition (e.g., a remote, asynchronous action

issued to a resource or peer). We design the recovery model so all pending lease requests

are reissued on recovery. Actors must reissue requests since the write-ahead logging to the

local database is not transactional with respect to remote state change. As described in

Section 7.3.2, the design ensures reissued requests are idempotent. Alternative models that

use distributed transactions require shared infrastructure, such as a transaction coordinator,

that a loose coupling of actors cannot rely on.

• The lease state machine of peer actors and remote resources must gracefully accept duplicate

requests correctly. From the perspective of a failed actor the requests must be idempotent so

it may issue multiple requests without affecting the end result.

All actor message requests must be idempotent to ensure that duplicate requests are suppressed

and do not affect the operation of the system. Actors wait for peers to accept and log all actions.

If an actor fails or becomes disconnected before receiving a lease update, indicating a successful

completion, then the actor retransmits the request on recovery. Lease updates from clients in

response to requests are asynchronous—actors may issue lease updates without explicit requests.

As with NFS [95], before responding to an actor a peer must commit an update to stable storage

indicating the successful completion of an actor’s request. NFS servers implement idempotency

of peer requests to ensure statelessness. Unlike NFS, however, all actors 1 store important state

about their lease holdings that must be persistent and recoverable. As a result, any actor server

can recover its lease holdings after a failure.

1Unlike in NFS, each actor acts as both client and server.

120

Actor servers must apply idempotency in two different ways—multiple interacting actors may

issue duplicate lease messages and a single actor may issue duplicate resource actions. In both cases,

the peer actor or resource suppresses the duplicate request. Phase two of recovery focuses on using

idempotency as the tool to synchronize the local state with the current state of each lease held by

a failed actor. Next we discuss the two parts of lease synchronization: synchronizing with the state

of peer actor servers and synchronizing with the state of a resource or guest.

7.3.1 Actor Recovery

To accomplish actor recovery we ensure that actors whose leases fall out of sync may catch up

by retransmitting requests once they come back online. To synchronize the state of each lease an

actor simply recovers its local state, and then examines the state of each lease and retransmits

any operations that were in-progress at the time of the failure. As with ensuring other forms of

idempotency, cross-actor message exchanges may contain sequence numbers that allow peers to

suppress duplicate messages.

The design mitigates the impact of actors that fail to execute the leasing protocols to individual

leases; thus, a divergence of one actor only affects the leases co-held by its peers. Misbehaving actors

must also operate within the context of the lease state machine—peer actors do not recognize any

action that occurs outside the normal cycle of states. The design restricts the effect of divergent

peers to individual leases. Actors that experience state changes outside of the normal lease state

machine are free to stop processing a lease and engaging in exchanges with peer actors.

7.3.2 Guest/Resource Recovery

Self-synchronizing state machines combined with per-lease, actor message exchanges address the

problem of actors becoming disconnected from each other; however, actors also use messages to

interact with guests and resources over the network, and actors may become disconnected from

these resources. In this case, lease state not only includes persistent state stored on disk, but also

the operational state of a resource or guest.

One aspect central to service manager and authority design is their physical separation from the

guests and resources they manage. Authorities control resources remotely, such as Xen’s control

121

domain, and service managers control the guest in a symmetric fashion by controlling software on

remote resources, such as software executing on a Xen virtual machine. Brokers simply mediate the

allocation of resources at the authorities to the service managers and do not remotely communicate

with any resource or guest. As a result, we focus only on service manager actors and authority

actors in this section.

When recovering locally actors must determine the state of resources under their control. For

instance, at the time of failure or disconnection an actor may have outstanding operations issued

for a machine. An authority, which may manage thousands of machines, may be creating hundreds

of virtual machines when a failure occurs, or a service manager may be deploying a guest on virtual

machines spread across different authorities.

Determining the outcome of these actions is critical to recovery. Interactions with guests and

resources occur through the guest and resource handler interfaces. The guest handler provides the

join, modify, and leave methods. Likewise, a authority contains a handler for each type of resource.

A authority’s handler includes the setup, modify, and teardown methods. As described in Chapter

4, these methods shield the complexity of the lease abstraction on both actors from the specifics of

a particular guest or resource.

The Toggle Principle

The basic principle of our approach to addressing disconnections from guests and resources is that

the type-specific resource handlers should follow the toggle principle—all resource handler methods

are idempotent. While guest and resource recovery differs from actor recovery, the toggle principle

follows the principles of lease synchronization: all cross-network message exchanges are idempotent.

In an authority, the lease abstraction upcalls the resource handler to setup and teardown each

resource unit at the start and end of a lease. In the service manager, the lease abstraction upcalls

the guest handler to attach/detach leased resources to and from the guest. From the perspective of

either actor, on recovery each resource is in either of two basic states: on or off. Both handlers hide

intermediate states from the lease abstraction since revealing intermediate states would only serve

to complicate the lease state machine.

Although handlers execute asynchronously from the lease abstraction, the lease abstraction does

122

invoke handlers for each resource unit in a serial order. Serial ordering ensures that all guest and

resource handlers reflect the final state of the last action issued by the lease abstraction, independent

of any intermediate states, incomplete operations, or transient failures. Thus, on recovery, actors

reissue pending handler actions to force resources held by each lease into a particular state (e.g., on

or off). Since handlers are deterministic and serial, then it is sufficient for actions to be logically

serialized and idempotent at the handler level.

The property may require persistent state in the handler (e.g., as in package managers, which

typically adhere to the toggle principle); at minimum, it requires a persistent and consistent name

space for any objects created by the handler (e.g., cloned storage luns or resource partitions).

Handler suppression of redundant/duplicate operations triggered by an authority’s lease abstraction

also avoids disrupting guests that may not have detected an authority failure that was independent

of its resources. To ensure successful recovery of lease groups, as discussed in Chapter 4, the lease

abstraction respects precedence orderings in reissuing the handler methods on recovery.

Handlers are responsible for their own state management. Some handlers may self-recover or

self-repair after a failure without the lease abstraction having to probe and restart them. If this

occurs then the toggle principle dictates that the handler must ignore the probing. However, we view

handler self-recovery as an optimization where the authority state, not the handler, is authoritative.

A handler does not need to notify an authority when actions complete (e.g., a virtual machines

comes up), although, as an optimization a handler may store and use arbitrary caches to speed

recovery. We summarize the key points of the design below.

• Guest and resource handlers have two methods: turn on (join or setup) and turn off (leave

or teardown). These methods are inverses. From the perspective of the lease abstraction, the

resource has two configuration states: up or down, on or off, depending on which method

completed last. Any intermediate states are hidden from the lease abstraction.

• The lease abstraction invokes handler methods in some serial order. The final resource state

reflects the last action in the sequence, even if the actions execute asynchronously. Note that

a request may arrive while an action is in progress: it may cancel the action in progress or

wait for it to complete, but it must preserve the serial ordering.

• Correct execution of an action must not depend on the initial state of the resource. For

123

example, teardown should complete even if the setup was incomplete when the teardown

request arrived. In particular, handler methods are idempotent. If the handler retains state,

it should record requests and suppress duplicates. The handler must preserve idempotence

even across restarts; this is trivial if all of its state is transient.

Allocated resources (e.g., virtual machines) must have unique names to ensure idempotence.

We discuss naming further in Chapter 5. An authority knows, and controls, these names. Actors

save the state required to invoke each handler and the outcome of previously executed handler

invocations. Given these principles, recovery is relatively simple from each actor’s perspective. If

the actor fails, it recovers the list of leases and their states, and reissues any pending actions (i.e.,

a “redo” recovery model). The actor then periodically checks the status of leased resources by

probing them. The probe handlers may use resource-specific failure detectors to derive the state of

the resource. If the lease abstraction notices that a resource has failed it may notify a peer actor.

Impact of a Disconnection

There is a beneficial side effect of the physical separation of an actor from its resources: an actor

failure does not immediately affect the guest or resources under its control. In the case of a service

manager failure, its resource leases will expire unless the service manager renews them. The guest

under the service managers control will slowly and ungracefully lose resources until none are left

since the service manager cannot execute the guest handler at lease termination.

In the case of an authority, a failure will prevent any change in the resource allocations at the

site. Resources allocated to service managers at the time of the failure will remain allocated and

authorities will not satisfy broker allocations made to service managers after the failure. Service

managers will be unable to alter their resource allotments at the time of the failure. Broker failures

will prevent service managers from requesting new resource leases or extending existing leases from

a failed broker. As with a service manager failure, the guest under each service manager’s control

will slowly, but gracefully, lose resources until none are left since the guest leave handler will execute

as leases expire.

Table 7.1 lists the effect of each actor’s failure from a guest’s point of view. Clearly, actor failures

can result in problems due to service interruption, especially when leases are short compared with

124

Actor Failure Effect

Service Manager The guest loses resources ungracefully since the service manager
failure prevents execution of the leave handlers. The service man-
ager failure also prevents requests for new leases or requests to
extend existing leases. The site authority unilaterally tears down
resources as leases end.

Broker The guest gracefully loses resources since the broker cannot sat-
isfy service manager requests for new leases or requests to extend
existing leases. The service manager is able to execute the leave
handler as leases expire.

Site Authority The service manager’s resource allocation at the time of the failure
does not change. The service manager may request new tickets or
extend existing leases from the broker, but the site cannot satisfy
new requests.

Table 7.1: A table outlining the the effect of a single actor failure on a guest in a small network of
actors that includes a single service manager, broker, and site authority.

the length of actor downtime. However, for infrastructures that allocate virtual and/or physical

machines we envision service disruption time (e.g., seconds to minutes) to be significantly shorter

than lease lengths (e.g., hours to days to weeks). Additionally, policies for addressing the end of

leases can mitigate the severity of disconnections due to failure. For instance, an authority may

choose to not teardown a resource at the end of a lease if there is no resource constraint, allowing

a service manager or a broker, time to recover and resume normal operation.

A broker failure may also prevent a service manager from renewing a ticket, in which case, an

authority must grant the service manager time to wait for the broker to recover. If a broker fails and

a service manager would have been granted a ticket extension then it is certain that the authority will

not be resource constrained. A failed authority will not teardown any resources, allowing a service

manager to continue to renew a lease with a broker until the failed authority resumes operation and

can accept the ticket extensions.

The distributed nature of the system mitigates the impact of any single actor server failure.

A service manager may lease resources from multiple brokers that hold resources from multiple

authorities. In the face of an actor server failure or a resource failure a service manager may simply

acquire resources from another broker or authority. A key part of delegating resource control to

guests is the capability to adapt to failures of actors, edge resources, and the network.

125

7.4 Implementation

We have implemented the lease state machine and persistence architecture in our prototype. Below

we describe details of the implementation relating to recovering lease and policy state and the

implementation of idempotency for different resource handlers we use.

7.4.1 Lease State Machine

The lease abstraction must accommodate long-running asynchronous operations for each lease. For

example, the brokers may delay or batch requests arbitrarily, and the setup and join event handlers

may take seconds, minutes, or hours to configure resources or integrate them into a guest. A key

design choice is to structure the lease abstraction on each actor as a non-blocking event-based state

machine, rather than representing the state of pending lease operations on the stacks of threads

(e.g., blocked in RPC calls). Each pending state represents any pending action until a completion

event triggers a state transition. Each of the three actor roles has a separate lease state machine

that interacts with other actor state machines using RPC.

The broker and authority state machines are independent—they only interact when the author-

ity initially delegates resource rights to the broker. Keeping the state machines simple is an explicit

design goal since the actor state machines form the core of the architecture, and must apply to

multiple resources (at an authority) and guests (at a service manager). For example, the state ma-

chine does not include states for overlapping transitions caused by timing events that fire before the

completion of an asynchronous action; in these cases, we push the complexity to handle overlapping

or canceled actions to the guest and resource handlers.

The concurrency architecture promotes a clean separation of the lease abstraction from guest-

specific and resource-specific configuration. The guest and resource handlers—setup, modify, and

teardown and join, modify, and leave—as well as status probes—do not hold locks on the state

machines or update lease state directly. This constraint leaves them free to manage their own

concurrency (e.g., by using blocking threads internally). For example, the COD resource handlers

start a thread to execute a designated target in an Ant script, as described in the next chapter. In

general, state machine threads block only when writing lease state to a repository after transitions,

so servers need only a small number of threads to provide sufficient concurrency.

126

Timer events trigger some lease state transitions, since leases activate and expire at specified

times. For instance, a service manager may schedule to shutdown a service on a resource before the

end of the lease. Because of the importance of time in the lease management, actor clocks must

be loosely synchronized using a time service such as NTP. While the state machines are robust to

timing errors, unsynchronized clocks can lead to anomalies from the perspective of one or more

actors: a broker may reject service manager requests for leases at a given start time because they

arrive too late, or they may activate later than expected, or expire earlier than expected. One

drawback of leases is that managers may “cheat” by manipulating their clocks; accountable clock

synchronization is an open problem.

When control of a resource passes from one lease to another, we charge setup time to the

controlling lease, and teardown time to the successor. Each holder is compensated fairly for the

charge because it does not pay its own teardown costs, and teardown delays are bounded. This design

choice greatly simplifies policy: brokers may allocate each resource to contiguous lease terms, with

no need to “mind the gap” and account for transfer costs. Similarly, service managers are free to

vacate their leases just before expiration without concern for the authority-side teardown time. Of

course, each guest is still responsible for completing its leave operations before the lease expires,

and the authority may unilaterally initiate teardown whether the guest is ready or not.

7.4.2 Persistence and Recovery

Each actor uses a LDAP or MySQL database to persist lease state. Each in-memory data object

that requires persistence implements a serializable interface that includes three methods: save,

reset, and revisit. The save method serializes the hard state of an object. Hard state is meta-

data that an actor cannot reconstruct from other stored meta-data. The reset method takes

a serialized object, unserializes it, and sets the appropriate object fields. Actors use the revisit

method to regenerate soft state from hard state. As described in the previous chapter, lease objects

commit lease state to a persistent store on every state transition. Lease’s use the save method

to serialize their state to a local property list. The reset method obtains these stored local lease

properties from the persistent store on recovery. To enable reconstitution of objects from property

lists, we associate each field of an object with a property name, stored as a string.

127

The actor recovery process starts by fetching objects from the persistent store and recursively

executing the reset method on each object. Resetting an actor recursively resets the hard data of

objects that comprise each actor including policy implementations, slices, and leases. The process

initially invokes the reset method for each set of slice properties read from the database, and

recursively invokes the reset method for each lease in each slice. The slice and lease reset methods

invoke the reset method for any serialized object stored within a slice or lease. Once all objects have

been reset the recovery process executes the revisit method on all data structures recursively to

rebuild any soft state from the reset hard state. After the reconstruction of all slice and lease objects,

the recovery process must revisit each policy implementation to ensure that the policies internal

calendar state is rebuilt. Once this process completes the actor clock begins to tick. Idempotent

state transitions ensure that any state transitions in-progress at the time of failure do not fail when

repeated.

Recent work uses a similar data model for transforming the Condor batch scheduler into a

more manageable data-centric implementation [143]. The work combines EJBs with a database-

backend to provide container-managed persistence and a single point for querying and maintaining

a distributed set of Condor machines. We chose to implement our own persistence model because of

our explicit support for idempotent actions in the recovery model. Container-managed persistence

using EJBs rebuilds hard state, but does not ensure distributed object (e.g., lease) synchronization.

Actor implementations differ from container-managed persistence of distributed web services since

they do not rely on distributed transaction protocols (e.g., variations of a two-phase commit) as

standardized by WS-AtomicTransactions. Web services focus on distributed applications that must

present a coherent view of shared state to a third-party (e.g., transferring money between two bank

accounts must be atomic). In contrast, a collection of actors does not present a coherent view of

shared state to a third-party: each actor is independent and manages its own state.

7.4.3 Idempotent Handlers

We implement idempotent methods for all resource handlers (e.g., the setup, modify, and teardown

methods) and their associated resource drivers which instantiates and controls Xen virtual machines,

iSCSI disks, LVM disks, file-backed disks, and NFS file volumes, as described in Chapter 8. In each of

these cases we leverage state stored within the resource to ensure idempotency. When an authority

128

creates a Xen virtual machine the hypervisor stores state about the machine, including its name, in

memory. Before instantiating any virtual machine we ensure that the name does not already exist:

the existence of the name indicates a duplicate request for a state change. Likewise, for iSCSI, LVM,

file-backed, and NFS volumes the name of the volume is stored in memory by the resource itself.

Using state stored within the resource allows the resource handler and drivers to remain stateless,

which ensures that recovery implementation is a simple process.

A small number of actions pose problems with this approach to idempotency and require handlers

to store a small amount of state. One example is altering Xen CPU shares: this action is currently

not atomic in Xen. Xen allows each virtual machine to have its CPU shares set independently

of others, and there is no global set of CPU shares. To ensure the correct setting of shares we

enforce that the sum of all shares on all virtual machines (including domain-0) sums to an arbitrary

number, such as 100. We donate all unused shares to domain-0 and reserve 20 shares for domain-0

to execute any resource driver actions. However, the 100 share invariant is broken for a brief period

of time when shares change since the handler must deduct shares from domain-0 and then add them

to a newly create virtual machine resource domain.

Shifting shares from one virtual machine to another is not an atomic operation in Xen. To make

this operation idempotent, we augment Xen to write the transferred shares to disk before releasing

them from domain-0. We then update the on-disk state when the shares have been released from

domain-0, and remove the state when the virtual machine resource driver completes the process

of adding the shares to the new domain. This problem points to the need for atomic actions to

transfer resources for virtualization technologies between domains. In cases where resources do not

implement atomic transfer actions the resource handler must preserve small amounts of state to log

its progress in case of failure.

In addition to resource handlers, the guest handlers handlers must be idempotent to ensure that

a guest recovers from actor failure or disconnection. We implement guest-level idempotency in a

similar fashion as resource driver idempotency. State stored within the guest is sufficient: join

and leave handlers query the guest during invocation to determine their state. For example, the

GridEnginge batch scheduler stores the machines it has added to its batch pool internally in a set

of flat files. The GridEngine join handler may use the internal state to decide whether or not to

129

issue duplicate GridEngine configuration directive.

