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Abstract

Systems that harvest environmental energy must carefully regulate their us-
age to satisfy their demand. Regulating energy usage is challenging if a system’s
demands are not elastic, since it cannot precisely scale its usage to match its
supply. Instead, the system must choose how to satisfy its demands based on
its current energy reserves and predictions of its future energy supply. In this
paper, we show that prediction strategies that use weather forecasts are more
accurate than prediction strategies based on the past, and are capable of im-
proving the performance of a variety of systems. We analyze weather forecast,
observational, and energy harvesting data to formulate a model that translates a
weather forecast to a solar or wind energy harvesting prediction, and quantify its
accuracy. We then compare the performance of three types of energy harvesting
systems—a lexicographically fair sensor network, an off-the-grid sensor testbed,
and a solar-powered smart home—using prediction models based on both fore-
casts and the past. In each case, forecast-based predictions significantly improve
system performance.
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1. Introduction

Energy harvesting systems collect and store environmental energy to either
sustain continuous operation without external power sources or reduce energy
consumption from burning “dirty” fossil fuels.1 Harvesting environmental en-
ergy is useful for a diverse range of cyber-physical systems. For instance, past
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research focuses on energy harvesting sensor networks, since they are often de-
ployed in remote locations without access to the power grid [27, 10]. As an-
other example, cloud data centers are integrating renewable energy to offset
the growing monetary costs and carbon emissions from rising electricity de-
mands [21, 11, 3]. Finally, net metering combined with time-of-use (TOU)
pricing models provide strong financial incentives for home owners to augment
grid power with on-site renewables [31].

Energy-neutral systems always consume less than or equal to the energy
they harvest [13]. An underlying goal of most energy harvesting systems is to
operate as close to energy-neutral as possible to prevent downtime from bat-
tery depletions. The strategy a system uses to achieve energy-neutral operation
depends on the specific characteristics of its energy source, battery, hardware
components, and workload. Achieving energy-neutral operation is simple if an
energy source produces power faster than a system can consume it. Unfortu-
nately, environmental energy sources, such as solar and wind, are intermittent
and vary significantly over time due to weather conditions. As a result, these
energy sources typically do not produce enough power to continuously operate
a system’s hardware components.

Instead, systems must adapt their energy usage over time to ensure they
do not consume more energy than they are able to harvest and store. Ideal
systems are energy-proportional, such that their energy consumption scales lin-
early with their workload’s intensity [5]. Thus, a system with elastic work-
load demands achieves energy-neutral operation by changing the intensity of its
workload, and hence its energy usage, at fine time-scales to match the energy
it harvests. Prior work on energy harvesting primarily focuses on systems with
energy-proportional components that have elastic workload demands [8, 12, 13,
15, 16, 26, 27, 28]. Maintaining energy-neutral operation in a system with inelas-
tic workload demands using components that are not energy-proportional poses
new challenges, since the system is unable to precisely change the intensity of
its workload and energy usage to match the energy it harvests.

The system must choose how to satisfy its workload’s demands based on
its current and expected energy supply. Inelastic demands derive from either
external requests, such as satisfying requests from system users, or internal ob-
jectives, such as maintaining a stable workload for a long period of time. The
former is relevant to both off-the-grid sensor testbeds [9, 23, 29] and energy
harvesting smart homes, since external testbed users or home occupants, re-
spectively, dictate the workload’s energy demands. The latter is relevant to
lexicographically fair energy harvesting sensor systems, since the primary goal
is to maintain steady and fair node sensing rates for a target time period [10]. As
others have noted, workload scheduling algorithms in energy harvesting systems
with inelastic demands are highly sensitive to energy harvesting predictions [18].

While past work recognizes the need for accurate energy harvesting predic-
tions, prior prediction methods derive from the underlying idea that the past
is an accurate predictor of the future [10, 14, 18, 19]. While the past is accu-
rate for both sufficiently short, i.e., seconds to minutes, and sufficiently long,
i.e., months to years, time-scales, we show in Section 2 that predictions derived
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Figure 1: Power generated during a 12 day period in October, 2009 from our solar panel (a)
and wind turbine (b).

from weather forecasts are more accurate at the medium-length time-scales,
i.e., hours to days, relevant to a large class of energy harvesting systems. Our
empirical findings match the same intuition that causes people to tune into
a nightly weather forecast, rather than step outside, to find out the expected
weather for the next few days. In this paper, we design a method for leveraging
weather forecasts to improve the performance of energy harvesting systems. In
particular, as discussed below, we i) analyze historical weather data to iden-
tify the time-scales when forecasts are most accurate, ii) develop a model that
maps a specific forecast to an energy harvesting prediction, and iii) quantify
the performance improvements from using our model in three real-world case
studies.
Analyze Historical Weather Data. We analyze extensive traces of past
forecast and observational data from the National Weather Service (NWS), as
well as fine-grain solar and wind energy harvesting and observational data from
our own deployment. We use these traces to quantify how well both weather
forecasts and multiple variants of predictions using the immediate past predict
the weather phenomena—sky condition and wind speed—that most impact solar
and wind energy harvesting at time-scales ranging from 1 hour to 72 hours in
the future.