7.5 Summary

In this chapter, we detail the use of leases for dealing with actor failures in a networked operating

system. We focus on ensuring sustained operation by addressing actor failures and actor discon-

nections from peer actors, resources, and guests. We leverage the lifetime management property of

leases to ensure sustained operation in the face of permanently disconnected actors, and combine

commits of local state and idempotent cross-network requests to ensure a reconnected actor reenters

the system gracefully. Finally, we discuss the impact of actor failures from a guests point-of-view

and outline the implementation of the persistence and recovery architecture in our prototype.

130

Chapter 8

Flexibility and Performance

“Science is the systematic classification of experience.”

George Henry Lewes

Removing all forms of policy from infrastructure resource management offers two primary advantages

relative to other systems: flexibility and performance. Flexibility implies that guests may control

a range of different resource types. Performance implies that the complexity and scalability of

the extensible approach is acceptable. In this chapter, we detail the implementation of the lease

abstraction within Shirako. We evaluate the architecture’s flexibility and performance by discussing

the implementation of a range of different resource types beneath the resource handler interface and

conducting scalability experiments that show the performance is suitable for managing thousands

of hardware components.

8.1 Goals

The contributions and insights of this thesis stem from years of experience designing, implement-

ing, deploying, and using a real system. The team designed, developed, and deployed two COD

prototypes [39, 120] before transitioning to the more extensible approach 1. Since the transition to

the extensible approach the major architectural components have been rewritten multiple times in

order to separate the lease abstraction from the guests, resources, and policies that use it.

Resource handlers have been enhanced to improve their resilience and error-reporting, and to

update them to support new versions of Xen and other evolving resources technologies, that contin-

ually experience independent API changes. We continuously incorporate different virtual machine

disk images to support different guest environments. The extensible approach is a key to evolving

the implementation along with physical and virtual hardware management technologies.

At the time of this writing, Shirako has been deployed and supporting group research activities for

nearly a year. In particular, the Jaws guest we develop using Shirako, discussed in the next chapter,

1The specific contributors and their contributions are acknowledged in Section 1.5.

131

supports research into automated active learning of different application performance profiles [151].

We have also set up a deployment at a third-party research lab in Silicon Valley: the extensible

approach was key to this external deployment because the research lab uses different tools and

machine configurations than our research group. To support this deployment, we custom built

guest and resource handlers using virtual machine disk images from rPath, an industry supplier of

virtual appliances.

Experience from this integrative process indicates one of the drawbacks to the extensible ap-

proach: integration can be time-consuming and the system is only as good as the resources and

guests that integrate with it to multiplex resources. While not defining policy frees a networked

operating system to perform many different functions, it binds the system to the existing guest and

resource technologies able to leverage it. Shirako incorporates a prototype of the narrow architecture

presented in this thesis. The implementation and experiments we describe below represent a single

snapshot of Shirako’s implementation 2.

While the implementation below the guest and resource handler interfaces change to support

different types of guests, resources, and configurations, the implementation of the lease abstraction

and state machine presented in the previous chapters has been stable with continued development,

representing a metric of success in evaluating leases as the fundamental programming abstraction

in an operating system architecture for networked resource management.

8.2 Implementation

A Shirako deployment runs as a dynamic collection of interacting peers that work together to

coordinate asynchronous actions on the underlying resources. Each actor is a multi-threaded server

that is written in Java and runs within a Java Virtual Machine. Actors communicate using an

asynchronous peer-to-peer messaging model through a replaceable stub layer. Multiple actors may

inhabit the same JVM by communicating through local procedure calls.

Actors are externally clocked to eliminate any dependency on absolute time. Time-related state

transitions are driven by a virtual clock that advances in response to external tick calls. This

2For example, Shirako supports MySQL as well as LDAP for persistent storage. We only report LDAP numbers
in our scalability experiments, since support for MySQL is recent. Note that this is a conservative choice, since
LDAP performance is worse than MySQL.

132

Lease abstraction 5903

Lease state machines 1525

Utility classes 1836

Policy modules (mappers) 6695

Calendar support for mappers 1179

Table 8.1: Lines of Java code for Shirako/COD.

feature is useful to exercise the system and control the timing and order of events. In particular, it

enables emulation experiments in virtual time, as for several of the experiments in Section 8.4. The

emulations run with null resource drivers that impose various delays but do not actually interact with

external resources. All actors retain and cache lease state in memory, in part to enable lightweight

emulation-mode experiments without an external repository.

The implementation of the lease abstraction is not complex and is understandable by one person.

Guest developers and site administrators use the Java libraries that define the lease abstraction

to develop guest-specific service managers and resource-specific authorities. Table 8.1 shows the

number of lines of Java code (semicolon lines) in the major system components of a current snapshot

of the Shirako prototype. Note that external policy modules and calendar support represent nearly

half of the code size; the implementation of the lease abstraction and state machine is compact.

Shirako provides a generic implementation of the resource and guest handler interfaces using

Ant [161]. Ant is a Java-based tool that makes it possible to express a sequence of operations using

an extensible declarative language. Ant defines the notion of a task: each task is responsible for

executing a particular operation. Ant comes with a set of basic tasks, and many others are available

through third party projects. Shirako also includes a few dozen Ant scripts, averaging about 40 lines

each, and other supporting scripts. These scripts configure the various resources and guests that

we have experimented with, including those described in Section 8.4. Finally, the system includes

a basic Web interface for Shirako actors; it uses Velocity scripting code that invokes Java methods

directly.

Shirako service managers and authorities associate an Ant XML file with each resource type.

The Ant XML file implements the resource and guest handler interface. Specific Ant targets encode

the sequence of operations necessary for each of the handler methods including join, modify, and

leave for a service manager and setup, modify, and teardown for an authority. Ant allows actors to

133

share commonly used configuration operations between multiple resources, and makes it possible

to assemble a handler from a collection of building blocks without requiring recompilation. Ant

tasks and the Ant interpreter are written in Java, so the authority and service manager execute

the resource and guest handlers by invoking the corresponding Ant targets directly within the same

JVM.

The prototype makes use of several other open source components. It uses Java-based tools to

interact with resources when possible, in part because Java exception handling is a basis for error

detection, reporting, attribution, and logging of configuration actions. The guest event handlers may

connect to machines using key-based logins through jsch, a Java secure channel interface (SSH2).

To store persistent state, actors optionally use jldap to interface to external LDAP repositories or

the JDBC MySQL driver to interface with MySQL. The handlers for a COD authority also employ

several open-source components for network management based on LDAP directory servers (RFC

2307 schema standard), as described in Section 4.4.

We evaluate a snapshot of the Shirako prototype under emulation and in a real deployment.

All experiments run on a testbed of IBM x335 rackmount servers, each with a single 2.8Ghz Intel

Xeon processor and 1GB of memory. Some servers run Xen’s virtual machine monitor version 3.0

to create virtual machines. All experiments run using Sun’s Java Virtual Machine (JVM) version

1.4.2. COD resource handlers use OpenLDAP version 2.2.23-8, ISC’s DHCP version 3.0.1rc11, and

TFTP version 0.40-4.1 to drive network boots. Service manager, broker, and authority Web Services

use Apache Axis 1.2RC2. Most experiments run all actors on one physical server within a single

JVM. The actors interact through local proxy stubs that substitute local method calls for network

communication, and copy all arguments and responses. When experiments use LDAP, a single

LDAP server serves all actors on the same LAN segment. Note that these choices are conservative

in that the management overhead concentrates on a single server.

8.3 Flexibility

One measure of neutrality is the number of different resources and guests that authorities and

service managers support, respectively. We outline the different types of resources we use beneath

the resource handler interface in our deployments. In the next chapter, we outline case studies of

134

specific guests that use these resources.

Guest and resource handlers interact with resource drivers to instantiate and control resources.

Resource drivers encapsulate the hardware management services of a particular type of resource.

For example, the resource driver for Xen exports methods to create a virtual machine, migrate

a virtual machine, and destroy a virtual machine, amongst others. The input to each resource

driver function is a property list defining specific runtime parameters needed to satisfy a handler

invocation. Policy implementations are responsible for passing the required information to each

resource handler—each policy must know the set of properties required to correctly execute the

resource handlers and its corresponding resource drivers. The result of each resource driver method

invocation is also a property list, which flows back to the actor, which persistently stores the result

by attaching it to the corresponding lease. The property list conveys information about the outcome

of a guest and resource handler invocation (e.g., exit code and error message). An error may trigger

a failure policy on the service manager or authority that resets a resource or re-assigns the resource

to an equivalent machine.

As described in Section 7.1.2, to keep the state machine simple we allow lease state transitions

to invoke guest and resource handlers, which issue resource driver actions, at anytime without

requiring that all previous handler invocations are complete. For example, it must be possible

to issue the teardown event handler to destroy a given resource regardless of what other resource

handler invocations may be in progress. At the same time, the lease abstraction may invoke the

same handler multiple times as a result of an actor or network failure, as discussed in Chapter 7.

To account for these requirements, all guest and resource driver methods must be idempotent and

thread-safe. Since each guest and resource handlers constitute a sequence of driver invocations, each

handler is also idempotent.

The authority either sequences the invocation of multiple resource drivers inside the same re-

source handler or exposes partial control of resource driver interface, and the hardware management

services it provides, to the service manager. The leasing architecture does not preclude the approach

described in Chapter 5 that decouples virtual machines from slivers, and controls each sliver using

a separate lease with its own resource handler.

The resource handlers and resource drivers we use in our deployment require the authority to

135

Resource Example Drivers

Virtual Machines Xen Hypervisor with CPU and memory slivering

Physical Machines Disk re-imaging with PXE/DHCP network boots

Bandwidth limits Linux tc utility

Disk Volume Management Logical Volume Manager (LVM)

Block devices iSCSI roots using a NetApp filer

Remote file systems NFS roots using Sun’s ZFS file system

Table 8.2: A table outlining the different resource drivers currently supported by Shirako. As-
pects of the specific technology are hidden from the lease abstraction beneath the resource handler
interface.

access hardware management services to control machine configuration. However, these resource

handlers and resource drivers need few changes to decouple virtual machines and slivers and delegate

control of hardware management services to service managers. The only required change is to allow

a service manager to securely invoke the resource driver methods within the guest handler, instead

of authority, as well as new broker policies that name slivers and virtual machines independently.

For example, authorities must define additional resource types for CPU share, memory allotment,

and bandwidth limits, and minimal resource handlers that configure these types, and export these

types to a new broker policy that individually issues tickets for them. Since our resource handlers

adjust slivers using the modify event handler, this event handler is a basis for sliver resource handlers.

Below we discuss resource handlers and resource drivers from our deployment of COD.

We also show how the architecture incorporates resources from other sites, with different resource

management models. In particular, we develop resource handlers for Amazon’s Elastic Compute

Cloud [74] (EC2) to enhance EC2 and demonstrate Shirako’s architectural separation of policy

from mechanism. Authorities may resell or donate EC2 resources by defining a new resource type

and handler and exporting EC2 resources to a broker, which may use any policy to allocate these

resources to service managers. Service managers may also use lease grouping primitives with EC2

resources in the same way that they use them for resources instantiated at any authority.

8.3.1 Physical Machines, Virtual Machines, and Slivers

The authority prototype includes implementations of resource drivers for physical machines, Xen

virtual machines, as well as multiple storage devices, as shown in Table 8.2. Storage technologies that

the authority supports include flash-cloning iSCSI-accessible block devices on a NetApp FAS3020

filer and creating, snapshotting, and cloning local LVM block devices, file-backed block devices, and

136

Function Description

boot(ResourceId vm) Boot a new virtual machine.

shutdown(ResourceId vm) Shutdown a virtual machine.

setCpu(ResourceId vm) Set a virtual machine’s CPU share.

setMemory(ResourceId vm) Set a virtual machine’s memory allotment.

setBandwidth(ResourceId vm) Limit a virtual machine’s outgoing bandwidth.

reboot(ResourceId vm) Reboot a virtual machine.

reset(ResourceId vm) Reset a virtual machine and its disk image to the initial state.

save(ResourceId vm) Save the the running state of a virtual machine.

restore(ResourceId vm) Restore the running state of a virtual machine.

Table 8.3: A table outlining the resource driver interface for a virtual machine. The authority
controls the binding of slivers to virtual machines, which are in italics. An authority may export
control of the hardware management services in bold since their execution does not concern resource
multiplexing or interfere with competing guests.

NFS root-mounted ZFS file systems. Virtual machines may also be broken into leases for individual

slivers of CPU, memory, bandwidth, and storage. The virtual machine resource driver defines the

collection of functions required for the authority to interact with the Xen virtual machine monitor

(Table 8.3) to configure virtual machines.

A COD authority leases machines. A COD authority’s resource handler encodes the configura-

tion and type of machine. Configuration properties allow an authority to expose some control over

each machine’s configuration to the service manager. A COD authority controls and manipulates

administrative services that bind host names to IP addresses (e.g., using BIND), user logins to

machines (e.g., using PAM), user access permissions to the file system (e.g., using NSS), and re-

mote pools of storage (e.g., using NFS). These configuration properties flow to the resource handler,

which decide how to interpret and use them to direct each machine’s configuration. Since the COD

authority operates these services on behalf of the service manager and its guest, the guest does not

have to deal with the complexity of managing administrative services, itself.

Figure 8.1 shows an example of a simplified resource handler for a Xen virtual machine in

our COD deployment. In this example, the creation of a virtual machine involves several distinct

operations: add an entry to LDAP to configure a DNS name, create an iSCSI root disk, create local

scratch space, boot the virtual machine, and configure the Xen resource scheduler to impose limits

on the resources consumed by the virtual machine. Each of these operations requires interaction

with a resource driver.

Both virtual and physical machine (in Figure 8.2 resource handlers require similar inputs to

137

<project name="Xen Virtual Machine" basedir=".">

<description>

This handler contains directives

for allocating Xen virtual machines

using cloned iSCSI root disks.

</description>

<target name="setup"

description="Create a Xen VM with a DNS name, a cloned

root disk, scratch disk space, and reserved

resource sliver.">

<dns.ldap.add/>

<iscsi.clone.disk image=${image.name}/>

<lvm.create.disk size=${size}/>

<vm.create

root="${iscsi.disk}

disk="${lvm.disk}"

kernel="${linux.kernel}"/>

<vm.setshares

cpu="${cpu.share}"

memory="${memory.mb}"

bandwidth="${bandwidth.mb}"/>

</target>

<target name="modify">

description="Migrate a VM or change its sliver size.">

<vm.migrate

machineName="${unit.dns.hostName}"

destination="${new.host.net.ip}"

live="${boolean.live}"/>

<vm.changeshares

cpu="${new.cpu.share}"

memory="${new.memory.mb}"

bandwidth="${new.bandwidth.mb}"/>

</target>

<target name="teardown">

description="Destroy a Xen VM’s DNS name and root disk.">

<dns.ldap.remove/>

<vm.remove lvm="${lvm.disk}"/>

<iscsi.remove.disk/>

</target>

</project>

Figure 8.1: Handler for configuring a virtual machine. Note that the handler is a simplification
that does not show the details of each Ant target.

138

<project name="physical" basedir=".">

<description>

This handler contains directives

for allocating physical machines.

</description>

<target name="setup"

description="Re-image and reboot a physical machine.">

<dhcp.ldap.add/>

<exec executable="${reimage.disk} ${host.ip} ${image.name}"/>

<exec executable="${reboot} ${host.ip}"/>

<exec executable="${probe} ${unit.ip}"/>

</target>

<traget name="modify"/>

<target name="teardown"

description="Re-image and network boot a physical machine.">

<dhcp.ldap.remove/>

<exec executable="${reboot} ${unit.ip}"/>

<exec executable="${probe} ${host.ip}"/>

</target>

</project>

Figure 8.2: Handler for configuring a physical machine. Note that the handler is a simplification
that does not show the details of each Ant target.

their respective handlers. Both require an IP address, specification of a kernel, a root disk image

(whether local or remote), a hostname, and remote disks and/or file systems. Additionally, virtual

machines support slivering the resources of a physical host and migration. Note that the virtual

machine resource handler may use the modify handler to change the sliver size or migrate the virtual

machine on lease boundaries, while the physical machine handler does not have the capability to

perform these tasks.

The fundamental difference between the two resource handlers resides in the technology to

initiate the booting of their respective kernels: the presence of a control domain with a command

line or programmatic API simplifies the process to initiate boot of a virtual machine. The physical

boot process may become simpler in the future as blade chassis with management backplanes that

provide rich hardware management interfaces become more predominant.

The configuration attributes and policies for fulfilling requests for physical and virtual are also

similar. The resource, configuration, and unit properties in Table 4.4 are common to both physical

and virtual machines. A basic assignment policy in both cases matches a request to a physical host:

in the case of a physical machine the policy represents the “host” as the physical machine in the

trampoline state, while in the case of a virtual machine the policy represents the host as the control

domain used to create virtual machines.

139

An authority may use the same assignment policy for physical and virtual machines if it limits

each physical machine to hosting a single virtual machine, as discussed in Section 5.3.1. However,

part of the power of virtual machines is the ability to co-locate machines on the same physical

host, and use performance isolating schedulers to ensure that the actions of one virtual machine

does not affect the behavior of another. An authority may allocate each virtual machine a sliver

of the resources of the host physical machine using the methods from Chapter 5 to specify sliver

size and/or name physical machines, slivers, and virtual machines. Our current prototype specifies

sliver size and names physical machines to provide sliver sizing capabilities.

8.3.2 Amazon’s Elastic Compute Cloud

The architecture is flexible enough to allow authorities control resources offered by third-party in-

frastructure providers. In this case, the authority uses interfaces exported by the infrastructure

provider to configure hardware resources. Since authorities are independent of the resources they

control their design permits the reselling of resources from third-party providers. Reselling resources

is beneficial if third-party providers do not provide policies or programming abstractions that ar-

bitrate resources under constraint or enable guest development. As a test of the architecture we

develop resource handlers for an authority to instantiate virtual machines from Amazon’s Elastic

Compute Cloud [74] (EC2).

EC2 is a service for users to upload virtual machine disk images and boot them on Amazon’s

infrastructure. The service provides web service (e.g., SOAP) interfaces that allow third-party soft-

ware, such as a Shirako authority, to programmatically create virtual machines as they need them.

Thus, EC2 implements functionality similar to resource drivers for virtual machines—a network

accessible programmatic API to control virtual machine instantiation and management. However,

EC2 does not lease resources, which limits the allocation policies it supports. Not supporting leases

impacts EC2’s operation: as of this writing, EC2 requires users to contact an EC2 administrator

if they wish to create more than 20 virtual machines. They also do not support advance machine

reservations.

Instead of using leases, EC2 provides customers with an assurance that it will not terminate a

running virtual machine—if the infrastructure becomes overloaded EC2 simply rejects new customer

140

requests until available resources exist. EC2 does not provide primitives for distributed guests, such

as lease groups, to enable development of guests that adapt and control their virtual machines.

While guests may use the EC2 interfaces to request machines, they do not have the necessary

primitives for grouping resources and sequencing configuration operations.

EC2 is similar to the original incarnation of COD [39] that managed a single type of resource—

a machine. Shirako’s integration requires a resource handler that accesses the EC2 web services

interface to issue requests to run instances of EC2 virtual machines. The authority creates and

owns these machines. By default, the machines boot with a public key registered by the COD

authority with the EC2 service. The setup handler uses this key to install a public key specified by

the requesting service manager so the service manager can access the machine using ssh.

Internally, the authority represents EC2 virtual machines as simply another resource type it

may allocate to service managers and brokers. The authority requires a simple assignment policy

since the EC2 service hides the physical assignment of the EC2 virtual machines from its customers

(in this case the authority)—the authority uses a simple assignment policy that treats the virtual

machines as being hosted by a single machine represented by the EC2 service. The authority also

does not need to allocate IP addresses since the EC2 service allocates EC2-specific IP addresses. In

all other respects, the operation of the authority remains the same.

Virtual machines are an execution environment that binds to slivers. EC2 does not support

adaptation of a virtual machine’s sliver. EC2 also has no direct support for brokers to enable

Amazon to delegate resource rights in order to coordinate the allocation of resources from multiple

sites. The integration with Shirako allows EC2 to take advantage of these brokered policies for

leasing resources. For example, using leases, a Shirako broker may implement a policy that limits

the number of machine-hours allowed for EC2 machines. Since Amazon charges $0.10 per hour of

machine time the policy may set an upper bound on the amount of money a COD authority expends

managing EC2 machines.

Adherence to the neutrality principle made Shirako’s integration with EC2 simple: we only

needed to write a simple resource handler that implements the setup, modify, and teardown event

handlers. We were then able to leverage Shirako’s existing virtual machine adaptation, provisioning,

and assignment policies.

141

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

P
ro

gr
es

s
(e

ve
nt

s)

Time (seconds)

5 virtual
5 physical
15 virtual

15 physical
15 virtual (iscsi)

nfs + sge

Figure 8.3: The progress of setup and join events and CardioWave execution on leased machines.
The slope of each line gives the rate of progress. Xen clusters (left) activate faster and more reliably,
but run slower than leased physical nodes (right). The step line shows an GridEngine batch scheduler
instantiated and subjected to a synthetic load. The fastest boot times are for virtual machines with
flash-cloned iSCSI roots (far left).

8.4 Performance

8.4.1 Illustration

The previous sections describe the different resources that an authority may lease to service man-

agers. In this section, we demonstrate how this flexibility is useful. For these experiments, we use

a simple policy that views each physical Xen server as a pool of seven fixed-size slivers, (with 128

MB of memory each), or computons, for binding to virtual machines, as described in Section 5.3.1.

We first examine the latency and overhead differences to lease physical and virtual machines for

a sample guest, the CardioWave parallel MPI heart simulator [135]. A Cardiowave-aware service

manager requests two leases: one for a coordinator machine to launch the MPI job and another

for a variable-sized block of worker machines to run the job. It groups and sequences the lease

joins as described in Section 4.3.2 so that all workers activate before the coordinator. An MPI

application has no notion of a master as in a batch scheduler. However, some machine must launch

the application, and in our service manager we request a coordinator machine to serve this purpose.

The join handler launches CardioWave programmatically when all machines are fully active.

Figure 8.3 charts the progress of lease activation and the CardioWave run for virtual clusters of 5

142

and 15 machines, using both physical and Xen virtual machines, all with 512MB of available memory.

The guest earns progress points for each completed machine join and each block of completed

iterations in CardioWave. Each line shows: (1) an initial flat portion as the authority prepares a

file system image for each machine and initiates boots; (2) a step up as machines boot and join, (3)

a second flatter portion indicating some straggling machines, and (4) a linear segment that tracks

the rate at which the guest completes useful work on the machines once they are running.

The authority prepares each machine image by loading a 210MB compressed image (Debian

Linux 2.4.25) from a shared file server and writing the 534MB uncompressed image on a local disk

partition. Some machine setup delays result from contention to load the images from a shared

NFS server, demonstrating the value of smarter image distribution (e.g., [89]). The left-most line

in Figure 8.3 also shows the results of an experiment with iSCSI root drives flash-cloned by the

setup script from a Network Appliance FAS3020 filer. Cloning iSCSI roots reduces virtual machine

configuration time to approximately 35 seconds. Network booting of physical machines is slower than

Xen and shows higher variability across servers, indicating instability in the platform, bootloader,

or boot services.

Cardiowave is an I/O-intensive MPI application. It shows better scaling on physical machines,

but its performance degrades beyond ten machines. Five Xen machines are 14% slower than the

physical machines, and with 15 machine they are 37% slower. For a long CardioWave run, the

added Xen virtual machine overhead outweighs the higher setup cost to lease physical machines.

This exercise represents the benefits of resource flexibility to a guest: a service manager may request

physical machines for a long Cardiowave run and virtual machines for a short Cardiowave run.

A more typical usage of a service manager in this setting would be to instantiate batch schedulers

on machines [39], and let them schedule Cardiowave and other jobs without rebooting the machines.

An extensible authority does not preclude this option. Figure 8.3 includes a line showing the time to

instantiate a leased set of five Xen machines and an NFS file server, launch a standard GridEngine

batch scheduler on them, and subject it to a synthetic task load. This example uses lease groups

to sequence configuration as described in Section 4.3.2. The service manager also stages a small

data set (about 200 MB) to the NFS server, increasing the activation time. The steps in the line

correspond to simultaneous completion of synthetic tasks on the workers.

143

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

F
id

el
ity

 (
%

)

Lease length (seconds)

Xen virtual machines
physical machines

Figure 8.4: Fidelity is the percentage of the lease term usable by the guest, excluding setup costs.
Xen virtual machines are faster to setup than physical machines, yielding better fidelity.

Figure 8.4 uses the guest and resource handler costs from the previous experiment to estimate

their effect on the system’s fidelity to its lease contracts. Fidelity is the percentage of the lease term

that the guest is able to use its resources. Amortizing these costs over longer lease terms improves

fidelity. Since physical machines take longer to setup than Xen virtual machines, they have a lower

fidelity and require longer leases to amortize their costs.

The experiment above demonstrates two different service managers that execute Cardiowave

runs: one that directly leases machines for individual runs and one that leases machines for a batch

scheduler which queues a schedules multiple Cardiowave runs. Shirako supports multiple approaches

to executing tasks that exhibit different tradeoffs. Installing a batch scheduler allows a user to inject

multiple Cardiowave runs and let the batch scheduler schedule them on the available resources. In

this case, the service manager simply examines the batch scheduler’s load and adjusts the number

of machines in the batch pool based on load. However, batch schedulers do not exercise the control

exported by an authority to manage each job individually. In the next Chapter, we experiment with

a third alternative that combines these two approaches using the extensible leasing architecture:

Jaws is a minimal service manager that accepts task submissions and instantiates one or more

virtual machines for each task, such as Cardiowave.

144

N cluster size

l number of active leases

n number of machines per lease

t term of a lease in virtual clock ticks

α overhead factor (ms per virtual clock ticks)

t
′ term of a lease (ms)

r
′ average number of machine reallocations per ms

Table 8.4: Parameter definitions for Section 8.4

8.4.2 Scalability

We use emulation experiments to demonstrate how the implementation of the lease abstraction

scales at saturation. The scaling experiments depend on the number of leases processed by Shirako

and is independent of resources being leased (e.g., slivers, virtual machines, physical machines) and

the naming schemes detailed in Chapter 5. For simplicity, these experiments use the site-assigned

computons naming scheme from Section 5.3.1. Table 8.4 lists the parameters used in our experiment:

for a given number of machines N at a single site, one service manager injects lease requests to a

broker for N machines (without lease extensions) evenly split across l leases (for N/l = n machines

per lease) every lease term t (giving a request injection rate of l/T). Every lease term t the site

must reallocate or “flip” all N machines. We measure the total overhead including lease state

maintenance, network communication costs, actor database operations, and event polling costs.

Given parameter values we can derive the worst-case minimum lease term, in real time, that the

system can support at saturation.

As explained in Section 7.1.2, each actor’s operations are driven by a virtual clock at an arbitrary

rate. The prototype polls the status of pending lease operations (i.e., completion of join/leave and

setup/teardown events) on each tick. Thus, the rate at which we advance the virtual clock has a

direct impact on performance: a high tick rate improves responsiveness to events such as failures

and completion of configuration actions, but generates higher overhead due to increased polling of

lease and resource status. In this experiment, we advance the virtual clock of each actor as fast as

the server can process the clock ticks, and determine the amount of real time it takes to complete

a pre-defined number of ticks. We measure an overhead factor α: the average lease management

overhead in milliseconds per clock tick. Lower numbers are better.

In this experiment, all actors run on a single x335 server and communicate with local method

145

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5000 10000 15000 20000 25000 30000

O
ve

rh
ea

d
fa

ct
or

 α
 (

m
s/

vi
rt

ua
l c

lo
ck

 ti
ck

s)

Lease term t (virtual clock ticks)

l = 48 leases per term
l = 24 leases per term

l = 8 leases per term
l = 2 leases per term
l = 1 lease per term

Figure 8.5: The implementation overhead for an example scenario for a single emulated site with
240 machines. As lease term increases, the overhead factor α decreases as the actors spend more
of their time polling lease status rather than more expensive setup/teardown operations. Overhead
increases with the number of leases (l) requested per term.

calls and an in-memory database (no LDAP). Figure 8.5 graphs α as a function of lease term t in

virtual clock ticks; each line presents a different value of l keeping N constant at 240. The graph

shows that as t increases, the average overhead per virtual clock tick decreases; this occurs because

actors perform the most expensive operation, the reassignment of N machines, only once per lease

term leaving less expensive polling operations for the remainder of the term. Thus, as the number

of polling operations increases, they begin to dominate α. Figure 8.5 also shows that as we increase

the number of leases injected per term, α also increases. This demonstrates the increased overhead

to manage the leases.

At a clock rate of one tick per second, the overhead represents less than 1% of the latency to

prime a machine (i.e., to write a new OS image on local disk and boot it). As an example from

Figure 8.5, given this tick rate, for a lease term of 1 hour (3,600 virtual clock ticks), the total

overhead of our implementation is t′=tα=2.016 seconds with l=24 leases per term. The lease term

t′ represents the minimum term we can support considering only implementation overhead. For an

authority, these overheads are at least an order of magnitude less than the setup/teardown cost of

machines with local storage. From this we conclude that the setup/teardown cost, not overhead, is

the limiting factor for determining the minimum lease term. However, overhead may have an effect

146

N (cluster size) α stdev α t′

120 0.1183 0.001611 425.89

240 0.1743 0.000954 627.58

360 0.2285 0.001639 822.78

480 0.2905 0.001258 1,045.1

Table 8.5: The effect of increasing the cluster size on α as the number of active leases is held
constant at one lease for all N nodes in the cluster. As cluster size increases, the per-tick overhead
α increases, driving up the minimal lease term t′.

Database α stdev α t
′

r
′

Memory .1743 .0001 627 .3824

LDAP 5.556 .1302 20,003 .0120

Table 8.6: Impact of overhead from LDAP access. LDAP costs increase overhead α (ms/virtual
clock tick), driving down the maximum node flips per millisecond r′ and driving up the minimum
practical lease term t′.

on more fine-grained resource allocation, such as CPU scheduling, where reassignments occur at

millisecond time scales.

Table 8.5 shows the effect of varying the number of machines N on the overhead factor α. For

each row of the table, the service manager requests one lease (l=1) for N machines (N=n) with a

lease term of 3,600 virtual clock ticks (corresponding to a 1 hour lease with a tick rate of 1 second).

We report the average and one standard deviation of α across ten runs. As expected, α and t′

increase with the number of machines, but as before, t′ remains an order of magnitude less than the

setup/teardown costs of a machine.

We repeat the same experiment with the service manager, broker, and authority writing their

state to a shared LDAP directory server. Table 8.6 shows the impact of the higher overhead on t′

and r′, for N=240. Using α, we calculate the maximum number of machine flips per millisecond

r′=N/(Tα) at saturation. The LDAP overheads dominate all other lease management costs: with

N = 240 nodes, an x335 can process 380 machine flips per second, but LDAP communication

overheads reduce peak flip throughput to 12 machines per second. Even so, neither value presents

a limiting factor for today’s sites which contain thousands of machines. Using LDAP at saturation

requires a minimum lease term t′ of 20 seconds, which approaches the setup/teardown latencies

(Section 8.4.1).

From these scaling experiments, we conclude that lease overhead is quite modest, and that costs

are dominated by per-tick resource polling, machine reassignment, and network communication.

In this case, the dominant costs are LDAP operations and the cost for Ant to parse the XML

147

configuration actions and log them.

8.5 Summary

In this chapter, we present an overview of a prototype implementation of a networked operating

system. We evaluate the neutrality principle along two axis: flexibility and performance. We exam-

ine the benefits of supporting different resource types in a real deployment and the architecture’s

integration with Amazon’s Elastic Compute Cloud. We supplement our evaluation with experiences

deploying and using a prototype within our research group and at an external site.

148

Chapter 9

Guest Case Studies

“Research is to see what everybody else has seen

and to think what nobody else has thought.”

Albert Szent-Gyorgi

In this chapter, we evaluate our architecture by integrating multiple types of guests and coordinating

resource sharing between them. The guests include the GridEngine batch scheduler [75], the Plan-

etLab network testbed [23], the Plush distributed application manager [9], and a job management

system for virtual computing called Jaws. Related work uses the architecture to develop adaptive

service managers for other guests as well, including the Rubis web application [185] and Globus

grids [138].

Developing a service manager for each guest exercises each aspect of the leasing architecture

including developing guest, resource, and lease handlers and custom cross-actor properties that drive

handler invocation from Section 4.3.1, determining guest dependencies that require lease groups

from Section 4.3.2, writing customized guest monitoring systems to gather data to react to load,

and developing adaptation policies that use monitoring data to drive resource requests. For each

guest we first give an overview of the guest’s capabilities and then describe the implementation and

integration of each prototype guest in Shirako with references to the architectural elements from

Chapter 4 and Chapter 5. We then discuss lessons learned from the integration of each guest.

9.1 GridEngine

GridEngine [75] is widely used to run compute-intensive batch tasks on collections of machines. It

is similar to other local batch job schedulers for cluster and grid sites [67, 113, 183]. A GridEngine

service manager is able to alter GridEngine’s resource allotment, using visible allocation, modi-

fication, and revocation, by using existing administrative functions to introspect on GridEngine.

Importantly, the service manager does not need to modify GridEngine to adapt its resource allot-

149

ment. Service manager resource requests are driven by an adaptation policy that determines how

to request resources in response to task submissions.

The adaptation policy defines a feedback loop: the service manager monitors the size of the

task queue over time and uses the queue size to formulate resource requests. The service manager

transmits requests for resource tickets to a broker and redeems tickets granted by the broker at

an authority. Once an authority finishes instantiating and configuring the machines it notifies the

service manager, which invokes join for each machine instantiated by the authority in order to

incorporate the new machines into the batch scheduler’s collective environment. Once the service

manager incorporates the machines into the guest batch scheduler’s environment, the guest batch

scheduler is free to control the machines by scheduling and executing tasks on them according to

its internal scheduling policy.

The description of the adaptation policy above belies some of the complexities of implementing

the service manager’s feedback loop. For example, batch schedulers use a single machine to act

as a master, which schedules tasks across a set of machines that act as workers. The relationship

between master and worker necessitates the use of lease groups to bind worker machines to the

master. The process of monitoring a batch scheduler requires periodically polling its task queue

length using some form of remote execution engine, such as ssh. A long queue of tasks indicates

that the batch scheduler needs more machines to increase the rate of task completion. As described

in Chapter 8, service managers implement a clock that ticks at a specified rate—service managers

may monitor guests at clock intervals.

A service manager must also inspect the task queue on lease extensions to determine whether to

shrink, grow, or maintain the lease’s resources. If a service manager shrinks a lease it must select

victim machines; if it grows a lease it must determine how many additional resources to request.

Service managers may use the guest lease handler’s onExtendTicket (see Section 4.3.2) method to

inspect the task queue before each lease’s expiration to determine whether or not to extend a lease,

and, if extending the lease, how to flex or modify it.

150

9.1.1 Integration

In a typical GridEngine deployment, a single master runs a scheduler (sge schedd) that dispatches

submitted tasks across an active set of workers. Users submit tasks by executing the qsub command,

which transmits the information necessary to execute a task to the master. To maintain a uniform

environment across the active set, as required by GridEngine, each worker must define a set of user

identities eligible to use the batch scheduler, and a shared network file volume mounted through

NFS. The NFS volume includes the GridEngine distribution and master status files (the SGE ROOT

directory) and all program and data files for the user tasks.

We developed a GridEngine service manager using Shirako. The service manager leases re-

sources from brokers and authorities and instantiates and adapts the number of machines allotted

to GridEngine. The core of the GridEngine service manager is a set of guest handlers that alter Gri-

dEngine’s resource allotment and an adaptation policy module that periodically polls GridEngine’s

task queue and formulates resource requests. The implementation of GridEngine itself is unchanged.

We first discuss the guest handlers for the GridEngine service manager and then discuss the adap-

tation policy of our prototype.

Guest Handlers

The GridEngine guest handlers encapsulate administrative complexities for incorporating machines

into GridEngine’s environment. The GridEngine service manager uses two guest handlers: one to

configure the master machine and one to configure each worker machine. Each handler is a script

that executes a sequence of GridEngine administrative commands and starts and stops the proper

GridEngine daemons.