To demonstrate the broad applicability of our approach, we analyze data
from five locations within the United States with five distinct climate profiles.
These locations include Chicopee Falls, Massachusetts, Daytona Beach, Florida,
Phoenix, Arizona, Norfolk, Nebraska, and Seattle, Washington. We find that in
all cases NWS forecasts in these regions are a better predictor of the future than
existing prediction strategies based on the immediate past over NWS forecast
time-scales for both sky condition and wind speed.
Formulate Forecast→Energy Model. We use our observational data to
correlate (i) weather forecasts for our region with our own local weather obser-
vations and (ii) our own local weather observations with the energy harvested
by our solar panel and wind turbine deployment. We use both data sets to for-
mulate a simple model that predicts how much energy the solar panel and wind
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Figure 2: The error in sky condition (a) and wind speed (b) when using the past to predict the
future for different time intervals in 2008 at 1 hour and 5 minute granularities, respectively,
for Amherst, Massachusetts.

turbine will harvest in the future given weather forecasts every hour from 1 hour
to 72 hours in the future. To evaluate the forecast accuracy of remote regions,
we assume that the model we develop using our own local data collection, as
well as the NWS weather observations, are accurate.
Case Studies. We quantify the benefits of using energy harvesting predic-
tions based on weather forecasts in the context of three different types of energy
harvesting cyber-physical systems with inelastic demand. The first system is a
deployed off-the-grid testbed [23] we have built as part of the NSF GENI pro-
totype [20]. The second system is inspired by recent work on lexicographically
fair energy harvesting sensor systems [10]. The third system is a solar-powered
smart home that minimizes electricity costs for TOU pricing by deciding when
to draw power from the grid versus an on-site battery.

In each case, we compare the performance of a forecast-based approach with
one or more prediction models that use the immediate past to predict the fu-
ture. For each system, we find that our forecast-based approach is significantly
better than any prediction scheme based on the immediate past for the system’s
relevant performance metrics, e.g., requests satisfied, combined length of power
outages, and monetary cost.

2. The Case for Using Forecasts

To motivate the use of weather forecasts for prediction, we analyze both
forecast and observational data from the year 2008 to compare the accuracy,
at different time-scales, of predictions based on NWS forecasts with predictions
based on the past. Others have noted that over appropriate time-scales and
under ideal conditions the past predicts the future for both solar [4, 6, 13]
and wind [14] power. However, our analysis leads to four observations that
motivate the use of forecasts, instead of the past, for predictions over time-
scales of hours to days. We use data from an extended deployment of a weather
station, wind turbine, and solar panel on the roof of the Computer Science
Building at the University of Massachusetts Amherst, as well as data from NWS
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Figure 3: RMSE between the observed sky condition and the sky condition predicted by NWS
forecasts (a) and the PPF model (b) for different time intervals in 2008 at 1 hour granularities.

observations, the National Digital Forecast Database, and the National Solar
Radiation Data Base. Our observational traces are available upon request from
http://traces.cs.umass.edu and the NWS traces are available upon request
from http://www.nws.noaa.gov/ndfd/.

Our weather station reports wind speed and solar radiation every 5 minutes,
while the NWS reports an observation every hour and an archival forecast ev-
ery 3 hours for each region of the country for the last few years. Each forecast
includes predictions every 3 hours from 3 hours to 72 hours in the future. Ad-
ditionally, real-time forecasts are available every hour from 1 hour to 72 hours
in the future. Unless otherwise noted, we use our own weather station’s obser-
vations for Amherst, Massachusetts, and NWS observations for other regions.
While our weather station and the NWS report a variety of weather metrics,
we focus on the two metrics with the most direct relationship to the energy our
solar panel and wind turbine harvest: sky condition, as a percentage of cloud
cover between 0% and 100%, and wind speed, in miles per hour. We show how
these metrics impact solar and wind energy harvesting in Section 3.

To compare with forecast-based predictions, we first define a basic prediction
strategy, which we term past predicts the future or PPF. The basic PPF strategy
predicts that a weather metric’s value in the next N time units will exactly
match the observations of that metric from the last N time units. For solar
energy harvesting, there are multiple variants of this basic approach in prior
work. We discuss these variants in Section 5, which adjust the basic PPF
strategy to adapt to seasonal variations in sunlight [13, 14, 26] or sudden changes
in cloud cover [19]. In this section, we focus on the basic PPF model only to
motivate the limitations of solely using the past to predict the future. For wind
energy harvesting, we have found no variants of the basic PPF approach in prior
work.

The accuracy of the PPF model or any of its variants is dependent on the
climate at a specific location. For example, a PPF model for solar power may be
more accurate in areas with consistent sunlight and little variation in weather
patterns, such as the desert in Australia [6], while a PPF model for wind power
may be more accurate in areas likely to be in the path of a jet stream. Regardless
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of the area, though, prediction strategies without the aid of detailed weather
forecasts must inherently rely on the past. Both our intuition and our empirical
measurements lead to our first observation: there are many areas, including
Amherst, Massachusetts, that do not have consistent weather patterns.
Observation #1: Sky condition and wind speed show significant inter-day and
intra-day variations, as a result of changing weather in Amherst, Massachusetts,
as well as other regions, including Arizona, Florida, Washington, and Nebraska.

While we expect wind to be intermittent, the data for the regions we examine
also shows significant variations in the sky condition observed by the NWS
both within each day and between days. As an example from our deployment,
Figures 1(a) and 1(b) show the solar and wind power we harvest, respectively,
during a 12 day period in October. As expected, wind is highly variable, with the
wind turbine harvesting the most energy on days 3, 4, and 7, while harvesting
lesser amounts on days 1, 6, 9, 10, and 12. The turbine harvests nearly zero
energy on days 2, 5, 8, and 11. Surprisingly, despite its diurnal nature, solar
power shows significant variations as well due to cloud cover, with the solar
panel harvesting less than half its maximum possible energy on days 2, 3, 7,
8, and 11, with significant variations within each day. Our solar panel actually
harvests no energy on day 11.

Even when the solar panel or wind turbine harvest the same amount of
energy on two different days, the profile of power generation within each day
is variable. For example, on both day 3 and 4 our solar panel harvests similar
amounts of energy, but the power profile for day 4 is more consistent and less
variable than day 3. Overall, the solar panel and wind turbine harvest less
than 1

2 their rated daily maximum on 40% and 75% of the days, respectively.
While we chose a 12 day period to enhance the readability of the graph, we have
witnessed a similar degree of day-to-day variation throughput our solar panel
and wind turbine deployment.
Observation #2: Using PPF to predict the future is least accurate at medium-
length time-scales from 3 hours to 1 week.