A GridEngine service manager uses lease groups to sequence the instantiation of the guest

handlers for the master and each worker. Lease groups also permit the lease lifetimes of the master

and each worker to be different; the lease for the GridEngine master may be long (e.g., weeks) to

ensure stability and continuous operation while each lease for one or more workers may be short

to provide the flexibility to adapt GridEngine’s machine allotment to the number of queued tasks.

The GridEngine service manager initially formulates a lease request for one machine to act as the

GridEngine master, which we call the master lease. To group each worker lease with the master

151

lease, the service manager sets the master lease as the predecessor of each worker lease, as described

in Section 4.3.2. The predecessor relationship not only ensures that the master is active before each

worker, it allows the guest handler for each worker to reference the properties of the master lease.

In particular, the guest handler for a worker must know the master’s IP address to register itself

with the master.

To add a master, join installs the GridEngine software to the master machine. In our COD

prototype, the join handler mounts a well-known file volume served by an existing NFS server and

copies the GridEngine software to the master. The join entry point for the master lease then executes

the sge master daemon. The leave handler for the master lease stops the sge master daemon and

removes the installed GridEngine software. Recall that both the GridEngine master and each worker

require a shared file system. In our prototype, join for the master starts an NFS server and exports

a file volume to each worker machine. As an alternative, the service manager could also lease an

additional machine to act as the NFS server; in this case, the lease for the NFS server would be

a predecessor of the master lease and join for the master lease would mount the appropriate file

volume by referencing a property of the NFS server lease. In our prototype, either the master

machine acts as the NFS server or the master and each worker mount a file volume exported by a

pre-existing NFS server.

To add a worker, join executes the GridEngine qconf command on the master with a standard

template to activate a machine by its domain name and establish a task queue for the worker. In

order to execute qconf on the master, the guest handler of the worker must know the master’s IP

address; the predecessor relationship ensures that the information is available as a property the guest

handler of the worker may reference. In our prototype, guest handlers reference unit properties of

the predecessor lease by prepending predecessor. to the name of a unit property. If there are

multiple units within the predecessor lease the property includes a comma-separated list of the

values of each unit in the predecessor lease.

For example, to reference the master’s IP address the guest handler for a worker uses the property

predecessor.host.privIPaddr. After enabling the queue on the master, join for the worker’s guest

handler executes the GridEngine daemon processes—sge commd and sge execd—on the worker using

a remote execution engine, such as ssh. If the master acts as an NFS server join also mounts the

152

appropriate file volume on the worker. To remove a machine, leave executes GridEngine commands—

qconf and qmod— on the master to disable the worker’s task queue, reschedule any tasks on the

queue, and destroy the queue. Finally, leave stops sge commd and sge execd on the worker to

deactivate the machine, and, if necessary, unmount any file volumes.

Adaptation Policy

Our prototype implements a simple adaptation policy: request a new worker for every X pending

tasks and relinquishes any idle worker at the end of its lease. The policy illustrates dynamic

adaptation of a guest within our architecture. For this policy we configure GridEngine to schedule

at most one task on each active worker and assume that that tasks are sequential, compute-bound,

and run for longer than the reconfiguration times. As a result, our prototype uses computons and

does not monitor the resources of each worker to request adjustments in sliver size that match a task’s

resource usage. Defining more sophisticated policies that account for spikes in task submissions,

machine instantiation overheads, and sliver sizing is left for future work.

The GridEngine service manager monitors the task queue at clock tick granularities (one or

more) to check the size of the task queue. The monitoring engine accesses the GridEngine qstat

command using a secure ssh channel to obtain a list of queues and the tasks scheduled to them.

If there are queued tasks that have not yet started, the service manager requests a new worker for

every X queued tasks. The policy attempts to ensure a minimum idle reserve of k worker machines

by extending any worker leases, even if the workers are idle, when the active set of workers falls

below k. Brokers may choose to not extend leases according to their own arbitration policies, in

which case, the service manager has no recourse but to fall below the k threshold. In our deployment

we set X = 1 to enable the GridEngine service manager to respond quickly to newly submitted task

and k = 1 to ensure that at least one worker is active.

The service manager uses the onExtendTicket function of the lease handler from Table 4.3 to

implement a victim selection policy: the function inspects the task queue for each worker in the

lease to determine which workers are executing tasks and which workers are idle. If idle workers

exist, the service manager flexes the lease (see Section 4.3.2) in its ticket extension request to match

the number of workers currently executing tasks. The service manager appends the name of idle

workers to the ticket using a configuration property (i.e., lease.victims) before redeeming the

153

ticket at the authority. The authority uses the names to select victim machines to teardown on a

shrinking lease. In our prototype, the service manager uses the IP address of the worker to name

victim machines.

One interesting aspect of a purely reactive GridEngine adaptation policy is that it never flexes

a lease to grow the number of workers on a lease extension boundary. We chose to make the policy

highly responsive to task submissions by allowing it to generate new resource requests as soon as the

service manager detects a new task. An alternative is to decrease responsiveness by waiting until

the service manager extends an existing lease; at extension time the service manager may grow the

lease to satisfy the new task. The scalability experiments from Section 8.4 show that the overhead

from fragmenting resources across multiple leases is minimal, and, in this case, justified to achieve

a quick response to spikes in the number of tasks.

9.1.2 Demonstration

We present simple experiments with GridEngine using an initial Shirako prototype under trace-

driven task load. Our initial prototype of the leasing architecture combined the arbitration policy of

the broker with the assignment policy of the authority—importantly, as the prototype has evolved

and changed over time the functions of the guest handler—join and leave—for GridEngine have

remained the same, validating the separation of the guests and resources from the lease abstraction.

The results demonstrate dynamic provisioning behavior with the policy described in the previous

subsection. We ran our experiments with multiple similarly configured GridEngine batch schedulers

on a testbed of 80 rackmount IBM xSeries-335 uniprocessor servers within the “Devil” Cluster at

Duke Computer Science.

Traces. To stress the prototype under high levels of contention and resource constraint, we

construct test trace segments drawn from a nineteen-month trace of production batch queue activity

on the Devil Cluster. The full trace starts in September 2001 and continues until mid-April 2003.

Each trace entry contains a submit timestamp, task start time, task completion time, and the user

identity and executable file name for the task. We divide the GridEngine users into three user

groups, select a three-month window of activity for each group, and combine the trace segments to

form the test trace. The three user groups are:

154

• Systems. Researchers in networking and peer-to-peer systems submitted large numbers of

short tasks, usually no more than a few minutes long. Activity from this group was highly

bursty. The Systems trace segment runs from 17:01:52, 2002/02/01 until 00:00:00, 2002/05/01.

• Architecture. This team submitted a large number of computer architecture simulations,

each consuming many hours of CPU time. Task arrival rate for this group was relatively stable.

The Architecture trace section runs from 23:43:50, 2001/09/14 until 00:00:00, 2001/12/01.

• BioGeometry. These tasks evaluate new algorithms to predict protein folding and docking.

Submitted tasks ran for days or weeks. This group submitted tasks with steadily increasing

frequency. The BioGeometry trace segment runs from 18:34:47, 2002/10/03 until 00:00:00,

2003/01/01.

In the first test we ran the system on a testbed of seventy-one servers for twelve hours to examine

the behavior of the provisioning policies. The test instantiates three GridEngine batch schedulers

in separate virtual clusters, then replays each trace segment from above to each batch queue in real

time. All trace records execute a task that spins in a busy loop for a specified time. To accelerate the

experiment, we sped up the submission and completion of tasks by a factor of 160. This speedup

allows a full three-month trace to complete in under twelve hours. While speeding up the trace

introduces significant error in the flip times of machines, the general trends of machine allocations

are not affected.

Each GridEngine service manager ticks every seven seconds to negotiate for resources according

to the adaption policy in the previous subsection. The adaptation policy requests one machine

for every 15 tasks still in the queue and relinquishes a machine after being idle for 60 seconds.

We use a fixed priority ordering for allocating resources to the batch pools that guarantees each

pool a minimum of two machines. In this experiment leases are less than the epoch allowing the

reallocation of all resources at every epoch boundary. In our experiment, the Architecture group

has the highest priority, the BioGeometry group has middle priority, and the Systems group has

lowest priority.

Figure 9.1 and Figure 9.2 show the number of active machines and queued tasks, respectively,

for all three groups over a selected eight-day period. The graphs show time in days, where each day

155

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8
0

500

1000

1500

2000

2500

Time

N
u

m
b

er
 o

f
Jo

b
s

Systems
Architecture
BioGeometry

Figure 9.1: Number of GridEngine tasks in each batch queue over time during a trace-driven
execution. Note from the y-axis that the batch scheduler is experiencing intense constraint from
the task load (2400 tasks at peak load) relative to the 71 machines that are available.

represents approximately nine minutes in real time. We examine the stages of resource contention

and negotiation visible during this time period.

Initially the cluster is underutilized for approximately two days. A brief second stage involves

a large spike in demand from the Systems group, as the number of queued tasks increases over

2000—accommodating this burst requires pulling machines from the idle pool and allocating them

to the Systems virtual cluster. While the Systems virtual cluster is growing, the Architecture group

submits over 100 tasks to its GridEngine pool. Due to the load spike from Systems, there are no free

machines available. Since the Architecture group has the highest priority, the site broker reclaims

machines from the other virtual clusters, primarily the low-priority Systems virtual cluster, and

transfers them to Architecture.

Figure 9.3 focuses on the Architecture group activity from the same experiment to clearly il-

lustrate the relationship between the length of the task queue and the number of machines in the

virtual cluster. As the queue length grows, the GridEngine service manager obtains more machines

from COD to deliver a faster turnaround time on Architecture tasks. GridEngine distributes the

tasks to the new machines, restoring equilibrium and causing the queues to shrink. As machines

become idle, the service manager relinquishes them back to the global resource pool. If the size of

the queue is below the request threshold, X — for example, midway through day two to midway

through day three — the service manager leaves the virtual cluster at roughly constant size.

156

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8
0

10

20

30

40

50

60

70

80

Time

N
u

m
b

er
 o

f
N

o
d

es

Systems
Architecture
BioGeometry

Figure 9.2: Number of machines in each of three virtual clusters over time during a trace-driven
execution. Machines transfer to higher priority research groups as their task load increases. Strict
priority arbitration results in machine reallocations to the highest priority research group whenever
they have queued tasks.

Starting on day six, the Systems virtual cluster receives a burst of over 2000 tasks, and requests

machines from the idle pool. It keeps these machines until the higher-priority Architecture and

BioGeometry receive new task bursts and start competing for machines. Since Architecture is

higher priority than BioGeometry, it acquires more machines and retires its tasks faster, eventually

relinquishing its tasks to BioGeometry.

While this experiment uses a simple adaptation policy, it illustrates dynamic policy-based provi-

sioning with differentiated service for GridEngine batch pools within our architecture, without any

special support for advanced resource management in the batch scheduler itself.

9.1.3 Lessons

Using the GridEngine service manager, we can instantiate batch schedulers on demand, and dynami-

cally resize the resource’s of each batch scheduler according to task load. The authority isolates users

of different batch schedulers, and brokers may apply arbitrary policies to allocate resources to the

pools under constraint. Our prototype broker assigns a priority and a minimum guaranteed reser-

vation to each batch pool. A low-priority batch pool is similar to the Condor resource-scavenging

model [113]; that is, the broker policy allocates machines to the batch pool only when they are idle.

The approach ensures a consistent environment across the batch pool at the price of a higher ma-

157

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8
0

50

100

150

200

250

N
um

be
r

of
 N

od
es

N
um

be
r

of
 J

ob
s

Time (Days)

Architecture_nodes
Architecture_jobs

Figure 9.3: Combined size of the Architecture running and pending task queues, and virtual cluster
size over an eight-day period.

chine allocation cost to reinstall. The model also protects users with fixed leases against interference

from competing batch schedulers.

Many batch schedulers support multiple queues, and some schedule tasks according to priority.

Shirako’s approach provides these and other resource management features (e.g., reservations and

leases) at the system level, without relying on support within the batch scheduler middleware. The

approach also allows more flexible policies for allocating resources between the batch scheduler and

other competing environments (e.g., grids, web applications). As we demonstrate in this chapter,

the features extend to other environments.

As noted earlier, we may extend the model directly to Globus grids, which coordinate task

scheduling across multiple batch schedulers, including GridEngine, at multiple sites across a wide-

area network. In the grid, local site managers pass information about their available resources

to a global grid manager, which makes informed global scheduling decisions about where to route

tasks [70]. Shirako enables multiple distinct grids to run in isolated partitions of a shared physical

cluster [138].

GridEngine illustrates a simple example of dynamic adaptation and the power and generality of

Shirako’s policy-neutral architecture. In this case, implementing a GridEngine service manager was

straightforward and required no modifications to GridEngine itself to support a rich set of resource

158

management capabilities. Since GridEngine is middleware it runs above existing node operating

systems and does not require more powerful functions to manage the hardware as long as the node

operating system is compatible with the GridEngine daemons (e.g., a UNIX variant).

9.2 Plush

Plush [8, 9] manages the deployment of distributed applications by defining phases that govern the

application life-cycle: describing software installation and process workflows, discovering resources

(SWORD [124]), acquiring resources, transferring software and starting processes, monitoring the

application, and providing notifications of application completion and failure. These functions define

abstractions for managing distributed applications—each phase defines functionality necessary for

execution. Interaction with Plush occurs either manually through a shell environment using a

command line or programmatically using an XML-RPC interface. Plush is similar to other high-

level shell environments that provide a consistent view of networked resources by abstracting the

process of application execution [76]. It was originally designed to execute guests on PlanetLab (see

Section 9.3).

We integrate Plush with Shirako to evaluate a guest that implements its own abstractions for

distributed applications. In contrast to GridEngine and PlanetLab, Plush is an example of a guest

that implements abstractions without multiplexing resources. Plush defines a common interface for

executing distributed applications in the wide area where it must account for network and host

failures. As a result, Plush masks the allocation and revocation of resources from the applications

that run above it. A Plush service manager leverages this characteristic: the service manager

exposes resource allocation and revocation to Plush, which then masks it from the higher-level

application. Without Plush, distributed applications that use Shirako to acquire resources would

require support for visible allocation and revocation. However, a Plush service manager enables

existing applications, which already leverage Plush’s abstractions, to execute in our architecture

without modification.

159

Method Description

Load The command loads an application description into Plush. The function takes an
XML specification as a paramater. Load has an equivalent shell command.

Run Initiates the execution of the application once the required resources are available.
Run has an equivalent shell command.

AddResource The join method for the Plush service manager’s guest handler executes this
method to add a resource to the Plush master’s pool.

RemoveResource The leave method for the Plush service manager’s guest handler executes this
method to remove a resource from the Plush master’s pool.

CreateResource Invokes a method exported by the Plush service manager. The Plush master uses
the method to inject resource requests specified in the application description.
CreateResource has an equivalent shell command.

NotifyExit Notifies the Plush service manager of the completion of an application.

NotifyFailure Notifies the Plush service manager of the failure of an application.

Table 9.1: A description of functions exposed by the Plush master via XML-RPC. External entities,
such as a service manager, call Load, CreateResource, Run, AddResource, and RemoveResource
to drive application execution. The Plush application description registers two callbacks with the
Plush service manager, NotifyExit and NotifyFailure, which the Plush master invokes when an
applications completes or fails, respectively.

9.2.1 Integration

Plush consists of a master process that coordinates application deployment and a set of agent

processes that execute on each remote machine. As stated above, Plush divides the life-cycle of an

application into distinct phases: application description, resource discovery, resource acquisition,

application deployment, and monitoring. Plush requests resources through a Plush service manager

as part of its resource acquisition phase. To avoid confusion, we use the term guest in this section

to refer to the Plush agents and the term application to refer to the software environment that the

Plush agents execute.

We wrote a Plush service manager that communicates with the Plush master, written in C++, us-

ing an XML-RPC interface to coordinate the acquisition of resources and deployment for distributed

applications. Plush users may launch and control distributed applications from a terminal interface

using a set of supported commands that drive the application’s execution. Important commands

include the following: the load command loads an application description (Figure 9.4), the create

resource command issues requests to the Plush service manager to create resources, and the run

command initiates execution of the application if its resources are available.

A service manager may invoke these commands programmatically using an XML-RPC interface

exported by the Plush master. Table 9.1 describes the XML-RPC interface that defines the com-

munication between the Plush master and the Plush service manager. In Section 9.4, we describe

160

<?xml version="1.0" encoding="utf-8"?>

<plush>

<project name="test_project">

<component name="test_cluster">

<rspec>

<num hosts>1</num hosts>

<shirako>

<num hosts>1</num hosts>

<type>4</type>

<cpu>100</cpu>

<memory>256</memory>

<bandwidth>500</bandwidth>

<storage>99</storage>

<lease length>40</lease length>

</shirako>

</rspec>

<resources>

<resource type="ssh" group="shirako"/>

</resources>

</component>

<experiment name="simple">

<execution>

<component block name="cb1">

<component name="test_cluster" />

<process block name="pb1">

<process name="date">

<path>date</path>

</process>

</process block>

</component block>

</execution>

</experiment>

</project>

</plush>

Figure 9.4: An example Plush application description that includes a request for resources from a
Shirako broker/authority.

how Jaws uses this interface and Plush to implement a batch scheduler that requests a virtual ma-

chine per task. In this section, the users of the Plush shell invoke the Load and CreateResource

commands using the shell.

A sample (simplified) Plush application description appears in Figure 9.4. The top portion of

the application description defines the resources needed by the application. The description of the

resources includes a resource type, a set of resource attributes, and a lease term for the resource

request—in this case, the resource is a virtual machine sliver. The request also specifies the IP

address of the Plush service manager. The Plush service manager exports the CreateResource via

XML-RPC; the Plush master invokes the method to notify the Plush service manager of resource

requests. The separation of the Plush master from the Plush service manager is an implementation

161

detail (i.e., they were developed independently in two different languages). Conceptually, the Plush

master is part of the implementation of the Plush service manager.

The Plush master exports XML-RPC methods to add and remove resources to and from its

available pool. A Plush service manager includes guest handlers that invoke these methods to no-

tify the Plush master of the addition (on join) or removal (on leave) of a resource, respectively. The

Plush lease handler uses the onActiveLease method from Table 4.3 to invoke the Plush master’s

run method once all of the requested resources have been added. The Plush master sends a notifi-

cation via XML-RPC of application completion or failure to the Plush service manager. Since our

architecture uses leases to govern the lifetime of resources the service manager continually extends

leases until a completion or failure notification occurs.

9.2.2 Lessons

Plush was originally designed to execute guests on PlanetLab, discussed in the next section. Inte-

grating Plush as a guest allows experimentation with many existing distributed applications already

supported by Plush. For example, we used the Plush service manager to request machines and in-

stantiate Bullet applications [102]. The key point underlying the integration of Plush is that it

provides a common interface for adaptive applications that is compatible with both our architecture

and with PlanetLab. In the case of PlanetLab, Plush masks resource allocation and revocation

from the applications running above it to hide network and host failures. In our architecture, Plush

masks the visible allocation and revocation of resources to support existing applications that use

Plush without modifying them.

9.3 Planetlab

PlanetLab is a platform for developing networked guests. As with our architecture, its focus is on

guests that execute on resources owned by multiple spheres of authority. At the time of this writing

PlanetLab consists of over 700 machines from 379 distinct clusters located on 6 continents. The

PlanetLab Consortium acts as a brokering service that establishes relationships with sites spread

across the world. To join the consortium, sites permanently relinquish control of at least two

machines by registering them with PlanetLab Central (PLC) and installing a PlanetLab-specific

162

operating system and disk image. Users at member sites may then access these machines, subject

to PlanetLab policies, to test and deploy new networked guests on a global scale.

Our concern is not with the programming models and features of PlanetLab, but with the core

architectural choices for managing hardware resources and trust. PlanetLab’s design multiplexes the

resources of a collection of machines, which it controls and images centrally. Much of the common

API is provided by a Linux kernel flavor mandated by PlanetLab. The programming abstractions

are node operating system abstractions: local file name space, processes, and a UNIX/ssh security

model with keys controlled by PLC. Much of the research focus has been on extending the operating

system to virtualize these programming abstractions to isolate multiple virtual servers running on

the same physical server [23]. PlanetLab Central permits users to log on to a web site and select

machines to add to their PlanetLab slice—a distributed set of VServer virtual machines.

9.3.1 Integration

We develop a PlanetLab service manager that requests machines, on behalf of PlanetLab Central,

from a COD authority and dynamically inserts them into PlanetLab. The integration serves to

show that the architecture is powerful enough to host an adaptive PlanetLab that provides re-

source management functionality at a lower layer. The PlanetLab service manager uses MyPLC,

a downloadable “PlanetLab-in-a-box” for creating new PlanetLab instances. We completed the in-

tegration to run PlanetLab kernels on Xen virtual machines. This required minor modifications to

the PlanetLab boot process along with a patch to enable kexec in Xen-capable kernels.

PlanetLab employs lease groups from Section 4.3.2 to ensure that the MyPLC central server is

instantiated before additional machines join the testbed. The join handler for each PlanetLab host

communicates with the MyPLC web server using an XML-RPC API to programmatically add and

remove machines from the MyPLC instance. The same system is applicable to the public PlanetLab.

PlanetLab is an example of a guest that requires hardware management services to control the

booting of a custom disk image. Additionally, the process of adding a new machine to PlanetLab

requires that a service manager obtain the network information for the new machine and notify

PlanetLab of the information before initiating the boot process. Our current prototype uses a

custom authority resource handler to upload network information to PlanetLab before starting the

bootup process.

163

A PlanetLab service manager also requires logic to determine when to request new resources,

how much to request, and for how long. The request policy may monitor the testbed (i.e., using

CoMon [127] or SWORD [124]) to detect when resources are scarce, and proactively add machines

to satisfy user demand. In our prototype, we combine a static policy that requests a fixed number

of machines every lease interval with a priority-based arbitration policy that gives PlanetLab low

priority in order to shift idle resources to PlanetLab. PlanetLab may provide an interface through

their web site for users to log their desire for more resources in order to provide hints about resource

requirements to better guide request policy. Adding machines to PlanetLab may prevent periods of

high resource contention without requiring PlanetLab to be unnecessarily over-provisioned. Planet-

Lab network services will benefit, indirectly, if they can adapt to use less-loaded machines as they

become available.

9.3.2 Discussion

Architecturally, PlanetLab has made similar choices to Mach, an example of a microkernel structure

(see Section 2.1.1). Since it exports node operating system abstractions, PlanetLab is able to support

a wide range of hosted environments, including middleware guests such as Globus. PlanetLab has

taken the first step of extensibility in progression from microkernels to exokernels with its emphasis

on “unbundled management” of infrastructure services. Unbundled management defines key system

interfaces to enable alternative implementations of foundational infrastructure services outside of

the system’s trusted core. The choice enables evolution, and a competitive market for extensions.

But like Mach, PlanetLab retains basic resource management in the core and does not expose

its resource allocation choices or allow significant control over policy. It unbundles some resource

management functions to subsystems, only with the consent of the central point of trust. For

example, a contributing site cannot change the resource allocation policy for its own resources

without the consent of the PlanetLab Consortium. It combines programming abstractions and

resource management: the abstractions are easy to program with, but resource allocation is built

into the implementation of those abstractions.

PlanetLab established a “best-effort” resource management model as a fundamental architectural

choice. At the earliest meetings it was observed that any stronger model requires admission control,

which is a barrier to use. PlanetLab research has argued that it is a good choice for PlanetLab

164

because it is underprovisioned, claiming that conservative resource allocation is undesirable because

it wastes resources, and exposing hardware-level machine abstractions or multiple operating system

instances (e.g., using Xen instead of vservers) consumes too much memory. It has also been stated

that the “best-effort” model mirrors the reality of the current Internet, in which edge resources and

transit are unreliable. A “best-effort” model forces guests to evolve the means to adapt reactively

to whatever confronts them, which is a good skill for any long-running network service to have in a

dangerous world.

Guest Adaptation

The “best-effort” philosophy is also in keeping with Butler Lampson’s hints to keep it simple and

keep secrets [106] (i.e., don’t make promises to guests that you might not keep). But at the same

time PlanetLab users do have expectations about stability, which has been presented as an explicit

goal [130]. As one example, it is considered bad manners to withdraw a machine from PlanetLab

without warning; however, PlanetLab’s abstractions do not provide a means to visibly deliver such

a warning other than to broadcast on an email list. In Section 9.2, we discuss how Plush masks

allocation and revocation on PlanetLab from adaptive applications.

In addition to complicating maintenance, the lack of visible notifications discourages sites from

contributing resources to PlanetLab on a temporary basis. PlanetLab has added programmatic

APIs to contribute and withdraw machines, but warned against their casual use. More importantly,

while “best effort” is a reasonable policy choice and should not be excluded, it is too limited as a

basis for a general model for sharing networked resources. Some guests require predictable service

quality, which must be supported “at the bottom or not at all [51].”

The architectural choices of PlanetLab limit the capabilities of the guests that use the infras-

tructure since guests have no ability to reserve resources or receive notifications when their resource

allotments change. PlanetLab does not allow contributing sites to control when, how much, and

how long resources are made available to the testbed, or provide guests a primitive to configure

resources for new uses by instantiating a guest-specific software stack. For example, PlanetLab does

not export enough control over the software stack necessary to implement guests, such as Jaws (see

Section 9.4), that instantiate and control virtual machines.

165

PlanetLab Adaptation

Our design encourages further participation in PlanetLab by enabling sites to dynamically donate

and withdraw their machines as local conditions dictate, reflecting the view that large-scale, sustain-

able federation will only occur when sites are not forced to permanently relinquish their machines,

and are not bound to a specific software stack.

PlanetLab does exhibit the key elements of a system that can serve as the “narrow waist” of

a future Internet-scale operating system. For example, debates over different policies that define

“best-effort” resource shares and isolated resource shares obscure the lack of a fundamental design

principle: the architectural choice PlanetLab makes to mask resource allocation, modification, and

revocation. This architectural choice is an obstacle to some guests that PlanetLab aims to sup-

port, such as network experiments that must know their resource allotment to ensure repeatable

results [24].

Debates over the specific type of virtualization or resource isolation technology (e.g., Vservers

vs. Xen) are orthogonal to the issue of defining the principles for an Internet-scale operating

system architecture that is compatible with all types of virtualization and isolation technologies.

The lease abstraction and design principles presented in this thesis are compatible with any type

of virtualization or isolation technology because they only define the single aspect common to all

forms of resource sharing: guests share resources and do not use them forever. As a result, the

architecture applies to any guest or resource, including PlanetLab.

A recent paper describing lessons from the PlanetLab experience details nine problems with

the current PlanetLab architecture. They include centralizing trust, centralizing resource control,

decentralizing management, treating bandwidth as a free resource, providing only best-effort service,

restricting the execution environment to Linux, not providing common operating system services

(e.g., common file system), continual API change, and an inherent focus on the machine room [14].

A narrow leasing architecture addresses each of these concerns by limiting the architecture to

only the set of elements common to all resource sharing platforms. The architecture decentralizes

trust, resource control, and management among a network of participating actors. Sites are free to

negotiate the terms of their resource contributions, such as available bandwidth and sliver isolation.

The leasing architecture is general enough to delegate control of hardware to service managers that

166

configure their own software environment, Linux or otherwise.

9.3.3 Lessons

The key point of integrating PlanetLab is that we do not have to change PlanetLab to make

it an adaptive guest in our architecture. However, an adaptive PlanetLab is unable to notify its

applications of resource loss or gain since it has no method for delivering notifications. Plush provides

a way to mask these allocation and revocation actions from PlanetLab applications, although our

architecture is general enough to allow PlanetLab guests to execute using Plush and our architecture

directly, as described in the previous section. The integration with PlanetLab (as well as Plush

and GridEngine) supports our hypothesis that focusing narrowly on leasing resources allows our

architecture to support a wide range of guests.

9.4 Jaws

We develop Jaws to evaluate the architecture’s power to serve as a platform for new guests that lever-

age the control the architecture offers. Jaws combines virtual computing and resource provisioning

with the GridEngine model of task scheduling and execution.

As described in Section 8.4.1, a CardioWave-aware service manager leases machines to execute a

single parallel MPI application. Section 8.4.1 also demonstrates a service manager for a guest batch

scheduler, discussed further in Section 9.1, that adjusts its resource allotment based on the batch

scheduler’s load. The advantage of developing a service manager per task is that the service manager

is able to tailor its resource adaptation and control policies to the individual needs of the task. In

contrast, a traditional batch scheduler, such as GridEngine, does not provide these hooks. However,

developing a service manager per task does not take advantage of the commonalities between task

scheduling, invocation, and monitoring. Below we discuss Jaws, an approach that combines the

advantages of developing a service manager for each task and a batch scheduler that executes a

stream of task requests.

Using Shirako’s architecture we develop a guest that combines the benefits of both approaches:

Jaws is a new type of batch scheduler built to integrate with a Shirako service manager. Jaws exposes

a submit interface similar to that of typical batch schedulers like GridEngine [75]. However, Jaws

167

differs from typical batch scheduler middleware in that it requests the resources it uses to execute

tasks from brokers and executes each task within an isolated virtual container. We design the Jaws

to use a Shirako service manager to lease resources from brokers and authorities for task execution.

Since batch schedulers take a middleware approach to resource sharing they rely on node op-

erating systems to expose control functions. While some batch schedulers offer functions, such as

slivering and migration, if the operating system provides them, support for other hardware man-

agement services is often lacking. While most existing batch schedulers have yet to take advantage

of recent virtual machine support for suspend/resume, migration, and slivering, recent batch sched-

ulers advocate support for virtualization [65, 99, 112, 146] to expose more resource control functions

to the scheduler. However, virtualization-aware batch schedulers only apply virtualization and re-

source control to a system that executes tasks. As a result, these systems are not policy-neutral:

they define a programming model based on the scheduling and execution of tasks. In contrast, a

Jaws service manager provides a similar programming model using a policy-neutral architecture

that also accommodates other programming models, such as PlanetLab.

9.4.1 Design and Prototype

Although it manages task execution, Jaws is not a task scheduler: all functions to schedule and

arbitrate shared resources migrate to authorities and brokers. Jaws has access to all resource

control functions exposed by the authority on a per-task basis. Decoupling task management, task

scheduling, and resource scheduling simplifies the implementation of Jaws since the broker and

authority address the underlying trust, authorization, and resource scheduling/arbitration issues.

Jaws executes each task within the customized virtual cluster instantiated by the authority. As

opposed to the CardioWave-aware service manager from Section 8.4.1, Jaws interacts with a service

manager to coordinate resource requests for multiple tasks by requesting resources from a broker

on each task’s behalf. When virtual machines for a task are made available to the service manager

by the authority, it notifies Jaws, which executes each task.

The core functionality of Jaws is task execution and issuing resource requests to brokers. A

Jaws service manager submits requests for resources to a broker for each submitted task: the

task description includes a preferred lease length. The service manager requests leases to start

168

immediately. However, each resource request is deferrable, meaning that the broker may queue

the request and delay fulfilling it if there are no resources available. As brokers fulfill requests,

they issue tickets to the Jaws service manager, which redeems the ticket for a virtual cluster at an

authority. Jaws relies on the broker’s scheduling of resource leases: in the current implementation,

the Jaws service manager associates each task with a block of leased resources and does not attempt

to schedule multiple tasks on the same set of resources. Related work explores the relationship

between resource scheduling and task scheduling [79]. Jaws associates tasks with a single lease: if

a task completes before the lease expires then Jaws does not attempt to schedule queued tasks on

the existing lease. We discuss the impact of this in Section 9.4.2.

The Jaws prototype uses Plush to execute tasks. For each submitted job, Jaws instantiates

a Plush master on a unique port to handle the task’s execution. Jaws then notifies the service

manager of the request and tags the request with the port of the Plush master, its IP address, and

the location of the Plush description for the task. In the prototype, Jaws and its service manager

run inside the same JVM and use local procedure calls to pass this information. However, in general,

a service manager is free to implement any interface to communicate with third-party services, such

as Jaws. For Jaws, the service manager interface includes the queueRequest function, which Jaws

uses to notify the service manager of a resource request.

Jaws registers a callback with the Plush master that notifies Jaws when a task completes or

fails. In this case, failure implies the return of a non-zero exit code from any process in the task

workflow. Jaws does not address task-specific failure semantics. Each join for the Jaws-aware

service manager adds a machine to the Plush master instance managing the task’s execution using

the Plush master’s XML-RPC interface (see Section 9.2). When the Jaws service manager finishes

executing join for each resource a lease event handler fires (onActiveLease from Table 4.3) and

triggers the Plush master to begin task execution (the Run command from Section 9.2). On receiving

a callback that signals task completion or failure from the Plush master, Jaws notifies its service

manager to not renew lease for a task’s resources; in the prototype, the notification occurs through

a shared variable that triggers the renewal. Jaws uses the onExtendTicket method of the guest

lease handler to determine whether or not to renew a lease—Jaws only renews leases if the task has

not completed.

169

Guest Description

GridEngine A prototypical batch scheduler that schedules and executes tasks.

Cardiowave A parallel MPI application that simulates the electromagnetic pulses of the heart.

Plush A distributed application manager for applications in volatile, wide-area networks.

PlanetLab A network testbed for developing new global-scale applications.

Jaws A new type of batch scheduler built to leverage Shirako’s resource control mechanisms.

Table 9.2: A summary of the different guests that we have integrated into Shirako as service
managers. Integration enables a level of adaptation and resource control not available to each
platform, itself. In addition to these guests, others have used the architecture to integrate the Rubis
multi-tier web application [185] and Globus grids [138].

9.4.2 Lessons

A drawback of a batch scheduler that leases resources is the potential for resource waste due to

over-estimating task duration and task resource requirements [109]. Recent work shows promise

for providing better estimation of task duration and resource profiles [151]. In our prototype, the

Jaws service manager requests, and continually renews, short leases to ensure minimal waste after

a task’s completion; additionally, we offload the setting of the resource profile (e.g., the sliver of

CPU, memory, and I/O bandwidth) to the user submitting the task. Jaws is deployed and has been

actively used by researchers to conduct large-scale experiments that study the effect of different

resource profiles and software configurations on tasks ranging from web application to databases to

scientific applications [150, 151].

Jaws is an important example of the power of the neutrality principle in separating programming

abstractions from resource multiplexing. As a result of the separation we were able to deploy a

minimal batch scheduler that only managed the execution of a task, and not the resources each task

executes on, showing that the architecture is general enough to meet the evolving needs of batch

schedulers in a direct, but general, way that does not constrain other guests, resources, or usage

scenarios.

9.5 Summary

Table 9.2 shows the different guests that we have integrated with Shirako; the guests represent a

cross-section of the multitude of different software environments used today to manage resources for

networked collections of machines, including batch scheduling systems, multi-tier web applications,

network testbeds, and distributed execution environments. The leasing architecture enhances each

170

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

N
u
m

b
er

 o
f

V
ir

tu
al

 M
ac

h
in

es

Time (Hours)

MyPLC
Jaws

Figure 9.5: MyPLC and Jaws obtaining Xen virtual machines from the Shirako prototype. The
prototype manages sharing of hardware resources between MyPLC and Jaws with a simple policy:
MyPLC gets any resources not used by Jaws.

of these guests by allowing them to adapt more precisely to load and provides a foundation for new

guests, such as Jaws.

Importantly, our experiences from the integration of each guest shaped the design of our ar-

chitecture over time. We used each guest as a test to determine the requirements of the leasing

architecture, and evaluate and stress the architecture’s different elements. To illustrate the archi-

tecture’s role in resource sharing we crafted a simple demonstration using instances of MyPLC and

Jaws on a shared set of machines. PlanetLab is not sufficient as a foundation for Jaws: resources

can neither be isolated nor scheduled. As shown in related work on active learning, Jaws requires

strong resource isolation to learn accurate performance models [150, 151].

Figure 9.5 depicts the number of allocated to a MyPLC-aware service manager and a Jaws-aware

service manager in the days leading up to a deadline. Jaws users submitted a few bursts of tasks to

collect data for an impending deadline, and received priority to reclaim machines from MyPLC as

their leases expire, according to local policy. The top line of Figure 9.5 shows the number of machines

allocated to MyPLC over time. Note that the graph shows only the number of machines, not the

resources bound to them—for this experiment we used 50 physical machines and were able to allow

only one virtual machine per physical machine due to Jaws and PlanetLab’s heavy use of local disk

space. The key points from this demonstration are that (1) PlanetLab is not a sufficient platform

171

for all environments—especially those requiring strict resource isolation—and (2) we were able to,

relatively easily, port PlanetLab’s platform to use our architecture to share hardware resources with

a different platform.