To evaluate the accuracy of the PPF model we focus on Amherst, Mas-
sachusetts, and calculate the root mean squared error (RMSE) between the
average value of both sky condition and wind speed over an interval from t=0
to t=N and from t=N to t=2N for all possible intervals of length 2N in the year
2008, given that our observational data has a granularity of 5 minutes. RMSE
is a standard statistical measure of the accuracy of values predicted by a model
with respect to the values observed. Intuitively, the RMSE’s value quantifies
the PPF model’s accuracy at different time-scales. For instance, an RMSE of
zero for an interval of length N indicates that for all possible intervals of length
N during the year the metric’s average in the previous interval exactly predicts
the metric’s average in the next interval. The closer the RMSE is to zero for a
particular interval duration, the more accurate the past predicts the future for
that interval.

Figures 2(a) and 2(b) show the RMSE for sky condition and wind speed,
respectively, as a function of time interval duration N ranging from 5 minutes
to 6 months. Notice that we plot both graphs on a log scale. The analysis
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Figure 4: RMSE between the observed wind speed and those predicted by NWS forecasts (a)
and using the past to predict the future (b) for different time intervals in 2008.

shows that predictions based on the past are most accurate at both short (< 2
minutes) and long time-scales (>10 days), and are least accurate in between.
Moreover, wind speed predictions based on the past tend to get better over long-
term, whereas sky condition predictions remain almost same after 10 days. For
both sky condition and wind speed, the maximum inaccuracy occurs between 3
hours and one week, as indicated by each graph’s vertical lines.
Observation #3: Over NWS forecast time-scales of 3 hours to 3 days, sky
condition and wind speed forecasts are better predictors of the future than the
PPF model.

We next show that NWS forecasts for the medium-length time-scales of
hours to days are more accurate than the PPF model. To quantify the relative
accuracy of weather forecasts, we use NWS forecast data from three months
in different seasons—January, April, and September 2008—at all five of our
locations. Figure 3(a) shows the RMSE between the observational sky condition
and the sky condition from the NWS forecasts, as a function of the forecast time
horizon2 for multiple regions. Similarly, Figure 3(b) shows the RMSE between
the observational sky condition and the sky condition using PPF for the same
regions. As expected, the accuracy of the sky condition forecast decreases as
the time horizon increases. Since the RMSE of the sky condition forecast (<20)
is less than the RMSE of the PPF model from Figure 2(a) and Figure 3(b)
between 3 hours and 3 days (∼40-60) we conclude that the forecast is a better
predictor than the past for sky condition in every region we study, including
Amherst, Massachusetts.

We next compare the accuracy of the NWS forecast for wind speed with
the accuracy of the PPF model. Figure 4(a) shows the RMSE between the
observational wind speed and the wind speed from the NWS forecast, as a
function of the forecast time horizon for multiple regions. Similarly, Figure 4(b)
shows the RMSE between the observational wind speed and the predicted wind
speed using the PPF model for the same regions. As the figures show, the

2We use “time horizon” and “time interval” interchangeably throughout the paper.
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accuracy of the wind speed forecast does not vary significantly for any future
time horizon. Since the RMSE of the NWS wind speed forecast (<6) is less
than the RMSE of the PPF model from Figure 2(b) and Figure 4(b) between
3 hours and 3 days, we conclude that the NWS forecast is a better predictor
than the past for wind speed in Amherst, Massachusetts, which leads to our
final observation.
Observation #4: We conclude that using weather forecasts as a basis for
prediction should improve the performance of energy harvesting systems with
inelastic demands that make workload scheduling decisions over 3 hour to 3 day
time horizons.

3. Forecast → Energy Model

To leverage our observations from the previous section, we formulate models
that predict the energy our solar panel and wind turbine will harvest given a
NWS weather forecast. Note that our models are based on our specific solar
panel and wind turbine, as well as the weather forecasts at our location. In
addition, we assume an unobstructed solar panel and wind turbine not affected
by shade from trees or buildings. Since we derive our model parameters em-
pirically, they depend on the specific characteristics of our deployment, and are
not directly useful for other deployments. While the methods we use for build-
ing our models are applicable to other deployments, the accuracy we report
is dependent on the specific characteristics of our location’s climate. Further,
since we deploy our harvesting equipment in an open area, we do not evaluate
the effect of local conditions, such as shade from foliage or wind shear from
surrounding buildings, on our model.

Before discussing our model, we briefly describe our energy harvesting de-
ployment, which consists of a battery, solar panel, and wind turbine. Air-X
manufactures our wind turbine, and rates its maximum power output as 400
watts in 28 mile per hour winds. The turbine uses an internal regulator to gov-
ern the power delivered to the battery to prevent overcharging when the battery
voltage increases beyond a threshold of 14.1 volts. Kyocera manufactures our
solar panel, and rates its maximum power output as 65 watts at 17.4 volts un-
der full sunlight. We connect the solar panel to a deep-cycle battery through
a TriStar T-60 charge controller, which protects the battery from overcharging.
Our battery has an ideal capacity of 1260 watt-hours.

The purpose of our deployment is to measure power harvested over time. As
a result, we must ensure that the battery is never full, since a full battery cannot
harvest and store energy. To prevent our system’s battery from becoming fully
charged, we use an additional T-60 load controller in conjunction with a 60 watt
automotive bulb to bleed the battery’s energy. The controller connects the load
to the battery at 13.6 volts and disconnects at 12.1 volts to ensure the battery
stays charged to 55% of its capacity. The final component of our measurement
system is a HOBO U30 wireless data logger. The logger measures battery
voltage, using a built-in analog-to-digital converter, and electrical current, using
an external current transducer for each energy source. The logger measures each
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Figure 5: Relationship between the solar radiation our weather station observes and the power
generated by our solar panel.

quantity every 30 seconds and stores a 5 minute average locally. Each hour, the
logger uploads its log file to a server hosted by HOBO, where data is publicly
available for viewing through the HOBO web interface.

3.1. Sky Condition → Solar Power Model

We base our model for solar energy on a simple premise: if the sky condition
reports a cloud cover ofN% then the observed solar radiation, as well as our solar
panel’s power production, will be (100 −N)% of the maximum possible under
ideal cloudless skies. For example, if the 3 hour forecast predicts a sky condition
with 50% cloud cover, and the maximum possible solar power production is 60
watts over that 3 hour interval, then the solar power prediction for that 3 hour
interval will be 60 ∗ 0.5 = 30 watts. Given our simple premise, to formulate our
model we must first estimate the maximum possible solar power production at
any time of the day and year, given the tilt of the earth’s axis and the sun’s
diurnal nature. Since our solar panel deployment has not been active for an
entire year, we use our weather station’s traces of solar radiation to construct
our model.

3.1.1. Computing Solar Power From Solar Radiation

We first derive the relationship between the solar radiation our weather
station observes and the power our solar panel produces using our trace data,
as shown in Figure 5. The relationship should be linear, since our solar panel
produces energy in proportion to the solar radiation with a constant factor loss
due to inefficiency. As expected, the relationship we observe is close to linear.
We use the least-squares approach to fit the following regression line to the
data, which we use to convert the solar radiation our weather station observes
to the solar power our panel produces, where power is in units of watts and
solar radiation is in units of watt/m2.

SolarPower = 0.0444 ∗Radiation− 2.65 (1)

9



Month a b c

January -1.15 -12.75 21.45

February -1.15 -12.75 29.13

March -1.15 -12.75 35.97

April -1.25 -13.5 43.72

May -1.1 -13.5 43.5

June -1.1 -13.5 43.4

July -1 -13.5 40.35

August -1.15 -13.5 40

September -1.15 -13.5 36.32

October -1 -13.35 27

November -1.45 -12 22.66

December -1.15 -12.5 16.79

Table 1: Values for a, b, and c in our quadratic solar power model.

3.1.2. Computing the Maximum Possible Solar Power

We next derive an estimate for the maximum solar power possible at a given
time of the day and year. The value is dependent on multiple factors, including
the time of the day, day of the month, month of the year, and geographic
location. While highly accurate models that take into account all of these factors
are possible, we use a simple approximation that assumes the change in position
of the sun relative to a specific location does not vary significantly within any
single month. Thus, we use a profile for a single sunny day in each month of
the year as the baseline for computing the ideal maximum power on any day of
that month. We select a single sunny day with no cloud cover for each month
from the year 2008 using our weather station data and observational data from
National Solar Radiation Database.

Figure 6(a) shows the profile of solar power our panel would harvest on three
perfectly clear and sunny days in January 2008, May 2008, and September 2008.
Similarly, figures 6(b), (c), and (d) show the profile of solar power our solar panel
would harvest in the other locations we study, including Arizona, Nebraska, and
Washington, on three perfectly clear and sunny days in January 2008, May 2008,
and September 2008. For the graph, we convert the solar radiation observed by
our weather station and the observational radiation data from National Solar
Radiation Database on these days to the expected solar power harvested by our
solar panel using equation (1) from above. We find that power is quadratically
related to the time of day. Since daylight hours change throughout the year, the
power profile for a sunny day also changes. Of the three months in the figure,
May has the maximum possible potential for power generation since it is nearest
to the summer solstice, while January has the least possible potential for power
generation since it is nearest to the winter solstice. For each month, we fit the
quadratic function below, where a, b, and c are the parameters of the quadratic
function, and Time is in hours after 12am. The parameters a, b, and c for each
month in Amherst, Massachusetts are given in Table 1.
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Figure 6: Profile for solar power harvested on clear and sunny days in January, May, and
September, and the quadratic functions f(x), g(x), and h(x) we fit to each profile, respectively.

MaxPower = a ∗ (Time+ b)2 + c (2)

3.1.3. Solar Model

To complete our model, we compute the power our solar panel generates
using the equation below, where MaxPower is in units of watts from equation
(2) and SkyCondition is the percentage cloud cover from the NWS. Figure 7(a)
compares the observed solar power generated by our panel with the solar power
predicted by our model for Amherst, Massachusetts (three hours into the fu-
ture). The graph demonstrates that the daily average difference between each
observed and predicted value is small. Further, the model tends to be conser-
vative when incorrect: the predictions are generally less than the observations,
which reduces battery depletions from incorrect predictions.

Power = MaxPower ∗ (1− SkyCondition) (3)

3.2. Wind Speed → Wind Power Model

Our wind power model is simpler than our solar model, because, as opposed
to sky condition, both our weather station and the NWS forecast report wind
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Figure 7: Power output from our solar panel and the power output predicted by different
prediction models.

speed. Figure 8 shows the recorded power output of the wind turbine for differ-
ent recorded wind speeds, as well as curves showing the power ratings for the
turbine in both turbulent and steady winds. Wind power production is known
to be a cubic function of the wind speed [2].

Power = 0.01787485 ∗ (WindSpeed)3 − 3.4013 (4)

We fit the cubic power curve in equation (4) to the observed data using
the least-squares method to generate our wind power model, where Power is
in units of watts and WindSpeed is in units of miles per hour. Our cubic
function is nearly half-way in between the rated power curves for turbulent and
steady winds. Figure 9(a) compares the observed wind power generated by our
wind turbine with the wind power predicted by our forecast model for Amherst,
Massachusetts (three hours into the future). The graph demonstrates that the
daily average difference between each observed and predicted value is small.
Further, the model tends to be conservative when incorrect: the predictions
are generally less than the observations, which reduces battery depletions from
incorrect predictions. Note that the wind turbine stops producing power near
28 miles per hour, so our function ramps down to 0 at that point.
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Figure 8: Power output from our wind turbine and the power output predicted by our wind
power model.