172

Chapter 10

Final Thoughts

“Insanity: doing the same thing over and over again and expecting different results.”

Albert Einstein

This thesis presents an operating system architecture for networked server infrastructure that is

policy-neutral. The architecture uses a lease abstraction as the basis for managing aggregations of

resources under the control of multiple spheres of authority. We extract the design principles for

such a networked operating system and relate them to previous work on node operating systems. We

validate our hypothesis by prototyping and deploying the system and using it to manage a range of

different resources and guests. We conclude by summarizing our contributions and discussing future

work.

10.1 Contributions

The hypothesis of this thesis is that an operating system architecture for networked server infrastruc-

ture that focuses narrowly on leasing control of hardware to guests provides a single programming

abstraction that is a foundation for multi-lateral resource negotiation, arbitration, and fault toler-

ance.

• Chapter 2 introduces a set of design principles for networked operating systems and relates

these design principles to Exokernel, which argues for a clean separation of programming

abstraction and resource multiplexing in node operating systems. We describe how our ap-

proach to managing networked server infrastructures is similar to the design of Exokernel [61],

which allows node operating systems to extend their functionality by reducing the functions

of the operating system to resource multiplexing. We show how Exokernel’s motivation and

design principles are similar to those of a networked operating system. We also summarize

the differences between node operating systems and networked operating systems.

173

• Chapter 3 details different system designs for aggregate resource management that have been

proposed. Our architecture differs from previous systems for managing resource aggregations

in its focus on exposing, rather than hiding, the capabilities of the underlying hardware. The

most popular systems in 2007 for managing shared networked resources fall into a class of

middleware systems that hide the underlying complexity of managing hardware by restrict-

ing the way in which users and applications access resources—for example, Grid middleware

simplifies resource management in practice by allowing users to submit jobs that execute for

some time and then terminate.

• Chapter 4 describes the architecture of a prototype networked operating system that combines

the idea of a reconfigurable data center from Cluster-on-Demand [39] and others [5, 15, 17, 97,

99, 116, 144, 177] with the Sharp framework [73] for secure resource peering. We design, im-

plement, and deploy the architecture using a single programming abstraction—the lease—and

identify three design principles necessary to be policy-neutral: guest/resource independence,

visible allocation, modification, and revocation, and an abort protocol. We then describe the

integration of Cluster-on-Demand that leverages these principles to multiplex machines in a

data center.

• Chapter 5 identifies shortcomings in the original conception of Sharp and Cluster-on-Demand

that make them unsuitable for multiplexing aggregations of slivers bound to virtualized hard-

ware. We extend the Sharp and Cluster-on-Demand model using two principles: exposing

names and secure bindings. Exposing names augments Sharp tickets to include logical names

for hosts, virtualized hardware, and slivers that allow service managers and authorities to

reference each entity separately. Secure bindings permit an authority or service manager to

access the hardware management services of each virtual hardware device. We describe control

mechanisms that exposing names and secure bindings enable for guests.

• Chapter 6 demonstrates that leases are a foundational primitive for addressing arbitration

in a networked operating system that supports both market-based and proportional-share

arbitration policies. Leasing currency defines a configurable tradeoff between proportional-

share scheduling and a market economy. We demonstrate the properties of self-recharging

virtual currency using simulations of two market-based task services.

174

• Chapter 7 outlines the architecture’s model for addressing failures, which combines the use

of leases for long-term resource management with state recovery mechanisms. The model

provides system robustness to transient faults and failures in a loosely coupled distributed

system that coordinates resource allocation.

• Chapter 8 describes the implementation of a prototype and evaluates its flexibility and perfor-

mance. We asses the prototype’s flexibility by multiplexing storage devices, physical machines,

and virtual machines in a data center, and evaluate its scalability using emulation experiments

that stress the prototype under saturation. We find that the design principle of resource in-

dependence does not preclude the type of resource multiplexed by the prototype and that

performance is suitable for managing thousands of machines.

• Chapter 9 further evaluates the architecture by discussing case studies of integrating multiple

types of guests including the PlanetLab network testbed [23], the Plush distributed application

manager [9], and the GridEngine batch scheduler [75]. Each guest requires a different set

of capabilities for controlling resources and policies for adapting its resources to changes in

load. The integrations leverage the design principles of guest independence, visible allocation,

modification, and revocation, and an abort protocol. We also leverage the architecture to

construct Jaws, a light-weight batch scheduler that instantiates one or more virtual machines

per task.

In summary, we validate our hypothesis by examining previous work in a different domain,

distilling a set of design principles that accounts for previous work and incorporates the characteris-

tics of a distributed environment, describing the impact on existing systems that deviate from these

design principles, constructing a prototype of the architecture and using it to implement Cluster-on-

Demand, extending the prototype and its principles to control aggregations of virtualized resources,

and showing that leases are a basis for arbitration and fault tolerance. We evaluate the system by

studying the impact of the architecture on multiple types of guests and resources that we integrate

with it.

175

10.2 Future Directions

The GENI initiative represents a growing consensus in the network research community that the

Internet needs drastic changes to continue to evolve to support new innovations from academic

and industry research [131]. The initiative is a product of previous lessons learned trying to inject

new functionality into the existing Internet: both Active Networks [174] and overlay networks [91]

inject new functionality by allowing external code to execute on internal network routers or layering

new network functionality on top of the existing Internet, respectively. GENI combines elements

of both approaches by proposing an Internet architecture founded on virtualization and slivering as

the primary means to isolate different guests and networks in the wide-area. Slivering of both the

edge and internal resources that comprise the Internet affords a flexible design that accommodates

existing Internet packet routing functionality as well as future innovations by isolating them in

virtual slices of a networked infrastructure [132].

The impact of applying core principles of node operating system design to a networked oper-

ating system, as proposed by GENI, is left for the future. However, we can observe the impact of

not applying these principles on the operation of GENI’s precursor, PlanetLab. As one example,

PlanetLab does not use leases for resource management; however, it has found it necessary to use

leases for the lifetime management of slices, which expire if unused for more than 8 weeks. Life-

time management of slices is necessary for PlanetLab because each individual machine associates a

minimal amount of state with each slice.

A networked operating system must wrestle with many of the same questions that node operating

system designers wrestled with: namely, what are the right programming abstractions for networked

computing? Years of operating systems research produced a common set of basic programming

abstractions implemented by nearly all node operating systems including files, processes, threads,

pipes, sockets, and virtual memory. Even so, the implementation of these most basic, widely used,

and fundamental abstractions came under scrutiny in research on extensible operating systems [13,

27, 61].

In the end, the research did not have a significant impact on commodity node operating systems

because machine resources became cheap enough to partition at a coarse grain using technologies

such as virtual machines. Instead, node operating systems developed to a point where users were

176

comfortable with the programming abstractions they provided (possibly because they had to become

comfortable with them because there were no other options). The model for scalable distributed

computing is still being determined. Previous work on different types of distributed operating

systems did not gain wide acceptance [4, 6, 11, 21, 30, 41, 53, 55, 66, 76, 94, 104, 113, 123, 137, 140,

160, 169, 171] because they did not cleanly separated programming abstractions from mechanisms

for multiplexing resources. For instance, the systems cited above combine different elements of

remote execution, migration, checkpointing, task scheduling and control, parallel job execution, and

idle resource detection. While useful, the implementation of each of these mechanisms assumes the

guests that use the resources will actually use the mechanism.

The architecture in this thesis seeks to provide an extensible platform for higher-level platforms

and services to use resources in any way they choose. We choose to adopt principles similar to those

of Exokernel [61] by focusing on implementing servers that securely multiplex resources but do not

implement programming abstractions. The architecture eliminates management and arbitration

policy from the authorities that control resources. The architectural decision to delegate resource

management to guests frees the architecture to serve as the foundation for any type of guest, as

long as the guest accommodates visible resource allocation and revocation.

We focus on multiplexing networked collections of physical and virtual machines in data centers.

Virtual machines use local scheduling policies to sliver machines resources and allocate them at

a coarser grain than Exokernel. This thesis does not define the local resource scheduling policies

for slivers. High fidelity slivering of physical machine resources, including multi-core processors, is

ongoing research that is orthogonal to our architecture. The architecture is compatible with any

slivering technology that partitions the resources of physical hardware and presents a machine-level

abstraction to guests.

The principle of secure low-level resource multiplexing is also applicable to other environments.

In particular, applying these principles to network virtualization and isolation is an open problem;

virtual clusters do not currently isolate each virtual cluster’s network traffic. Virtual clusters with

resources that span multiple physical locations also cannot control their own network namespace,

and, given proper virtualization at the routers, request bandwidth-provisioned network paths to

enable multiple, self-contained networks that can better control how their traffic interacts with the

177

broader Internet. Applying the same principles to more resource constrained environments, such as

mobile devices and sensors, is left for future work.

This thesis focuses on an architecture for hardware resources that guests may reuse. We view

other characterizations of a resource, such as energy [186], as policy constraints placed on the use

of a renewable hardware resource. For example, an authority for a data center that must adhere

to a strict daily power budget must have a policy that leases power-hungry hardware to guests

in order to meet the daily budget [139]. The policy implications of energy constraints are also

paramount for battery-powered mobile devices and sensors: the design principles of our architecture

are independent, but compatible, with these policy considerations. However, further investigation

of the policy considerations for energy is left for future work.

Designing new guests and policies that leverage the architecture’s foundational capabilities for

resource multiplexing in new domains is continuing future work. As stated above, simplifying

programming abstractions reduces the burden of developing new guests; however, programming

abstractions are especially necessary in networked environments that exhibit volatile behavior. Node

operating systems present a variety of useful programming abstractions to the programmer including

processes, threads, files, pipes, and virtual memory. Designing useful programming abstractions

for guests executing on machines spread across networks, such as the Internet, that are as useful

to programmers as node programming abstractions is an important next step in the evolution of

distributed computing.

178

Bibliography

[1] http://www.opsware.com, Accessed October 2007.

[2] http://www.wrhambrecht.com/ind/auctions/openbook/index.html, Accessed February 2008.

[3] Who Wants to Buy a Computon? In The Economist, March 12, 2005.

[4] Michael J. Accetta, Robert V. Baron, William J. Bolosky, David B. Golub, Richard F. Rashid,
Avadis Tevanian and Michael Young. Mach: A New Kernel Foundation for UNIX Develop-
ment. In Proceedings of the USENIX Summer Technical Conference, pages 93-113, Atlanta,
Georgia, June 1986.

[5] Sumalatha Adabala, Vineet Chadha, Puneet Chawla, Renato Figueiredo, Jose Fortes, Ivan
Krsul, Andrea Matsunaga, Mauricio Tsugawa, Jian Zhang, Ming Zhao, Liping Zhu and Xi-
aomin Zhu. From Virtualized Resources to Virtual Computing Grids: The in-VIGO System.
In Future Generation Computing Systems, 21(1):896-909, January 2005.

[6] Rakesh Agrawal and Ahmed K. Ezzat. Location Independent Remote Execution in NEST.
In IEEE Transactions on Software Engineering., 13(8):905-912, August 1987.

[7] Marcos Kawazoe Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds and Athicha
Muthitacharoen. Performance Debugging for Distributed Systems of Black Boxes. In Pro-
ceedings of the Symposium on Operating Systems Principles, pages 74-89, Bolton Landing,
New York, October 2003.

[8] Jeannie Albrecht, Ryan Braud, Darren Dao, Nikolay Topilski, Christopher Tuttle, Alex C.
Snoeren and Amin Vahdat. Remote Control: Distributed Application Configuration, Man-
agement, and Visualization with Plush. In Proceedings of the Large Installation System
Administration Conference, Dallas, Texas, November 2007.

[9] Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren and Amin Vahdat. PlanetLab Applica-
tion Management Using Plush. In SIGOPS Operating Systems Review, 40(1):33-40, January
2006.

[10] Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren and Amin Vahdat. Loose Synchroniza-
tion for Large-Scale Networked Systems. In Proceedings of the USENIX Annual Technical
Conference, Boston, Massachusetts, June 2006.

[11] Guy T. Almes, Andrew P. Black, Edward D. Lazowska and Jerre D. Noe. The Eden System:
A Technical Review. In IEEE Transactions on Software Engineering., 11(1):43-59, January
1985.

[12] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek and Robert Morris. Resilient
Overlay Networks. In Proceedings of the Symposium on Operating Systems Principles, pages
131-145, Banff, Canada, October 2001.

[13] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska and Henry M. Levy. Scheduler
Activations: Effective Kernel Support for the User-Level Management of Parallelism. In
Proceedings of the Symposium on Operating Systems Principles, pages 95-109, Pacific Grove,
California, October 1991.

[14] Thomas Anderson and Timothy Roscoe. Lessons from PlanetLab. In Proceedings of the
Workshop on Real, Large Distributed Systems, Seattle, Washington, November 2006.

179

[15] Karen Appleby, Sameh Fakhouri, Liana Fong, Germán Goldszmidt, Michael Kalantar, Srirama
Krishnakumar, Donald P. Pazel, John Pershing and Benny Rochwerger. Oceano-SLA Based
Management of a Computing Utility. In Proceedings of the International Symposium on
Integrated Network Management, pages 855-858, Seattle, Washington, May 2001.

[16] Alvin AuYoung, Laura Grit, Janet Wiener and John Wilkes. Service Contracts and Aggregate
Utility Functions. In Proceedings of the IEEE Symposium on High Performance Distributed
Computing, pages 119-131, Paris, France, June 2006.

[17] Sam Averitt, Michael Bugaev, Aaron Peeler, Henry Shaffer, Eric Sills, Sarah Stein, Josh
Thompson and Mladen Vouk. Virtual Computing Laboratory (VCL). In Proceedings of the
International Conference on the Virtual Computing Initiative, pages 1-6, Research Triangle
Park, North Carolina, May 2007.

[18] Ivan D. Baev, Waleed M. Meleis and Alexandre E. Eichenberger. Algorithms for Total
Weighted Completion Time Scheduling. In Algorithmica, 33(1):34–51, May 2002.

[19] Magdalena Balazinska, Hari Balakrishnan and Michael Stonebraker. Contract-Based Load
Management in Federated Distributed Systems. In Proceedings of the Symposium on Net-
worked System Design and Implementation, pages 197-210, San Francisco, California, March
2004.

[20] Gaurav Banga, Peter Druschel and Jeffrey C. Mogul. Resource Containers: A New Facility
for Resource Management in Server Systems. In Proceedings of the Symposium on Operating
System Design and Implementation, pages 45-58, New Orleans, Louisiana, February 1999.

[21] Antônio Marinho Pilla Barcellos, João Frederico Lacava Schramm, Valdir Rossi Belmonte
Filho and Cláudio F. R. Geyer. The HetNOS Network Operating System: A Tool for Writing
Distributed Applications. In SIGOPS Operating Systems Review, 28(4):34-47, October 1994.

[22] Paul T. Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L. Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt and Andrew Warfield. Xen and the Art of Virtualization. In Proceed-
ings of the Symposium on Operating Systems Principles, pages 164-177, Bolton Landing, New
York, October 2003.

[23] Andy C. Bavier, Mic Bowman, Brent N. Chun, David E. Culler, Scott Karlin, Steve Muir,
Larry L. Peterson, Timothy Roscoe, Tammo Spalink and Mike Wawrzoniak. Operating Sys-
tems Support for Planetary-Scale Network Services. In Proceedings of the Symposium on Net-
worked System Design and Implementation, pages 253-266, San Francisco, California, March
2004.

[24] Andy C. Bavier, Nick Feamster, Mark Huang, Larry L. Peterson and Jennifer Rexford. In
VINI Veritas: Realistic and Controlled Network Experimentation. In Proceedings of the
SIGCOMM Conference, pages 3-14, Piza, Italy, September 2006.

[25] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the
USENIX Annual Technical Conference, FREENIX Track, pages 41-46, Anaheim, California,
April 2005.

[26] John Bent, Douglas Thain, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau and Miron
Livny. Explicit Control in the Batch-Aware Distributed File System. In Proceedings of the
Symposium on Networked System Design and Implementation, pages 365-378, San Francisco,
California, March 2004.

180

[27] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc E. Fiuczynski,
David Becker, Craig Chambers and Susan J. Eggers. Extensibility, Safety and Performance
in the SPIN Operating System. In Proceedings of the Symposium on Operating Systems
Principles, pages 267-284, Copper Mountain, Colorado, December 1995.

[28] Andrew Birrell, Greg Nelson, Susan S. Owicki and Edward Wobber. Network Objects. In
Proceedings of the Symposium on Operating Systems Principles, pages 217-230, Asheville,
North Carolina, October 1993.

[29] Rebecca Braynard, Dejan Kostić, Adolfo Rodriguez, Jeff Chase and Amin Vahdat. Opus:
An Overlay Peer Utility Service. In Proceedings of the Open Architectures and Network
Programming, pages 167-178, New York, New York, June 2002.

[30] David R. Brownbridge, Lindsay F. Marshall and Brian Randell. The Newcastle Connection
Or UNIXes of the World Unite. In Classic Operating Systems: From Batch Processing to
Distributed Systems, pages 528-549, Springer-Verlag New York, Inc. New York, New York,
2001.

[31] Navin Budhiraja, Keith Marzullo, Fred B. Schneider and Sam Toueg. The Primary-Backup
Approach. In Distributed Systems, pages 199-216, ACM Press/Addison-Wesley Publishing
Co. New York, New York, 1993.

[32] Jennifer Burge, Partha Ranganathan and Janet Wiener. Cost-Aware Scheduling for Hetero-
geneous Enterprise Machines (CASH’EM). HP Laboratories, Technical Report HPL-2007-63,
May 2007.

[33] Alan Burns, Divya Prasad, Andrea Bondavalli, Felicita Di Giandomenico, Krithi Ramam-
ritham, John Stankovic and Lorenzo Strigini. The Meaning and Role of Value in Scheduling
Flexible Real-Time Systems. In Journal of Systems Architecture, 46(4):305-325, January 2000.