3.3. Compensating for Forecast Errors

Our solar and wind power models convert an observed sky condition and
wind speed to the expected solar and wind power generated by our deployment.
To convert a forecast for sky condition and wind speed to a prediction for solar
and wind power we multiply the output of both models with an error constant
α. We base our α constant for each forecast time horizon on the RMSE for sky
condition and wind speed forecasts in the previous section. Thus, the greater
the expected error in the forecast at a particular future time, the smaller the
value of α in our model. We use α = 0.8 in our model, which we derive from
the accuracy of forecasts in our region.

3.4. PPF Variants

In addition to the basic PPF model, we evaluate three PPF variants from
prior work: Exponentially Weighted Moving Average (EWMA), Simple Mov-
ing Median (SMM), and Weather Conditioned Moving Average (WCMA). We
briefly describe each approach.

The purpose of the EWMA variant is to adapt to seasonal variations in
output. Thus, EWMA divides a day into slots and predicts the energy for a
particular slot as the weighted sum of the energy harvested in the same slot on N
previous days [13]. EWMA assigns an exponentially decaying weighting factor
to each previous day, since the recent past tends to provide more accurate pre-
dictions. We choose each slot’s length to be 60 minutes, since the environmental
variation within each hour is typically small and to provide a fair comparison
with our forecast-based approach. For EWMA, the predicted energy at a time
slot t on ith day is given as:

Et
predict(i) = αEt

observe(i− 1) + (1− α)Et
predict(i− 1) (5)

We empirically find that a weighting factor α=0.1 minimizes the RMSE be-
tween the observed and predicted energy for our deployment based on historical
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Figure 9: Power output from our wind turbine and the power output predicted by different
prediction models over the first 3 weeks of October, 2009.

data. SMM is an another variant of PPF, which predicts the energy for a par-
ticular slot as the median of energy harvested in the same slots on N previous
days. SMM is more robust than EWMA to high fluctuations or other anomalies
in the time series data. Finally, WCMA is a variant of EWMA, which uses
the current day’s, as well as previous days’, observational data to make predic-
tions [24, 25]. In contrast to EWMA, WCMA considers the weather conditions
of previous slots in the current day. Thus, it performs better than EWMA dur-
ing inconsistent or fluctuating weather conditions. WCMA predicts energy for
any time slot t on ith day as:

Et
predict(i) = αEt−1

observe(i) +GAPk(1− α)M t
D(i) (6)

Where α is a weighting factor similar to EWMA, and M t
D(i) is the mean of

the observed values in time slot t over the past D days. GAPk is a factor that
depends on past k slots and measures the present weather conditions compared
to the same conditions over the previous days. Recas et al. [24] provide a a
detailed description of calculating GAPk. For WCMA, we find the optimal
values of three parameters—α, D, k—that minimize the RMSE between the
observational energy and the predicted energy as α=0.4, D=6, and k=15 for
our solar panel, and α=0.9, D=7, and k=14 for our wind turbine. Similar to
EWMA, we assume a slot duration of 60 minutes. We use the optimal values
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Figure 10: Power output from our solar panel (a) and wind turbine (b) and the power output
predicted by the hybrid prediction model over the first 3 weeks of October, 2009.

for the EWMA and WCMA parameters in our evaluation.
Figure 7 compares the observed solar power generated by our panel with

the solar power predicted by all four prediction models: (a) Forecast Pre-
dicts Future (FPF), (b) Exponentially Weighted Moving Average (EWMA),
(c) Weather Conditioned Moving Average (WCMA), and (d) Simple Moving
Median (SMM). Since the figure plots predictions only three hours into the fu-
ture, it represents a best case scenario for the prediction models based on the
past. The figure demonstrates that the forecast-based approach and WCMA
perform significantly better than the EWMA or SMM model, especially when
environmental conditions change. Although WCMA’s accuracy is similar on
average to our forecast-based approach, it over-predicts on most days, which
results in frequent battery depletions in energy harvesting systems.

Similarly, figure 9 compares the observed wind power generated by our tur-
bine with the wind power predicted by all four prediction models. Again,
WCMA and our forecast-based approach provide similar prediction accuracy
for wind power, while EWMA and SMM are much less accurate due to the
wind’s intermittent nature. WCMA also suffers from over prediction with wind
energy, while our forecast-based approach tends to under predict when it is in-
accurate. As we show in our case studies, over prediction causes unexpected
battery depletions that decrease system performance. Our case studies also in-
dicate that WCMA has worse performance at longer time-scales, e.g., day-ahead
predictions.

3.5. Forecast-WCMA Hybrid

As the previous section indicates, the WCMA variant of PPF performs well
when weather does not vary significantly, while a purely forecast-based approach
performs well for dramatic weather variations. To gain the benefits of both ap-
proaches, we introduce a Forecast-WCMA hybrid approach. The approach as-
signs weights to each technique that vary dynamically based on prior prediction
accuracy. More formally, the model predicts energy for a time slot t as:

15



Et
Hybrid = βEt

Forecast + (1− β)Et
WCMA (7)

β = et−1
WCMA/(e

t−1
Forecast + et−1

WCMA) (8)

Where Et
Hybrid, Et

Forecast, and Et
WCMA represent the energy prediction

for time slot t, using the hybrid-, forecast-, and WCMA-based approach, re-
spectively, and et−1

Forecast and et−1
WCMA represent the absolute value of the

prediction error for the previous slot for each approach. Figure 10 demonstrates
that the hybrid approach provides better prediction accuracy than either the
forecast-based approach or WCMA. For the experiment, the RMSE for the hy-
brid approach (2.32 for solar, and 2.84 for wind) is lower than the RMSE for the
forecast-based (FPF) approach (3.12 for solar, and 2.95 for wind) or for WCMA
(2.96 for solar, and 3.05 for wind).

4. Case Studies

We evaluate our models from the previous section in the context of three
types of energy harvesting systems with inelastic demand: an off-the-grid testbed
that we have built as part of the NSF GENI prototype [23] that leases virtual-
lized resources to users, a lexicographically fair sensor network inspired by re-
cent work [10], and a smart home with on-site renewables. For each system, we
quantify how much the use of forecast-based predictions increases the system’s
relevant performance metrics when compared with both the PPF model and a
conservative approach that does not use predictions and only makes decisions
based on the current battery level. For each case study, we predict hour-by-hour
energy harvesting one day in advance. Thus, each day’s predictions are a com-
bination of a single 1-, 2-, 3- . . . 23-, 24-hour prediction. Finally, we quantify
the impact of battery capacity on performance. We refer to our forecast-based
model as FPF in our graphs. Note that our objective is not to optimize any
specific objective function but to demonstrate that better predictions lead to
better performance for real-world energy harvesting sensor systems.

4.1. ViSE Testbed

ViSE, which stands for Virtualized Sensing Environment, is a 4-node high-
power sensor testbed we built as part of GENI [20]. A ViSE sensor node consists
of a conventional x86-processor connected to multiple high-power sensor nodes,
including a radar, video camera, and weather station. Our ViSE radar is based
on a CASA radars, which while smaller than Doppler radars, require mounting
on large towers above any obstructions. As with other GENI testbeds, ViSE
leases external users access to a slice of its nodes upon request. A lease ensures
users access to an isolated partition of the testbed’s resources for some duration.
Since GENI coordinates access to multiple testbeds, it is important that each
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testbed satisfy its leases to enable multi-testbed experiments, since not satisfying
a lease may stall an experiment, and thereby waste any resources reserved on
other testbeds.

When using harvested energy, ViSE must approve or reject lease requests
from external users based on its available energy supply. The workload is an
example of inelastic demand, since ViSE cannot change its decision to accept or
reject a lease request based on new conditions after the initial decision is made.
Further, ViSE must make each decision without complete knowledge of its future
energy supply. A conservative approach is to reject all requests with durations
greater than each node’s expected operating time based on its current reserve
of stored energy. However, a conservative approach may reject more requests
than necessary if some knowledge of the future energy supply is known. An
alternative approach uses predictions of the future to determine whether or not
to approve each request, either using our model or a PPF-inspired model. When
using predictions, ViSE approves lease requests if both the existing energy in the
battery and the predicted energy harvested while the lease is active is sufficient
to satisfy the lease over its duration. Note that our prediction-based approach
not only ensures that there is enough energy at the end of the lease, but also
throughout the lease based on the energy harvested while the lease is active.

To evaluate the benefits of our models from Section 3 relative to both the
conservative approach and the variants of the PPF model, we ran simulations
based on our ViSE node’s power characteristics using our traces of solar and
wind power. Each ViSE node consumes 115 watts at full utilization when the
radar is transmitting, with the radar consuming 50 watts by itself [7]. Neither
the radar nor the compute node are energy-proportional. The radar consumes
either 0 watts when off or 50 watts when transmitting, while the main node’s
power consumption scales linearly from 45 watts at idle to 65 watts at 100%
utilization. Since a single wind turbine or solar panel from our deployment is
only sufficient to run our node for a few hours each week, for our experiments
we assume the use of 5 identical solar panels or 5 identical wind turbines. We
assume a battery capacity capable of running our node at full utilization for 2
hours.

For our experiments, ViSE makes decisions to accept or reject lease requests
at the beginning of each day, where each lease reserves a virtual sensor, i.e., an
isolated sliver of the sensor’s resources, for 24 hours. We discuss ViSE’s approach
to virtualizing sensors in recent work [23]. We assume that the workload includes
enough lease requests each day to completely consume the maximum possible
energy the solar panels or wind turbines can produce. At each decision point,
ViSE only accepts leases that it believes it can satisfy based on a conservative
approach, the NWS forecast-based model, or the variants of the PPF model
(basic PPF, EWMA, WCMA, SMM, and Hybrid), where we assume each virtual
sensor will operate at 1/24th of full utilization for the duration of the lease.
The performance metrics we use to evaluate the different approaches are (i)
the number of leases ViSE approves and (ii) the percentage of approved leases
ViSE satisfies without nodes running out of energy. Ideally, ViSE should never
approve a lease that it does not have the energy to complete.
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Figure 11: Number of approved and completed leases, and % of days the node runs out of
energy for different prediction schemes for both solar (a) and wind (b) power.

We evaluate ViSE separately for solar and wind energy. Figures 11(a) and
11(b) show the number of lease requests ViSE approves, and number of leases
ViSE completes for the panels and turbines, respectively. The experiments show
that using forecast-based predictions results in better performance than either
the conservative approach or the variants of the PPF model. With solar power,
PPF and its variants approve more leases than our forecast-based approach, but
complete only three-fourths of the leases it approves without a node running out
of energy. While the conservative approach completes all of the leases it approves
without ever depleting any node’s battery, it completes only half of the leases of
PPF. In contrast, our forecast-based approach combines the best characteristics
of both: it completes nearly as many leases as the PPF model without depleting
any batteries. Figure 11(b) shows better results for wind power, since PPF is
less useful for predicting wind speed.

Note that an approach, such as PPF, that over predicts the available energy
tends to approve more jobs than it could complete, and, as a result, runs out of
the energy more often. In contrast, an approach, such as FPF or conservative,
that under predicts the available energy might approve less requests, but is able
to complete almost all of them, while rarely running out of energy.

4.2. Lexicographically Fair Sensor Systems

Computing lexicographically fair sensing rates in energy harvesting sensor
systems has been studied recently for both static and mobile networks [10]. Put
simply, an assignment of sensing rates to nodes is lexicographically fair if it
is impossible to increase the sensing rate of any node without decreasing the
sensing rate of another node due to either bandwidth or energy constraints. For
energy harvesting systems, the primary constraint is that each node must main-
tain energy-neutral operation. An assignment of lexicographically fair rates will
not be valid if the energy harvesting behavior changes due to weather condi-
tions. However, recomputing sensing rates for all nodes is time-consuming and
network-intensive, since it requires gathering the most recent energy harvesting
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Figure 12: Maximum sensing rate and % of days one or more nodes run out of energy for
different prediction schemes for both solar (a) and wind (b) power.

data from each node, computing new rates, and distributing the new rates to
all nodes in the network.