[34] Rajkumar Buyya, David Abramson and Jonathan Giddy. An Economy Driven Resource
Management Architecture for Global Computational Power Grids. In Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and Applications,
Las Vegas, North Dakota, 2000.

[35] Zhongtang Cai, Vibhore Kumar and Karsten Schwan. IQ-Paths: Self-Regulating Data
Streams Across Network Overlays. In Proceedings of the IEEE Symposium on High Per-
formance Distributed Computing, Paris, France, June 2006.

[36] Emmanuel Cecchet, Julie Marguerite and Willy Zwaenepoel. Performance and Scalability
of EJB Applications. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 246-261, Seattle, Washington, November 2002.

[37] Clovis Chapman, Paul Wilson, Todd Tannenbaum, Matthew Farrellee, Miron Livny, John
Brodholt and Wolfgang Emmerich. Condor Services for the Global Grid: Interoperability
Between Condor and OGSA. In Proceedings of the 2004 UK e-Science All Hands Meeting,
pages 870-877, Nottingham, United Kingdom, August 2004.

[38] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin Vahdat and Ronald P. Doyle.
Managing Energy and Server Resources in Hosting Centres. In Proceedings of the Symposium
on Operating Systems Principles, pages 103-116, Banff, Canada, October 2001.

[39] Jeffrey S. Chase, David E. Irwin, Laura E. Grit, Justin D. Moore and Sara E. Sprenkle.
Dynamic Virtual Clusters in a Grid Site Manager. In Proceedings of the IEEE Symposium
on High Performance Distributed Computing, pages 90-100, Seattle, Washington, June 2003.

181

[40] Ken Chen and Paul Muhlethaler. A Scheduling Algorithm for Tasks Described By Time Value
Function. In Real-Time Systems, 10(3):293-312, 1996.

[41] David R. Cheriton and Willy Zwaenepoel. The Distributed V Kernel and Its Performance for
Diskless Workstations. In Proceedings of the Symposium on Operating Systems Principles,
pages 129-140, Bretton Woods, New Hampshire, October 1983.

[42] Brent Chun. Market-Based Cluster Resource Management. Ph.D. Thesis, University of Cali-
fornia at Berkeley, November 2001.

[43] Brent N. Chun, Philip Buonadonna, Alvin AuYoung, Chaki Ng, David C. Parkes, Jeffrey
Shneidman, Alex C. Snoeren and Amin Vahdat. Mirage: A Microeconomic Resource Alloca-
tion System for SensorNet Testbeds. In Proceedings of the Workshop on Embedded Networked
Sensors, pages 19-28, Sydney, Australia, May 2005.

[44] Brent N. Chun and David E. Culler. User-Centric Performance Analysis of Market-Based
Cluster Batch Schedulers. In Proceedings of the IEEE International Symposium on Cluster
Computing and the Grid, pages 30-38, Berlin, Germany, May 2002.

[45] Brent N. Chun, Yun Fu and Amin Vahdat. Bootstrapping a Distributed Computational
Economy with Peer-to-Peer Bartering. In Proceedings of the Workshop on the Economics of
Peer-to-Peer Systems, Berkeley, California, June 2003.

[46] Ed G. Coffman, Jr., Mike R. Garey and David S. Johnson. Approximation Algorithms for Bin
Packing: A Survey. In Approximation algorithms for NP-hard problems, pages 46-93, 1996.

[47] Bram Cohen. Incentives Build Robustness in BitTorrent. In Proceedings of the Workshop on
the Economics of Peer-to-Peer Systems, Berkeley, California, June 2003.

[48] Landon P. Cox and Peter Chen. Pocket Hypervisors: Opportunities and Challenges. In Pro-
ceedings of the Workshop on Mobile Computing Systems and Applications, Tuscon, February
2007.

[49] Olivier Crameri, Nikola Knezevic, Dejan Kostic, Ricardo Bianchini and Willy Zwaenepoel.
Staged Deployment in Mirage, an Integrated Software Upgrade Testing and Distribution Sys-
tem. In Proceedings of the Symposium on Operating Systems Principles, Bretton Woods, New
Hampshire, October 2007.

[50] Robert J. Creasy. The Origin of the VM/370 Time-Sharing System. In IBM Journal of
Research and Development, 25(5):483-490, September 1981.

[51] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe and Andrew Warfield. QoS’s
Downfall: At the Bottom, Or Not At All! In Proceedings of the Workshop on Revisiting
IP QoS: What Have We Learned, Why Do We Care?, pages 109-114, Karlsruhe, Germany,
August 2003.

[52] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe and Andrew Warfield.
Plutarch: An Argument for Network Pluralism. In SIGCOMM Computer Communications
Review, 33(4):258 - 266, October 2003.

[53] Partha Dasgupta, Richard J. LeBlanc, Jr., Mustaque Ahamad and Umakishore Ramachan-
dran. The Clouds Distributed Operating System. In Computer, 24(11):34-44, November 1991.

[54] Jeff Dike. User-Mode Linux. In Proceedings of the Linux Showcase and Conference, Oakland,
California, November 2001.

182

[55] Fred Douglis and John Ousterhout. Transparent Process Migration: Design Alternatives and
the Sprite Implementation. In Software-Practice and Experience, 21(8):757-785, August 1991.

[56] Peter Druschel, Vivek S. Pai and Willy Zwaenepoel. Extensible Kernels Are Leading OS
Research Astray. In Proceedings of the Workshop on Hot Topics in Operating Systems, pages
38-42, Cape Cod, Massachusetts, May 1997.

[57] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai and Peter M. Chen.
ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay. In Pro-
ceedings of the Symposium on Operating System Design and Implementation, pages 211-224,
Boston, Massachusetts, December 2002.

[58] Eric Eide, Leigh Stoller and Jay Lepreau. An Experimentation Workbench for Replayable
Networking Research. In Proceedings of the Symposium on Networked System Design and
Implementation, Cambridge, Massachusetts, April 2007.

[59] Dawson R. Engler. The Exokernel Operating System Architecture. Ph.D. Thesis, Mas-
sachusetts Institute of Technology, October 1998.

[60] Dawson R. Engler and M. Frans Kaashoek. Exterminate All Operating Systems Abstractions.
In Proceedings of the Workshop on Hot Topics in Operating Systems, pages 78-85, Orcas
Island, Washington, 1995.

[61] Dawson R. Engler, M. Frans Kaashoek and James O’Toole. Exokernel: An Operating System
Architecture for Application-Level Resource Management. In Proceedings of the Symposium
on Operating Systems Principles, pages 251-266, Copper Mountain, Colorado, December 1995.

[62] Nick Feamster, Lixin Gao and Jennifer Rexford. How to Lease the Internet in Your Spare
Time. In SIGCOMM Computer Communications Review, 37(1):61-64, January 2007.

[63] Michael J. Feeley, William E. Morgan, Frederic H. Pighin, Anna R. Karlin, Henry M. Levy and
Chandramohan A. Thekkath. Implementing Global Memory Management in a Workstation
Cluster. In Proceedings of the Symposium on Operating Systems Principles, pages 201-212,
Copper Mountain, Colorado, December 1995.

[64] Michal Feldman, Kevin Lai and Li Zhang. A Price-Anticipating Resource Allocation Mecha-
nism for Distributed Shared Clusters. In Proceedings of the ACM Conference on Electronic
Commerce, pages 127-136, Vancouver, Canada, June 2005.

[65] Renato J. O. Figueiredo, Peter A. Dinda and José A. B. Fortes. A Case for Grid Computing
on Virtual Machine. In Proceedings of the International Conference on Distributed Computing
Systems, pages 550-559, Providence, Rhode Island, May 2003.

[66] Raphael Finkel, Michael L. Scott, Yeshayahu Artsy and Hung-Yang Chang. Experience with
Charlotte: Simplicity and Function in a Distributed Operating System. In IEEE Transactions
on Software Engineering., 15(6):676-685, June 1989.

[67] Ian Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. In Proceedings
of the International Conference on Network and Parallel Computing, pages 2-13, Beijing,
China, December 2005.

[68] Ian Foster, Karl Czajkowski, Donald F. Ferguson, Jeffrey Frey, Steve Graham, Tom Maguire,
David Snelling and Steven Tuecke. Modeling and Managing State in Distributed Systems:
The Role of OGSI and WSRF. In IEEE, 93(3):604-612, March 2005.

[69] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 2004.

183

[70] Ian Foster, Carl Kesselman, Jeffrey M. Nick and Steven Tuecke. Grid Services for Distributed
System Integration. In Computer, 35(6):37-46, June 2002.

[71] Michael J. Freedman, Eric Freudenthal and David Mazières. Democratizing Content Pub-
lication with Coral. In Proceedings of the Symposium on Networked System Design and
Implementation, pages 239-252, San Francisco, California, March 2004.

[72] Yun Fu. Resource Allocation for Global-Scale Network Services. Ph.D. Thesis, Duke Univer-
sity, December 2004.

[73] Yun Fu, Jeffrey S. Chase, Brent N. Chun, Stephen Schwab and Amin Vahdat. SHARP: An
Architecture for Secure Resource Peering. In Proceedings of the Symposium on Operating
Systems Principles, pages 133-148, Bolton Landing, New York, October 2003.

[74] Simson Garfinkel. Commodity Grid Computing with Amazon’s S3 and EC2. In ;login: The
USENIX Magazine, 32(1):7-13, February 2007.

[75] Wolfgang Gentzsch. Sun Grid Engine: Towards Creating a Compute Power Grid. In Proceed-
ings of the IEEE International Symposium on Cluster Computing and the Grid, pages 35-36,
Chicago, Illinois, April 2004.

[76] Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, Amin M. Vahdat and Thomas
E. Anderson. GLUnix: A Global Layer UNIX for a Network of Workstations. In Software-
Practice and Experience, 28(9):929-961, July 1998.

[77] Frank E. Gillett and Galen Schreck. Server Virtualization Goes Mainstream. Forrester Re-
search Inc. Technical Report 2-22-06, February 2006.

[78] Cary G. Gray and David R. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism for
Distributed File Cache Consistency. In Proceedings of the Symposium on Operating Systems
Principles, pages 202-210, Litchfield Park, Arizona, December 1989.

[79] Laura Grit. Extensible Resource Management for Networked Virtual Computing. Ph.D.
Thesis, Duke University, December 2007.

[80] Laura Grit, Jeff Chase David Irwin and Aydan Yumerefendi. Adaptive Virtual Machine
Hosting with Brokers. Duke University, Technical Report CS-2006-12, August 2006.

[81] Laura Grit, David Irwin, Aydan Yumerefendi and Jeff Chase. Virtual Machine Hosting for
Networked Clusters: Building the Foundations for ”Autonomic” Orchestration. In Proceed-
ings of the Workshop on Virtualization Technology in Distributed Computing, Tampa, Florida,
November 2006.

[82] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner and Amin Vahdat. Enforcing Performance
Isolation Across Virtual Machines in Xen. In Proceedings of the International Middleware
Conference, pages 342-362, Melbourne, Australia, November 2006.

[83] Rohit Gupta and Varun Sekhri. CompuP2P: An Architecture for Internet Computing Us-
ing Peer-to-Peer Networks. In IEEE Transactions on Parallel and Distributed Systems,
17(11):1306-1320, November 2006.

[84] Joseph Hall, Jason D. Hartline, Anna R. Karlin, Jared Saia and John Wilkes. On Algorithms
for Efficient Data Migration. In Proceedings of the Symposium on Discrete Algorithms, pages
620-629, Washington, D.C. January 2001.

[85] Steven Hand, Tim Harris, Evangelos Kotsovinos and Ian Pratt. Controlling the XenoServer
Open Platform. In Proceedings of the IEEE Conference on Open Architectures and Network
Programming, pages 3-11, April 2003.

184

[86] Timothy L. Harris. Extensible Virtual Machines. Ph.D. Thesis, University of Cambridge,
December 2001.

[87] Kieran Harty and David R. Cheriton. Application-Controlled Physical Memory Using Exter-
nal Page Cache Management. In Proceedings of the Architectural Support for Programming
Languages and Operating Systems, pages 187-197, Boston, Massachusetts, October 1992.

[88] Pat Helland. Life Beyond Distributed Transactions: An Apostate’s Opinion. In Proceedings
of the Conference on Innovative Data Systems Research, pages 132-141, Asilomar, California,
January 2007.

[89] Mike Hibler, Leigh Stoller, Jay Lepreau, Robert Ricci and Chad Barb. Fast, Scalable Disk
Imaging with Frisbee. In Proceedings of the USENIX Annual Technical Conference, pages
283-296, San Antonio, Texas, June 2003.

[90] David E. Irwin, Laura E. Grit and Jeffrey S. Chase. Balancing Risk and Reward in a Market-
Based Task Service. In Proceedings of the IEEE Symposium on High Performance Distributed
Computing, pages 160-169, Honolulu, Hawaii, June 2004.

[91] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek and James O’Toole,
Jr. Overcast: Reliable Multicasting with an Overlay Network. In Proceedings of the Sympo-
sium on Operating System Design and Implementation, pages 197-212, San Diego, California,
October 2000.

[92] Xuxian Jiang and Dongyan Xu. SODA: A Service-on-Demand Architecture for Application
Service Hosting in Utility Platforms. In Proceedings of the IEEE Symposium on High Per-
formance Distributed Computing, pages 174-183, Seattle, Washington, June 2003.

[93] Ashlesha Joshi, Samuel T. King, George W. Dunlap and Peter M. Chen. Detecting Past and
Present Intrusions through Vulnerability-Specific Predicates. In Proceedings of the Symposium
on Operating Systems Principles, pages 91-104, Brighton, United Kingdom, October 2005.

[94] Jiubin Ju, Gaochao Xu and Jie Tao. Parallel Computing Using Idle Workstations. In SIGOPS
Operating Systems Review, 27(3):87-96, July 1993.

[95] Chet Juszczak. Improving the Performance and Correctness of an NFS Server. In Proceedings
of the USENIX Winter Technical Conference, pages 53-63, San Diego, California, February
1989.

[96] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M. Briceño, Russell Hunt,
David Mazières, Thomas Pinckney, Robert Grimm, John Jannotti and Kenneth Mackenzie.
Application Performance and Flexibility on Exokernel Systems. In Proceedings of the Sym-
posium on Operating Systems Principles, pages 52-65, Saint Malo, France, October 1997.

[97] Mahesh Kallahalla, Mustafa Uysal, Ram Swaminathan, David E. Lowell, Mike Wray, Tom
Christian, Nigel Edwards, Chris I. Dalton and Frederic Gittler. SoftUDC: A Software-Based
Data Center for Utility Computing. In Computer, 37(11):38-46, November 2004.

[98] A. Karve, Tracy Kimbrel, Giovanni Pacifici, Mike Spreitzer, Malgorzata Steinder, Maxim
Sviridenko and Asser N. Tantawi. Dynamic Placement for Clustered Web Applications. In
Proceedings of the International World Wide Web Conference, pages 595-604, Edinburgh,
Scotland, May 2006.

[99] Kate Keahey, Ian Foster, Timothy Freeman, Xuehai Zhang and Daniel Galron. Virtual
Workspaces in the Grid. In Proceedings of the International Euro-Par Conference on Parallel
Processing, pages 421-431, Lisbon, Portugal, September 2005.

185

[100] Terence Kelly. Utility-Directed Allocation. In Proceedings of the Workshop on Algorithms
and Architectures for Self-Managing Systems, June 2003.

[101] Samuel T. King, George W. Dunlap and Peter M. Chen. Debugging Operating Systems
with Time-Traveling Virtual Machines. In Proceedings of the USENIX Annual Technical
Conference, pages 1-11, Anaheim, California, April 2005.

[102] Dejan Kostic, Adolfo Rodriguez, Jeannie R. Albrecht and Amin Vahdat. Bullet: High Band-
width Data Dissemination Using an Overlay Mesh. In Proceedings of the Symposium on
Operating Systems Principles, pages 282-297, Bolton Landing, New York, October 2003.

[103] Evangelos Kotsovinos, Tim Moreton, Ian Pratt, Russ Ross, Keir Fraser, Steven Hand and
Tim Harris. Global-Scale Service Deployment in the XenoServer Platform. In Proceedings of
the Workshop on Real, Large Distributed Systems, San Francisco, California, December 2004.

[104] Nancy P. Kronenberg, Henry M. Levy and William D. Strecker. VAXclusters: A Closely-
Coupled Distributed System. In ACM Transactions on Computer Systems, 4(2):130-146, May
1986.

[105] Kevin Lai, Lars Rasmusson, Eytan Adar, Stephen Sorkin, Li Zhang and Bernardo A. Huber-
man. Tycoon: An Implemention of a Distributed Market-Based Resource Allocation System.
HP Laboratories, Technical Report DC/0412038, December 2004.

[106] Butler W. Lampson. Hints for Computer System Design. In Proceedings of the Symposium on
Operating Systems Principles, pages 33-48, Bretton Woods, New Hampshire, October 1983.

[107] Butler W. Lampson. How to Build a Highly Available System Using Consensus. In Pro-
ceedings of the International Workshop on Distributed Algorithms, pages 1-17, Bologna, Italy,
October 1996.

[108] Butler W. Lampson and Robert F. Sproull. An Open Operating System for a Single-User
Machine. In Proceedings of the Symposium on Operating Systems Principles, pages 98-105,
Pacific Grove, California, December 1979.

[109] Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy and Allan Snavely. Are User Runtime
Estimates Inherently Inaccurate? In Proceedings of the International Workshop on Job
Scheduling Strategies for Parallel Processing, pages 253-263, New York, New York, June 2004.

[110] Philip Levis and David Culler. MatÉ: A Tiny Virtual Machine for Sensor Networks. In
Proceedings of the Architectural Support for Programming Languages and Operating Systems,
pages 85-95, October 2002.

[111] Jochen Liedtke. On Micro-Kernel Construction. In Proceedings of the Symposium on Oper-
ating Systems Principles, pages 237-250, Copper Mountain, Colorado, December 1995.

[112] Bin Lin and Peter A. Dinda. VSched: Mixing Batch and Interactive Virtual Machines Using
Periodic Real-Time Scheduling. In Proceedings of the ACM/IEEE Conference on Supercom-
puting, Seattle, Washington, November 2005.

[113] Michael J. Litzkow, Miron Livny and Matt W. Mutka. Condor - a Hunter of Idle Workstations.
In Proceedings of the International Conference on Distributed Computing Systems, pages 104-
111, San Jose, California, June 1988.