Thus, prior work sets a fixed coarse-grain time period, e.g., 1 day [10], to
recompute the fair rate for each node based on the most recent energy harvesting
information. The duration of the time period balances the expense of resetting
rates globally with the risk of any node running out of energy due to stale
or imprecise energy harvesting information. As a result, maintaining steady
network-wide sensing rates for a fixed time period represents an instance of
inelastic demand, since the system is not able to continuously vary the sensing
rates for all nodes, which ultimately determine the energy demand, to precisely
match the energy supply. The recomputation may use either a conservative
approach that only takes into account current battery reserves or a prediction
model that accounts for expected future energy [10].

We evaluate the use of our forecast-based predictions in a lexicographically
fair sensor network in simulation. In this case, the performance metrics we use
are the (i) maximum rate allocated in a 24 hour interval and (ii) the number
of 24 hour intervals where one or more nodes run out of energy. We examine a
networked setting based on a deployment of five conventional TelosB motes, with
the same power characteristics as the nodes in [28] in a simple tree topology using
the distributed algorithm developed by Fan et al. [10] to compute the network-
wide rates every 24 hours. We view our use of only five nodes as conservative:
increasing the number of nodes in the network also increases the benefits of
better predictions, since, as the number increases, more nodes are capable of
depleting their battery. For the TelosB simulation, we scale down the power
output to 1% of the power produced by both our 60 watt solar panel and our
400 watt wind turbine to better match the characteristics of the TelosB’s low
energy demand.

Figure 12(a) shows that solar power predictions based on PPF overestimate
the proper maximum rate, causing at least one node to deplete its battery on
nearly 50% of the days. In contrast, setting the rates using our forecast-based
approach results in at least one node depleting its battery on less than 5% of
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all days, while maintaining 80% of the rate set using the PPF approach. As
expected, a conservative approach never depletes any batteries but sets a rate
near 45% of the rate using PPF. Figure 12(b) shows similar results for wind.
However, since wind is more intermittent than solar, both the forecast-based and
PPF approach have at least one node that runs out of power on more days. In
both cases, the standard deviation of sensing rates each day in the PPF model
(∼ 7.4) are more than the standard deviation of the sensing rates using our
forecast-based approach (∼ 6.1). Thus, our forecast-based approach maintains
more consistent rates between each 24 hour period than the PPF model, which
is an important goal for steady rate allocation.

4.3. Smart Home

Our final case study examines how to use predictions to efficiently manage
renewable energy in smart homes. Many homes today that use renewable so-
lar energy leverage net metering to reduce costs. Net metering allows homes
to sell excess energy back to the grid when the home does not need it. The
price reductions from net metering are critical in providing additional financial
incentives to reduce the cost of on-site renewables in homes. Unfortunately,
net metering is not a scalable solution. The electric grid must always balance
supply and demand by dispatching generators to match demand as it varies.
At large scales across thousands of homes, electricity demand is highly pre-
dictable and changes slowly throughout the day, which permits well-planned
generator dispatch schedules. However, incorporating significant amounts of
volatile renewable energy sources into the grid disrupts dispatch schedules and
may destabilize grid operations. As a result, state laws often place caps on both
the total number of participating customers and/or the total amount of energy
contributed per customer [1]. After exceeding these caps, utilities are not obli-
gated to purchase excess power. For example, Washington state caps the total
number of participating customers at 0.25% of all customers.

In related work [31], we propose combining a small on-site battery with time-
of-use electricity pricing to lower utility costs, and provide a financial incentive
similar to net metering. The goal is to determine when to operate off the
battery, e.g., when prices are high, versus the grid and when to charge the
battery from the grid, e.g., when prices are low. However, the approach requires
accurate predictions of future solar generation to make effective charging and
discharging decisions. Here, we apply and evaluate the performance of each of
the solar generation prediction methods. We experiment with each methods
in the context of simple residential TOU pricing model used by the Ontario
Electric Board (OEB). The OEB divides rates into three categories: on-, mid-,
and off-peak. The on-peak rate is 10.7¢/kWh from 7am to 11am and from 5pm
to 9pm, the mid-peak rate is 8.9¢/kWh from 11am to 5pm, and the off-peak
rate is 5.9¢/kWh from 9pm to 7am. The OEB sets a different fixed ratio for
on-, mid-, and off-peak rates in the summer (May 1st-October 31st) and winter
(November 1st-April 30th), and on weekends and holidays. However, the exact
rates change on a monthly basis according to generation costs and demand.
Residential TOU pricing is still a nascent concept; the rates above still do not
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Figure 13: The cost of electricity from the utility for different prediction models. The forecast-
based hybrid model results in a 12-23% cost decrease compared to others.

accurately reflect the price of energy, which is much more volatile in wholesale
energy markets. In these markets, spot prices vary as little as every 5 minutes
and may differ by orders of magnitude each day.

Given electricity rates, the charging algorithm determines one day in advance
a schedule for when the home should use the battery versus the grid for power,
and when to charge the battery from the grid. The inputs to the algorithm are
predictions of how much solar energy the home will harvest the next day, how
much energy the home will consume, the TOU rate plan as described above, and
the battery’s capacity and current energy level. We assume a 12kWh battery
array, which is similar to the capacity of battery in an electric car. We then
use second-by-second traces of home power consumption from a real home, and
quantify the cost savings from each prediction model. We scale up one month
of traces from our solar panel deployment by 17 to align with the aggregate
energy consumption of the home. The final result is in Figure 13, which shows
that using OEB rates, the forecast-based Hybrid prediction model again results
in the lowest cost with a bill of $38.60. In contrast, the WCMA model increases
costs by 12% ($43.27), the PPF model increases costs by 18% ($45.43), and
finally the EWMA model increases costs by 23% ($47.55).

We view our results as conservative, since they are based on today’s simple
TOU pricing plans. More volatile TOU pricing plans that better reflect the cur-
rent price of energy would improve the results, since there would be a greater
penalty for misprediction. That said, a 12-23% reduction in electricity bills pro-
vides additional incentives for incorporating sophisticated prediction strategies
into smart homes.

4.4. Battery Capacity

Battery capacity affects the performance of an energy harvesting system by
storing the surplus energy when energy demand is less than the energy supply,
and by providing extra energy when energy demand is greater than the supply.
For example, our energy harvesting systems predict a fixed amount of energy
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Figure 14: % of slots our energy harvesting system runs out of energy for different battery
capacities. Each slot is of 1-hr duration and the experiment is run over the first 3 weeks of
October, 2009

available at one hour granularities. If the system harvests more energy than
predicted, it is able to store the extra energy in its battery. Similarly, if the
system harvests less energy than expected, it may use the reserve energy in
its battery energy to mitigate the impact of the misprediction. Since battery
cannot store more energy than its capacity, harvested energy may be wasted
when the surplus energy exceeds the battery capacity. Sharma et al. [21] shows
the energy vs voltage graph for a lead-acid battery, similar to the battery used
in this paper. A larger capacity battery is able to store more surplus energy and,
thus, prevent the system from depleting its energy reserves when its demand
exceeds the supply.

To study the impact of battery capacity in energy harvesting systems, we
divide a day into 24 1-hour slots. At the end of a slot, our energy harvesting
system predicts the incoming energy for the next slot and sends this information
to the application. Please note that the application’s energy demand for any
slot is limited to the energy predicted by the energy harvesting system for that
slot. For this experiment, we do not care about the nature or type of the
application; we assume that its demand is equal to the energy predicted by the
system. Figure 14 plots the percentage of slots the battery ran out of energy
for different prediction models used to predict the energy for next slot by our
energy harvesting system.

For solar energy, our prediction model (based on the weather forecast) out-
performs the PPF model and its variants, whereas for wind energy, our model
and two variants of the PPF model – WCMA and SMM – perform equally well.
Even for wind energy, our model performs better than WCMA and SMM for
low capacity batteries (10 watts-hr). Though EWMA performs equally well,
compared to other variants of PPF for solar energy, it performs poorly for wind
energy with the battery depleting its energy reserves on almost half of the days.
Thus, EWMA is suitable for consistent weather patterns, but not for inconsis-
tent or intermittent weather patterns. WCMA performs better than all other
PPF models – PPF, EWMA, SMM – for both solar and wind energy.
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5. Prior Work

We know of no prior work that evaluates the use of forecast-based predic-
tions in energy harvesting systems. Much of the prior work on energy harvesting
sensor systems assumes elastic workload demands that do not require predic-
tions, since the system continually adapts its workload’s intensity and energy
usage to match its energy supply [13, 26, 28]. However, while Moser et al. [18]
assume perfect future knowledge of an energy source and do not investigate pre-
diction strategies, they do note that scheduling algorithms for workloads with
inelastic demands are highly sensitive to the accuracy of predictions. While our
observation about the inter- and intra-day variations in solar radiation hold for
Amherst, Massachusetts, prior work on solar harvesting assumes diurnal behav-
ior that is more consistent than we observe [6, 30]. In these areas, the NWS
forecast-based approach may be less effective.

Most prior work focuses on simple prediction schemes, such as the PPF
model, based on the immediate past [13, 17]. As we show, the simple PPF ap-
proach is not as accurate as a NWS forecast-based approach for either solar or
wind power at time-scales of hours to days. Kansal et al. [13] maintain an expo-
nentially weighted moving average (EWMA) for solar power to achieve energy-
neutral operation in a system with elastic workload demands. The EWMA
approach is a variant of PPF that adapts to seasonal variations in solar radi-
ation. However, EWMA does not account for drastic changes in weather that
the NWS forecast predicts. Noh et al. [19] use a historical model for solar radia-
tion, akin to WCMA, that maintains an expectation for each time slot in a day
based on the previous day’s solar radiation reading, but down-scales all future
time-slots in a day by N% if it records a solar radiation reading N% less than
expected.

The techniques above do not apply to wind speed or wind power predictions,
since the wind is more intermittent than solar radiation and not diurnal in
nature. We know of no work that discusses prediction strategies for wind speed.
The recent commoditization and emergence of micro-wind turbines, such as the
400 watt Air-X we use in our deployment, motivates further study of harnessing
wind power in sensor systems deployed at locations with ample wind but little
sunlight, i.e., during the winter in the extreme north or south.

6. Conclusion

In this paper, we show how to leverage weather forecasts provided by the
NWS to enhance the ability of energy harvesting sensor systems to satisfy their
demand. We analyze observational weather data from our own weather station,
energy harvesting data from our own solar panel and wind turbine, and NWS
observational and forecast data. Our analysis shows that weather predictions
based on NWS forecasts are more accurate than predictions based on the past
in many regions of the United States, including Amherst, Massachusetts. To
leverage NWS forecasts in sensor systems, we formulate a model for our so-
lar panel and wind turbine that converts the forecast to an energy harvesting

23



prediction. We then compare our models with other approaches in three case
studies of systems with inelastic workload demands—an off-the-grid distributed
testbed, a lexicographically fair sensor system, and a smart home—and show
that for both solar and wind power our models our forecast-based approach im-
proves system performance. Designing prediction models for obstructed energy
harvesting is out of the scope of this paper. In future, we plan to extend our
prediction models to consider obstructions due to trees and buildings. Finally,
one advantage of our approach is that it does not require training data to learn
a prediction model over time. Such models require a large amount of training
data, e.g., many years, especially for solar, since each time of the day and each
time of the year the sun has different solar capacity at a given location. Our
model is more appropriate for new deployments that have not operated for many
years, e.g., such as a homeowner that has newly installed solar panels.
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