[114] Rick Macklem. Not Quite NFS, Soft Cache Consistency for NFS. In Proceedings of the
USENIX Winter Technical Conference, pages 261-278, San Francisco, California, January
1994.

186

[115] John Markoff and Saul Hansell. Hiding in Plain Sight, Google Seeks More Power. In New
York Times, June 14, 2006.

[116] Marvin McNett, Diwaker Gupta, Amin Vahdat and Geoffrey M. Voelker. Usher: An Ex-
tensible Framework for Managing Clusters of Virtual Machines. In Proceedings of the Large
Installation System Administration Conference, Dallas, Texas, November 2007.

[117] Aravind Menon, Alan L. Cox and Willy Zwaenepoel. Optimizing Network Virtualization in
Xen. In Proceedings of the USENIX Annual Technical Conference, pages 199-212, Boston,
Massachusetts, June 2006.

[118] Jennifer D. Mitchell-Jackson. Energy Needs in an Internet Economy: A Closer Look At Data
Centers. Master’s Thesis, University of California, Berkeley, May 2001.

[119] Justin Moore, Jeff Chase, Parthasarathy Ranganathan and Ratnesh Sharma. Making Schedul-
ing “Cool”: Temperature-Aware Resource Assignment in Data Centers. In Proceedings of the
USENIX Annual Technical Conference, Anaheim, California, April 2005.

[120] Justin Moore, David Irwin, Laura Grit, Sara Sprenkle and Jeff Chase. Managing Mixed-Use
Clusters with Cluster-on-Demand. Duke University, Technical Report CS-2002-11, November
2002.

[121] Ripal Nathuji and Karsten Schwan. VirtualPower: Coordinated Power Management in Virtu-
alized Enterprise Systems. In Proceedings of the Symposium on Operating Systems Principles,
Bretton Woods, New Hampshire, October 2007.

[122] Peter Naur and Brian Randall. Software Engineering. In Report on a Conference Sponsored
by the NATO Science Committee, Garmisch, Germany, January 1969.

[123] David A. Nichols. Using Idle Workstations in a Shared Computing Environment. In Proceed-
ings of the Symposium on Operating Systems Principles, pages 5-12, Austin, Texas, November
1987.

[124] David Oppenheimer, Jeannie Albrecht, David Patterson and Amin Vahdat. Design and Im-
plementation Tradeoffs for Wide-Area Resource Discovery. In Proceedings of the IEEE Sym-
posium on High Performance Distributed Computing, pages 113-124, 2005.

[125] David Oppenheimer, Brent Chun, David Patterson, Alex C. Snoeren and Amin Vahdat. Ser-
vice Placement in a Shared Wide-Area Platform. In Proceedings of the USENIX Annual
Technical Conference, Boston, Massachusetts, June 2006.

[126] Philip M. Papadopoulos, Mason J. Katz and Greg Bruno. NPACI Rocks: Tools and Tech-
niques for Easily Deploying Manageable Linux Clusters. In Proceedings of the IEEE Interna-
tional Conference on Cluster Computing, pages 258-267, Newport Beach, California, October
2001.

[127] KyoungSoo Park and Vivek S. Pai. CoMon: A Mostly-Scalable Monitoring System for Plan-
etLab. In SIGOPS Operating Systems Review, 40(1):65-74, January 2006.

[128] David C. Parkes. Iterative Combinatorial Auctions: Achieving Economic and Computational
Efficiency. Ph.D. Thesis, University of Pennslyvania, May 2001.

[129] Larry Peterson, Tom Anderson, David Culler and Timothy Roscoe. A Blueprint for Introduc-
ing Disruptive Technology Into the Internet. In Proceedings of the Workshop on Hot Topics
in Networks, Princeton, New Jersey, November 2002.

187

[130] Larry Peterson, Andy Bavier, Marc E. Fiuczynski and Steve Muir. Experiences Building Plan-
etLab. In Proceedings of the Symposium on Operating System Design and Implementation,
pages 351-366, Seattle, Washington, November 2006.

[131] Larry Peterson and John Wroclawski Editors. Overview of the GENI Architecture. GENI
Design Document, Technical Report 06-11, September 2006.

[132] Larry Peterson, Scott Shenker and Jon Turner. Overcoming the Internet Impasse through
Virtualization. In Proceedings of the Workshop on Hot Topics in Networks, San Diego, Cali-
fornia, November 2004.

[133] Ben Pfaff, Tal Garfinkel and Mendel Rosenblum. Virtualization Aware File Systems: Getting
Beyond the Limitations of Virtual Disks. In Proceedings of the Symposium on Networked
System Design and Implementation, San Jose, California, May 2006.

[134] Florentina I. Popovici and John Wilkes. Profitable Services in an Uncertain World. In Pro-
ceedings of the ACM/IEEE Conference on Supercomputing, Seattle, Washington, November
2005.

[135] John B. Pormann, John A. Board, Donald J. Rose and Craig S. Henriquez. Large-Scale
Modeling of Cardiac Electrophysiology. In Proceedings of the Computers in Cardiology, pages
259-262, September 2002.

[136] Pradeep Pradala, Kang Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal,
Arif Merchant and Kenneth Salem. Adaptive Control of Virtualized Resources in Utility
Computing Environments. In Proceedings of the European Conference on Computer Systems,
pages 289-302, Lisbon, Portugal, March 2007.

[137] David L. Presotto and Barton P. Miller. Process Migration in DEMOS/MP. In Proceedings
of the Symposium on Operating Systems Principles, pages 110-119, Bretton Woods, New
Hampshire, October 1983.

[138] Lavayna Ramakrishnan, Laura Grit, Adriana Iamnitchi, David Irwin, Aydan Yumerefendi
and Jeff Chase. Toward a Doctrine of Containment: Grid Hosting with Adaptive Resource
Control. In Proceedings of the ACM/IEEE Conference on Supercomputing, Tampa, Florida,
November 2006.

[139] Parthasarathy Ranganathan, Phil Leech, David Irwin and Jeffrey Chase. Ensemble-Level
Power Management for Dense Blade Servers. In Proceedings of the International Symposium
on Computer Architecture, pages 66-77, Boston, Massachusetts, June 2006.

[140] Richard F. Rashid and George G. Robertson. Accent: A Communication Oriented Network
Operating System Kernel. In Proceedings of the Symposium on Operating Systems Principles,
pages 64-75, Pacific Grove, California, December 1981.

[141] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A. Shah and
Amin Vahdat. Pip: Detecting the Unexpected in Distributed Systems. In Proceedings of
the Symposium on Networked System Design and Implementation, San Jose, California, May
2006.

[142] Robert Ricci, Jonathon Duerig, Pramod Sanaga, Daniel Gebhardt, Mike Hibler, Kevin Atkin-
son, Junxing Zhang, Sneha Kasera and Jay Lepreau. The Flexlab Approach to Realistic
Evaluation of Networked Systems. In Proceedings of the Symposium on Networked System
Design and Implementation, Cambridge, Massachusetts, April 2007.

188

[143] Eric Robinson and David J. DeWitt. Turning Cluster Management Into Data Management;
a System Overview. In Proceedings of the Conference on Innovative Data Systems Research,
pages 120-131, Asilomar, California, January 2007.

[144] Paul Ruth, Junghwan Rhee, Dongyan Xu, Rick Kennell and Sebastien Goasguen. Autonomic
Live Adaptation of Virtual Computational Environments in a Multi-Domain Infrastructure.
In Proceedings of the International Conference on Autonomic Computing, pages 5-14, Dublin,
Ireland, June 2006.

[145] Jerome H. Saltzer, David P. Reed and David D. Clark. End-to-End Arguments in System
Design. In ACM Transactions on Computer Systems, 2(4):277-288, November 1984.

[146] Sriya Santhanam, Pradheep Elango, Andrea Arpaci-Dusseau and Miron Livny. Deploying
Virtual Machines as Sandboxes for the Grid. In Proceedings of the Workshop on Real, Large
Distributed Systems, San Francisco, California, December 2005.

[147] Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai Zeldovich, Jim Chow,
Monica S. Lam and Mendel Rosenblum. Virtual Appliances for Deploying and Maintaining
Software. In Proceedings of the Large Installation System Administration Conference, pages
181-194, San Diego, California, October 2003.

[148] Constantine Sapuntzakis and Monica S. Lam. Virtual Appliances in the Collective: A Road to
Hassle-Free Computing. In Proceedings of the Workshop on Hot Topics in Operating Systems,
pages 55-60, Lihue, Hawaii, May 2003.

[149] Fred B. Schneider. Replication Management Using the State-Machine Approach. In Dis-
tributed Systems, pages 169-197, ACM Press/Addison-Wesley Publishing Co. New York, New
York, 1993.

[150] Piyush Shivam. Proactive Experiment-Driven Learning for System Management. Ph.D. The-
sis, Duke University, December 2007.

[151] Piyush Shivam, Shivnath Babu and Jeff Chase. Active and Accelerated Learning of Cost
Models for Optimizing Scientific Applications. In Proceedings of the International Conference
on Very Large Databases, pages 535-546, Seoul, Korea, September 2006.

[152] Jeffrey Shneidman, Chaki Ng, David C. Parkes, Alvin AuYoung, Alex C. Snoeren, Amin
Vahdat and Brent N. Chun. Why Markets Could (But Don’t Currently) Solve Resource
Allocation Problems in Systems. In Proceedings of the Workshop on Hot Topics in Operating
Systems, pages 7, Santa Fe, New Mexico, June 2005.

[153] Stephen Soltesz, Herbert Potzl, Marc Fiuczynski, Andy Bavier and Larry Peterson. Container-
Based Operating System Virtualization: A Scalable, High-Performance Alternative to Hyper-
visors. In Proceedings of the European Conference on Computer Systems, pages 275-288,
Lisbon, Portugal, March 2007.

[154] Ion Stoica, Hussein M. Abdel-Wahab and Alex Pothen. A Microeconomic Scheduler for Par-
allel Computers. In Proceedings of the Workshop on Job Scheduling Strategies for Parallel
Processing, pages 200-218, Santa Barbara, California, April 1995.

[155] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek and Hari Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceedings of
the SIGCOMM Conference, pages 149-160, San Diego, California, August 2001.

189

[156] Michael Stonebraker, Robert Devine, Marcel Kornacker, Witold Litwin, Avi Pfeffer, Adam
Sah and Carl Staelin. An Economic Paradigm for Query Processing and Data Migration
in Mariposa. In Proceedings of the International Conference on Parallel and Distributed
Information Systems, pages 58-68, Austin, Texas, September 1994.

[157] David G. Sullivan and Margo I. Seltzer. Isolation with Flexibility: A Resource Management
Framework for Central Servers. In Proceedings of the USENIX Annual Technical Conference,
pages 337-350, San Diego, California, June 2000.

[158] Ivan E. Sutherland. A Futures Market in Computer Time. In Communications of the ACM,
11(6):449-451, June 1968.

[159] Karthik Tamilmani, Vinay Pai and Alexander Mohr. SWIFT: A System with Incentives
for Trading. In Proceedings of the Workshop on the Economics of Peer-to-Peer Systems,
Cambridge, Massachusetts, June 2004.

[160] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp and Sape
J. Mullender. Experiences with the Amoeba Distributed Operating System. In Communica-
tions of the ACM, 33(12):46-63, December 1990.

[161] Jesse Tilly and Eric M. Burke. Ant: The Definitive Guide. O’Reilly Media Inc. 2002.

[162] Bhuvan Urgaonkar, Arnold Rosenberg and Prashant Shenoy. Application Placement on a
Cluster of Servers. In Proceedings of the International Conference on Parallel and Distributed
Computing Systems, pages 85-90, SanFrancisco, September 2004.

[163] Bhuvan Urgaonkar and Prashant Shenoy. Sharc: Managing CPU and Network Bandwidth
in Shared Clusters. In IEEE Transactions on Parallel and Distributed Systems, 15(1):2-17,
January 2004.

[164] Bhuvan Urgaonkar, Prashant J. Shenoy and Timothy Roscoe. Resource Overbooking and
Application Profiling in Shared Hosting Platforms. In Proceedings of the Symposium on
Operating System Design and Implementation, Boston, Massachusetts, December 2002.

[165] Vivek Vishnumurthy, Sangeeth Chandrakumar and Emin Gűn Sirer. KARMA: A Secure
Economic Framework for Peer-to-Peer Resource Sharing. In Proceedings of the Workshop on
the Economics of Peer-to-Peer Systems, Berkeley, California, June 2003.

[166] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Snoeren, Ge-
offrey M. Voelker and Stefan Savage. Scalability, Fidelity, and Containment in the Potemkin
Virtual Honeyfarm. In Proceedings of the Symposium on Operating Systems Principles, pages
148-162, Brighton, United Kingdom, October 2005.

[167] Jim Waldo. The JINI Architecture for Network-Centric Computing. In Communications of
the ACM, 42(7):76-82, July 1999.

[168] Carl A. Waldspurger. Memory Resource Management in VMware ESX Server. In Proceedings
of the Symposium on Operating System Design and Implementation, pages 181-194, Boston,
Massachusetts, December 2002.

[169] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffery O. Kephart and W. Scott
Stornetta. Spawn: A Distributed Computational Economy. In IEEE Transactions on Soft-
ware Engineering, 18(2):103-117, February 1992.

[170] Carl A. Waldspurger and William E. Weihl. Lottery Scheduling: Flexible Proportional-Share
Resource Management. In Proceedings of the Symposium on Operating System Design and
Implementation, pages 1-11, Monterey, California, November 1994.

190

[171] Bruce J. Walker, Gerald J. Popek, Robert English, Charles S. Kline and Greg Thiel. The LO-
CUS Distributed Operating System. In Proceedings of the Symposium on Operating Systems
Principles, pages 49-70, Bretton Woods, New Hampshire, October 1983.

[172] Limin Wang, KyoungSoo Park, Ruoming Pang, Vivek S. Pai and Larry L. Peterson. Reliability
and Security in the CoDeeN Content Distribution Network. In Proceedings of the USENIX
Annual Technical Conference, pages 171-184, Boston, Massachusetts, June 2004.

[173] Andrew Warfield, Russ Ross, Keir Fraser, Christian Limpach and Steven Hand. Parallax:
Managing Storage for a Million Machines. In Proceedings of the Workshop on Hot Topics in
Operating Systems, pages 4, Santa Fe, New Mexico, June 2005.

[174] David Wetherall. Active Network Vision and Reality: Lessons from a Capsule-Based Sys-
tem. In Proceedings of the Symposium on Operating Systems Principles, pages 64-79, Kiawah
Island, South Carolina, December 1999.

[175] Andrew Whitaker, Richard S. Cox and Steven D. Gribble. Configuration Debugging as Search:
Finding the Needle in the Haystack. In Proceedings of the Symposium on Operating System
Design and Implementation, pages 77-90, San Francisco, California, December 2004.

[176] Andrew Whitaker, Marianne Shaw and Steven D. Gribble. Scale and Performance in the
Denali Isolation Kernel. In Proceedings of the Symposium on Operating System Design and
Implementation, Boston, Massachusetts, December 2002.

[177] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold,
Mike Hibler, Chad Barb and Abhijeet Joglekar. An Integrated Experimental Environment for
Distributed Systems and Networks. In Proceedings of the Symposium on Operating System
Design and Implementation, pages 255-270, Boston, Massachusetts, December 2002.

[178] John Wilkes, Patrick Goldsack, G. (John) Janakiraman, Lance Russell, Sharad Singhal and
Andrew Thomas. eOS - the Dawn of the Resource Economy. In Proceedings of the Workshop
on Hot Topics in Operating Systems, pages 188, Elmau, Germany, May 2001.

[179] Ann Wollrath, Roger Riggs and Jim Waldo. A Distributed Object Model for the Java System.
In Proceedings of the USENIX Conference on Object-Oriented Technologies, pages 219-232,
Toronto, Canada, June 1996.

[180] Rich Wolski, James S. Plank, John Brevik and Todd Bryan. Analyzing Market-Based Re-
source Allocation Strategies for the Computational Grid. In International Journal of High
Performance Computing Applications, 15(3):258-281, August 2001.

[181] Timothy Wood, Prashant Shenoy, Arun Venkataramani and Mazin Yousif. Black-Box and
Gray-Box Strategies for Virtual Machine Migration. In Proceedings of the Symposium on
Networked System Design and Implementation, Cambridge, Massachusetts, April 2007.

[182] William A. Wulf, Roy Levin and C. Pierson. Overview of the HYDRA Operating System
Development. In Proceedings of the Symposium on Operating Systems Principles, pages 122-
131, Austin, Texas, November 1975.

[183] Ming Q. Xu. Effective Metacomputing Using LSF MultiCluster. In Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid, pages 100-105, Brisbane, Aus-
tralia, May 2001.

[184] Jia Yu and Rajkumar Buyya. A Taxonomy of Scientific Workflow Systems for Grid Comput-
ing. In ACM SIGMOD Record, 34(3):44-49, September 2005.

191

[185] Aydan Yumerefendi, Piyush Shivam, David Irwin, Pradeep Gunda, Laura Grit, Azbayer Dem-
berel, Jeff Chase and Shivnath Babu. Towards an Autonomic Computing Testbed. In Pro-
ceedings of the Workshop on Hot Topics in Autonomic Computing, Jacksonville, Florida, June
2007.

[186] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck and Amin Vahdat. ECOSystem: Managing Energy
as a First Class Operating System Resource. In Proceedings of the Architectural Support for
Programming Languages and Operating Systems, pages 123-132, October 2002.

192

Biography

David Emory Irwin was born on July 29th, 1980 in Birmingham, Alabama. He received a Bachelor

of Science in Mathematics and Computer Science magna cum laude from Vanderbilt University in

Nashville, Tennessee on May 11th, 2001 and a Master of Science in Computer Science from Duke

University in Durham, North Carolina on December 30th, 2005. He is currently a Research Fel-

low in the Computer Science Department at the University of Massachusetts, Amherst and resides

in Williamstown, Massachusetts. He has co-authored several technical papers in peer reviewed

computer systems conferences and workshops. His work broadly focuses on improving resource

management for collections of networked hardware; specific topics include data center power man-

agement, market-based resource allocation, and system structures and policies for virtual machine

hosting.

193

